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A family of graphs whose independence polynomials
are both palindromic and unimodal
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ABSTRACT. A stable (or independent) set in a graph is a set of pairwise non-adjacent vertices. The
stability number α(G) is the size of a maximum stable set in the graph G. The independence polynomial
of G is defined by

I(G; x) = s0 + s1x + s2x2 + ... + sαxα, α = α(G),

where sk equals the number of stable sets of cardinality k in G (I. Gutman and F. Harary, 1983).
In this paper, we build a family of graphs whose independence polynomials are palindromic and

unimodal. We conjecture that all these polynomials are also log-concave.

1. INTRODUCTION

Throughout this paper G = (V,E) is a simple (i.e., a finite, undirected, loopless
and without multiple edges) graph with vertex set V = V (G) and edge set E =
E(G). If A ⊂ V , then G[A] is the subgraph of G induced by A. By G − W we
mean the subgraph G[V −W ], if W ⊂ V (G). We also denote by G−F the partial
subgraph of G obtained by deleting the edges of F , for F ⊂ E(G). We write
shortly G − a, whenever {a} ⊆ V (G) ∪ E(G). The neighborhood of a vertex v ∈ V
is the set NG(v) = {w : w ∈ V and vw ∈ E}, and NG[v] = NG(v) ∪ {v}; if there
is no ambiguity on G, we use N(v) and N [v], respectively. Kn, Pn, Cn denote
respectively, the complete graph on n ≥ 1 vertices, the chordless path on n ≥ 1
vertices, and the chordless cycle on n ≥ 3 vertices.

The disjoint union of the graphs G1, G2 is the graph G = G1 ∪ G2 having as
vertex set the disjoint union of V (G1), V (G2), and as edge set the disjoint union
of E(G1), E(G2). In particular, nG denotes the disjoint union of n > 1 copies of
the graph G.

If G1, G2 are disjoint graphs, A1 ⊆ V (G1), A2 ⊆ V (G2), then the Zykov sum of
G1, G2 with respect to A1, A2, is the graph (G1, A1)+(G2, A2) with V (G1)∪V (G2)
as vertex set and E(G1) ∪ E(G2) ∪ {v1v2 : v1 ∈ A1, v2 ∈ A2} as edge set. If
A1 ⊂ V (G1) and A2 = V (G2), we simply write (G1, A1) + G2, while if both
A1 = V (G1) and A2 = V (G2), we use G1 + G2.

The corona of the graphs G and H with respect to A ⊆ V (G) is the graph
(G, A) ◦ H obtained from G and |A| copies of H , such that each vertex of A is
joined to all vertices of a copy of H . If A = V (G) we denote by G ◦ H instead of
(G, V (G)) ◦H (see Figure 1 for an example).
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FIGURE 1. G, H and L = (G, A) ◦H , where A = {a, b}.

A stable set in G is a set of pairwise non-adjacent vertices. A stable set of maxi-
mum size will be referred to as a maximum stable set of G, and the stability number
of G, denoted by α(G), is the cardinality of a maximum stable set in G.

Let sk be the number of stable sets of cardinality k in a graph G. The polyno-
mial

I(G;x) = s0 + s1x + s2x
2 + ... + sαxα, α = α(G),

is called the independence polynomial of G, (Gutman and Harary, [5]). For a survey
on independence polynomials the reader is referred to [11].

It is easy to deduce that

I(G1 ∪G2;x) = I(G1;x) · I(G2;x), I(G1 + G2;x) = I(G1;x) + I(G2;x)− 1.

The following equality, proved firstly in [5], is very useful in calculating of the
independence polynomial for various families of graphs.

Proposition 1.1. If v ∈ V (G), then I(G;x) = I(G− v;x) + x · I(G−N [v];x).

A finite sequence of real numbers (a0, a1, a2, ..., an) is said to be:
• unimodal if there is some k ∈ {0, 1, ..., n}, called the mode of the sequence,

such that a0 ≤ ... ≤ ak−1 ≤ ak ≥ ak+1 ≥ ... ≥ an;
• logarithmically concave (shortly, log-concave) if a2

i ≥ ai−1 · ai+1 is valid for
every i ∈ {1, 2, ..., n− 1}.

Unimodal and log-concave sequences occur in many areas of mathematics,
such as algebra, combinatorics, and geometry (see, for example, the survey [3]).

It is known that any log-concave sequence of positive numbers is also uni-
modal. As a well-known example, we recall that the sequence of binomial coeffi-
cients is log-concave.

A polynomial is called unimodal (log-concave) if the sequence of its coefficients
is unimodal (log-concave, respectively).

