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Dynamical localization conditions for dc-trigonal
electric fields proceeding beyond the nearest neighbor
description

MARIA ANASTASIA JIVULESCU

ABSTRACT. Dynamic localization conditions proceeding beyond the nearest-neighbor description
are derived by applying the quasi-energy description, in the case of the dc-trigonal electric field like
E0 + E1(t), for which ωB = Pω/Q, where ωB = eaE0/~ and ω = 2π/T stand for, respectively, the
Bloch and ac field frequencies, while P and Q are mutually prime integers. Concrete manifestations
of dynamical localization have been presented for particular cases.

1. INTRODUCTION

In the last past decade the quantum-mechanical description of a charged par-
ticle, say electrons, moving on one-dimensional (1D) lattices under the influence
of periodic time dependent electric fields has attracted attention [1 − 2]. It was
proved there is a periodic return of the electron to the initially occupied site when
the ratio of the field magnitude to its frequency is a root of the ordinary Bessel
function of order zero [3]. These behaviors serve as a signature to the onset of the
dynamic localization effects. Such results are able to be reproduced by resorting
to the quasi-energy description, too. In this latter case, the dynamic localiza-
tion conditions rely on the so called collapse points of the quasi-energy bands, as
discussed before [4]. The dynamic localization properties of electrons on the 1D
lattice under the influence of dc-trigonal electric field like [12]

(1.1) E(t) = E0 + E1(t) = E0 +

{
−E1(1 + 4

T t), −T
2 ≤ t < 0

−E1(1 − 4
T t), 0 ≤ t ≤ T

2

are of a special interest for several applications in quantum electronics, with a
special emphasis on semiconductor supper-lattices. We shall discuss further de-
tails concerning localization attributes characterizing such fields, now by pro-
ceeding beyond the nearest neighbor description. For this purpose a general en-
ergy dispersion law like

(1.2) Ed(k) =
∞∑

n=0

Rn cos(nka)

will be used. Here k stands for the wave number, a denotes the lattice spacing
characterizing the one-dimensional 1D lattice, while Rn are pertinent expansion
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coefficients. Concrete manifestations of dynamic localization conditions will then
be established by resorting to the collapse points characterizing general quasi-
energy formulae established before [5]. To this aim a commensurability condition
such as given by:

(1.3)
ω0

ω
=
P

Q

where P and Q are mutually prime integers will be accounted for. Note that
ω0 = eE0a/~ stands for the Bloch-frequency [7], while ω = 2π/T . There are
reasons to say that dynamic localization conditions established before [12] have
to be updated by accounting for (1.3). Similar results for dynamical localization
conditions have been established by applying the quasi-energy description in the
case of dc-ac electric field [13].

2. PRELIMINARIES AND NOTATIONS

Considering the fact that the Hamiltonian of this system incorporates a se-
quence of successive next to nearest neighbors (NNN) hopping effects, the dis-
crete time-dependent Schrödinger equation is:

(2.4) Hd(n ≥ 0)ψm =

∞∑

n=0

Vn(ψm+n + ψm−n) −meaF (t)ψm = i
d

dt
ψm(t)

where −e < 0 is the electric charge of the electron. This proceeds via Rn = 2~Vm

as well as by virtue of the rule

(2.5) k →
Pop

~
= −i

∂

∂x

which also means that the momentum operator Pop is responsible for the related
sequence of translations. Accordingly, the field free Hamiltonian implemented
by (1.1) proceeds as

(2.6) H
(0)
d ψ(x) = Ed

(
−i

d

dx

)
ψ(x)

which produces the hopping terms characterizing (2.4) in terms of the discretiza-
tion ψm = ψ(ma). It is clear that usual nearest neighbor (NN) equation gets
reproduced as soon as Vn = 0 for n ≥ 2. In addition, the n = 0-term in (2.4) can
be incorporated in a pure phase factor:

(2.7) ψm(t) = e−i2V0tcm(t)

so that

(2.8) Hd(n ≥ 1)cm(t) = i
d

dt
cm(t)

where

(2.9) Hd(n ≥ 1) = H
(0)
d (n ≥ 1) −meaE(t).
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Resorting to a orthonormalized Wannier basis, say < m|m′ >= δm,m′ , we have
to realize that the Fourier-transform (1.2) relies on the matrix element of the un-
derlying free-field Hamiltonian as follows [5, 9]

(2.10) < 0|H0|m >=
1

2π

π∫

−π

Ed(k̃) exp (−ik̃m)dk̃ = 0

where by now k̃ stands for ka. We have restricted ourselves to the first Brillouin

zone k̃ ∈ [−π, π] as usual.

3. DERIVING QUASI-ENERGY FORMULAE

The Hamiltonian characterizing (2.4) is periodic in time with period T . This
opens the way to apply the Floquet factorization:

(3.11) Cm(t) = exp(−iEt)um(t)

where um(t + T ) = um(t) such as discussed in some more detail before [5, 6].
In order to handle the commensurability condition (1.3), one resorts to an extra
wave-number discretization like

(3.12) k̃ = s+ 2π
l

Q

where s ∈ [−π/Q, π/Q) and l = 0, 1, 2, ..., Q − 1. This later equation also shows
that the Q- denominator is responsible for the number of quasi-energy bands.
The quasi-energy is then given by [5]

(3.13) εn1
(s) =

1

T

∑

j

< 0|H0|Qj > exp(iQjs)

T∫

0

dt exp(iQjθ(t)) +
ωn1

Q

where j and n1 are integers. The external electric field (1.1) can be represented in
Fourier series [12]

(3.14) E(t) = E0 +

∞∑

l=0

8E1

π2(2l + 1)2
cos

2(2l + 1)π

T
t

where l are integers such that

(3.15) θ(t) = ea

t∫

0

E(t′)dt′ = ωBt+

∞∑

l=0

4eaE1T

π3(2l + 1)3
sin

2(2l + 1)π

T
t.