For instance, the independence polynomial
• I(K42 + 3K7;x) = 1 + 63x + 147x2 + 343x3 is log-concave;
• I(K43 + 3K7;x) = 1 + 64x + 147x2 + 343x3 is unimodal, but non-log-

concave, because 1472 − 64 · 343 = −343 < 0;
• I(K127 + 3K7;x) = 1 + 148x + 147x2 + 343x3 is non-unimodal.

For other examples, see [1], [11] and [12]. Moreover, Alavi, Malde, Schwenk
and Erdös proved the following theorem.

Theorem 1.1. [1] For every permutation π of {1, 2, ..., α} there exists a graph G with
α(G) = α such that sπ(1) < sπ(2) < ... < sπ(α).

Nevertheless, for trees, it is conjectured in [1] that the independence polyno-
mial of a tree is unimodal.
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A graph is called claw-free if it has no induced subgraph isomorphic to K1,3.
Hamidoune [8] proved that the independence polynomial of a claw-free graph
is log-concave. As a simple application of this statement, one can easily see that
I(Pn;x) and I(Cn, x), i.e., the independence polynomials of chordless paths and
chordless cycles, are log-concave.

A polynomial P (x) =
n∑

i=o

cix
i is called palindromic if ci = cn−i, i = 0, 1, ..., bn/2c.

The palindromicity of matching polynomial and characteristic polynomial of a
graph were examined in [10], while for independence polynomial we quote [6],
[7] and [13].

It is worth noticing that if α(G) ≤ 3 and I(G;x) is palindromic, then it is also
log-concave. However, there exist graphs with stability number ≥ 4, whose inde-
pendence polynomials are palindromic and non-unimodal; for example,
I(K52 + 3K4 + 4K1;x) = 1 + 68x + 54x2 + 68x3 + x4.

In this paper we define a family of graphs whose independence polynomials
are both palindromic and unimodal. Characterizing graphs whose independence
polynomials are palindromic is an open problem [13].

2. GRAPHS WITH PALINDROMIC AND UNIMODAL INDEPENDENCE
POLYNOMIALS

Taking into account that s0 = 1 and s1 = |V (G)| = n, it follows that the
palindromicity of I(G;x) implies that s0 = sα = 1 and s1 = sα−1 = n, i.e., G has
only one maximum stable set, say S, and n − α(G) stable sets, of size α(G) − 1,
that are not subsets of S.

In [13] three ways to build graphs having palindromic independence polyno-
mials are presented. For our purpose, we recall the rule using the so-called ”clique
cover of a graph”. A clique cover of a graph G is a spanning graph of G, each compo-
nent of which is a clique. Now, if Ω is a clique cover of G, construct a new graph
H from G, which we denote by H = Ω{G}, as follows: for each clique Q ∈ Ω,
add two new non-adjacent vertices and join them to all the vertices of Q. Figure
2 contains an example: Ω = {{a, b, c}, {d, e}, {f}} is a clique cover of G that has a
clique consisting of one vertex.
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FIGURE 2. G and H = Ω{G}.

The independence polynomials of G and H = Ω{G}, from Figure 2, are

I(G;x) = 1 + 6x + 9x2 + 2x3,

I(H;x) = 1 + 12x + 48x2 + 76x3 + 48x4 + 12x5 + x6,

but only I(H;x) is palindromic.

Theorem 2.2. [13] If Ω is a clique cover of G and H = Ω{G}, then H has a palindromic
independence polynomial.
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Let us remark that the non-isomorphic graphs G1 and G2, depicted in Figure 3,
are obtained by the same construction rule presented above, only using different
clique covers of P5, namely Ω1 = {{a}, {b, c}, {d, e}} and Ω2 = {{a, b}, {c}, {d, e}}.
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FIGURE 3. P5 and G1 = Ω1{P5}, G2 = Ω2{P5}.

Let us notice that
I(P5;x) = 1 + 5x + 6x2 + x3,

is unimodal, but not palindromic, while the independence polynomials of the
two graphs coincide, namely,

I(G1;x) = I(G2;x) = 1 + 11x + 41x2 + 63x3 + 41x4 + 11x5 + x6,

and, evidently, they are both unimodal and palindromic.

Lemma 2.1. If ab is an edge of G, then for every graph H

I((G, {a, b}) ◦H;x) = I (H;x) · I((G, {a, b}) + H;x).

Proof. Let G1 = (G, {a, b}) ◦ H and G2 = ((G, {a, b}) + H) ∪ H . According to
Proposition 1.1, we obtain:

I((G1;x) = I(G1 − a;x) + x · I((G1 −N [a];x)
= I((G− a), {b} ◦H;x) · I(H;x) + x · I(G−N [a], x) · I(H;x)

and also

I((G2;x) = I(G2 − a;x) + x · I((G2 −N [a];x)
= I((G− a), {b} ◦H;x) · I(H;x) + x · I(G−N [a], x) · I(H;x).