Using intermediary relationships like

(3.16) exp(iz sinωt) =
∞∑

m=−∞

Jm(z) exp(imωt)

and

(3.17)

π∫

−π

dk̃cos(jk̃) cos(nk̃) = πδj,n
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we can deduce a reasonable ”center” of the quasi-energy band for s = 0:
(3.18)

ε0(0)=
∑

j

<0|H0|Qj>
∑

n1,n2,.../Pj+
∞∑

l=0

nl(2l+1)=0

Jn0
(Qjβ0)Jn1

(Qjβ1)...Jnl
(Qjβl)...

This ”center” of the quasi-energy band can be written down just by inserting
s = 0 instead of s ∈ [−π/Q, π/Q).

This amounts to consider selected sequence Qk̃/2π = 0, 1, ..., Q − 1 instead of

k̃/2π ∈ [0, 1). At this stage, we have to establish, for the moment, the collapse
points of the quasi-energy band in terms of parameter values for which

(3.19) ε0(s = 0;ωB/ω, eaE1/ω) = 0.

Equivalently, the dynamical localization condition is given by
(3.20)

ε0(0)=
∑

j

RQj

∑

n1,n2,.../Pj+
∞∑

l=0

nl(2l+1)=0

Jn0
(Qjβ0)Jn1

(Qjβ1)...Jnl
(Qjβl)... =0

where βl = 4eaE1T
π3(2l+1)3 and j is a positive integer.

4. CONCRETE REALIZATION OF THE DYNAMIC LOCALIZATION CONDITION

Considering fixed value of P ,Q characterizing (1.3) and assuming thatRQ 6= 0,
but R2Q = R3Q = ... = 0, then the dynamic localization condition is given by

(4.21) F1 ≡ RQ

∑

n1,n2,.../P+
∞∑

l=0

nl(2l+1)=0

Jn0
(Qβ0)Jn1

(Qβ1)...Jnl
(Qβl)... = 0

The relation (4.21) generalizes the case when ωB/ω is integer(Q = 1) [12]. Because
the expression of F1 contains the times of large numbers of the Bessel functions,
it is hard to be get collapse points of quasi-energy band. In fact, when l increases,
then Qβl decreases rapidly, so we only need to calculate the times of the first
small numbers of Bessel functions. For particular case when P = 1, Q = 2 and
x = eaE1/ω we get the collapse points of quasi-energy band from relation

(4.22) F1 ≡
∑

n1,n2,.../1+
∞∑

l=0

nl(2l+1)=0

Jn0
(

16x

π213
)Jn1

(
16x

π233
)...Jnl

(
16x

π2(2l + 1)3
)... = 0

The graphical representation of F1 presents the collapse points for this particular
case, as follows from figure 1.
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Fig.1 The eaE1/ω-dependence of F1

Proceeding one step further we consider that case when RQ 6= 0, R2Q 6= 0 but
R3Q = R4Q = .. = 0. This time (3.20) yields the dynamic localization conditions
like:

F2 ≡ RQ

∑

n1,n2,.../P+
∞∑

l=0

nl(2l+1)=0

Jn0
(Qβ0)Jn1

(Qβ1)...Jnl
(Qβl)...(4.23)

+R2Q

∑

n1,n2,.../2P+
∞∑

l=0

nl(2l+1)=0

Jn0
(2Qβ0)Jn1

(2Qβ1)...Jnl
(2Qβl)... = 0.

The case when P = 1,Q = 2,RQ = 1 andR2Q = 2 yields the dynamic localization
conditions like:

F2 ≡
∑

n1,n2,.../1+
∞∑

l=0

nl(2l+1)=0

Jn0

(
16x

π213

)
Jn1

(
16x

π233

)
...Jnl

(
16x

π2(2l + 1)3

)
...

(4.24)

+2
∑

n1,n2,.../2+
∞∑

l=0

nl(2l+1)=0

Jn0

(
32x

π213

)
Jn1

(
32x

π233

)
...Jnl

(
32x

π2(2l + 1)3

)
+ ...=0

and the collapse points are presented in figure 2.
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Fig.2 The eaE1/ω-dependence of F2

5. CONCLUSIONS

In this article we succeeded to find the dynamic localization conditions for the
motion of an electron in the 1 D lattice considering long rang intersite interactions
in the presence of dc-trigonal electric fields like (1.1) for which the commensura-
bility condition (1.3) is fulfilled. This proceeds in terms of the collapse points
characterizing the center of the quasi-energy band (3.19), which amounts to con-
sider that s = 0. Relation (4.21) can be viewed as a reasonable generalization
of result presented in [12]. The dynamic localization conditions obtained in this
manner are useful in the description of higher harmonics generation [10], but
related resonance phenomena characterizing several areas of physics can also be
invoked [11]. Moreover, the present results are also able to provide a better under-
standing of transport and optical properties. The generalization of dynamic lo-
calization conditions characterizing dc-ac electric fields have been given recently
[13]. Also, of further interest is a generalization of dc-bichromatic electric fields
discussed latter [9].
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