Consequently, one may infer that I(G1;x) = I(G2;x). �

Proposition 2.2. If the clique cover Ωm of Pn contains m vertices as cliques, then

I(Pn ◦ 2K1;x) = (1 + x)n−m · I(Ωm{Pn};x).

Proof. For G = Pn and {a, b} ∈ Ωm, Lemma 2.1 assures that

I((Pn, {a, b}) ◦ 2K1;x) = I (2K1;x) · I((Pn, {a, b}) + 2K1;x)

= (1 + x)2 · I((Pn, {a, b}) + 2K1;x).

In other words, each clique of Ωm gives rise to (1 + x)2. Since Ωm has (n−m)/2
cliques of size two, the result follows. �



112 Vadim E. Levit and Eugen Mandrescu

As a simple consequence, we obtain the following corollary.

Corollary 2.1. If the clique covers Ωm and Ωk of Pn contain m and k vertices, respec-
tively, and m ≥ k, then

I(Ωm{Pn};x) = (1 + x)m−k · I(Ωk{Pn};x).

Let Hn, n ≥ 1, be the graphs obtained according to the above construction from
Pn, as one can see in Figure 4. By H0 we mean the empty graph, i.e., H0 = (∅, ∅).
Corollary 2.2. If Jn(x) = I(Hn;x), n ≥ 1, then for every clique cover Ωm of Pn

containing m vertices as cliques, it follows that:

I(Ωm{Pn};x) = (1 + x)m · Jn(x), for n even,

I(Ωm{Pn};x) = (1 + x)m−1 · Jn(x), for n odd.
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FIGURE 4. Pn and Hn = Ω{Pn}.

Theorem 2.3. If Jn(x) = I(Hn;x), n ≥ 0, then
(i) J2n and J2n−1 are both of degree 2n;
(ii) J0(x) = 1, J1(x) = 1 + 3x + x2 and Jn, n ≥ 2, satisfies the following recursive

relations:

J2n(x) = J2n−1(x) + x · J2n−2(x), n ≥ 1,

J2n−1(x) = (1 + x)2 · J2n−2(x) + x · J2n−3(x), n ≥ 2;

(iii) Jn is both palindromic and unimodal.

Proof. (i) The assertion follows from the fact that the degree of Jn equals α(Hn),
and, from the Figure 4, it is easy to see that α(H2n) = α(H2n−1) = 2n.

(ii) Clearly, J0(x) = 1 and J1(x) = 1 + 3x + x2. Using Proposition 1.1, we
deduce that (see Figure 4):

J2n−1(x) = I(H2n−1;x) = I(H2n−1 − v;x) + x · I(H2n−1 −N [v];x) =
= (1 + x)2 · J2n−2(x) + x · J2n−3(x),

and also

J2n(x) = I(H2n;x) = I(H2n − v;x) + x · I(H2n −N [v];x) =
= J2n−1(x) + x · J2n−2(x).

(iii) According to Theorem 2.2, all Jn are palindromic. Consequently, in order
to prove the unimodality of Jn, it is sufficient to check that the coefficients of the
first half of Jn are in non-decreasing order.
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We use induction on n. Clearly, J0(x) and J1(x) are unimodal. Assume that
the assertion is true for 0 ≤ k ≤ 2n. We have to validate it for k ∈ {2n+1, 2n+2}.

Let us denote the sequences of coefficients of J2n−1 (x) , J2n (x) , J2n+1 (x) , J2n+2 (x),
respectively, by (ai) , (bi) , (ci) , (di). Taking into account that, by (ii),

J2n+1(x) = (1 + 2x + x2) · J2n(x) + x · J2n−1(x),

we get the following matrix of coefficients:

J2n 1 b1 b2 b3 ... bi bi+1 ... bn bn−1 ...
2x · J2n 2 2b1 2b2 ... 2bi−1 2bi ... 2bn−1 2bn ...
x2 · J2n 1 b1 ... bi−2 bi−1 ... bn−2 bn−1 ...
x · J2n−1 1 a1 a2 ... ai−1 ai ... an−1 an ...
J2n+1 1 c1 c2 c3 ... ci ci+1 ... cn cn+1 ...

which implies that:
(a) c1 = 3 + b1 ≤ c2 = 1 + 2b1 + a1, because 1 ≤ a1, 1 ≤ b1;
(b) for i ≤ n− 1,

ci = bi + 2bi−1 + bi−2 + ai−1 ≤ bi+1 + 2bi + bi−1 + ai = ci+1,

since (bi)i≤n , (ai)i≤n are non-decreasing sequences;
(c) for i = n,

cn = bn + 2bn−1 + bn−2 + an−1 ≤ bn−1 + 2bn + bn−1 + an = cn+1,

since bn−2 ≤ bn and an−1 ≤ an.
Similarly, according to (ii), we have

J2n+2(x) = J2n+1(x) + x · J2n(x),

and hence, we obtain:

J2n+1 1 c1 c2 ... ci ci+1 ... cn cn+1 ...
x · J2n 1 b1 ... bi−1 bi ... bn−1 bn ...
J2n+2 1 d1 d2 ... di di+1 ... dn dn+1 ...

,

which assures that:
(a) d1 = 1 + c1 ≤ d2 = b1 + c2, because 1 ≤ b1, c1 ≤ c2;
(b) in general, di = bi−1 + ci ≤ bi + ci+1 = di+1, i ≤ n, since (bi)i≤n , (ci)i≤n are

non-decreasing sequences.
Therefore, both polynomials J2n+1 and J2n+2 are unimodal. �

The product of two polynomials, one log-concave and the other unimodal, is
not always log-concave, for instance, if G = K40 + 3K7,H = K110 + 3K7, then

I(G;x) · I(H;x) =
(
1 + 61x + 147x2 + 343x3

) (
1 + 131x + 147x2 + 343x3

)
= 1+192x+8285x2+28910x3+87465x4+100842x5+117649x6,

which is not log-concave, because 1008422−87465 ·117649 = −121 060 821. How-
ever, the following result, due to Keilson and Gerber, gives a sufficient condition
for two polynomials to have a unimodal product.

Theorem 2.4. [9] If P is log-concave and Q is unimodal, then P ·Q is unimodal, while
the product of two log-concave polynomials is log-concave.
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Corollary 2.3. If the clique cover Ωm of Pn contains m vertices as cliques, then
I(Ωm{Pn};x) is unimodal.

Proof. Firstly, by Corollary 2.2, we obtain

I(Ωm{Pn};x) = (1 + x)m · Jn(x), if n is even,

I(Ωm{Pn};x) = (1 + x)m−1 · Jn(x)), if n is odd.

Secondly, (1 + x)m is log-concave and Jn(x) is unimodal. Consequently, the
independence polynomial I(Ωm{Pn};x) is unimodal, by Theorem 2.4. �

Remark 2.1. The polynomials L1 = 1 + 100x + x2 + x3 + x4 + x5 + x6 and L2 =
1 + x + x2 + x3 + x4 + 111x5 + x6 are non-palindromic, but unimodal, while L3 =
L2 + x · L1 = 1 + 2x + 101x2 + 2x3 + 2x4 + 112x5 + 2x6 + x7 is not unimodal, i.e.,
the recursions in Theorem 2.3 do not preserve unimodality.

Remark 2.2. The polynomials M1 = 1 + x + x2 + 100x3 + x4 + x5 + x6 and M2 =
1+x+11x2+x3+x4 are both palindromic and unimodal, while M3 = M2+x·M1 = 1+
2x + 12x2 + 2x3 + 101x4 + x5 + x6 + x7 is neither palindromic, nor unimodal, i.e.,
the recursions of Theorem 2.3, without the initial values of J0 and J1, are not enough to
conclude with unimodality and palindromicity of all Jn.

Theorem 2.5. [2] If P and Q are both unimodal and palindromic, then P ·Q is unimodal
and palindromic as well.

However, the above result can not be generalized to the case when P is uni-
modal and palindromic, while Q is unimodal and non-palindromic; e.g.,

P = 1 + x + 3x2 + x3 + x4, Q = 1 + x + x2 + x3 + 2x4, while
P ·Q = 1 + 2x + 5x2 + 6x3 + 8x4 + 7x5 + 8x6 + 3x7 + 2x8.

Using Theorems 2.5 and 2.3, we deduce the following corollaries.

Corollary 2.4. If each connected component of G is isomorphic to some Hn, then I(G;x)
is palindromic and unimodal.

Corollary 2.5. If G = Hn, then mG, m ≥ 2, has a palindromic and unimodal indepen-
dence polynomial.

Let us denote by ]mG the Zykov sum of m > 1 copies of the graph G. Since
I(]mG;x) = m · I(G;x)− (m− 1), we infer the following result.

Corollary 2.6. If G = Hn for some n ≥ 1, then ]mG has a palindromic and unimodal
independence polynomial.

Remark 2.3. The following polynomials P = 1 + 10x + 100x2 + 10x3 + x4 and Q =
1 + x + x2 + x3 + x4 are log-concave and palindromic, but

(1 + x)2 ·Q + x · P = 1 + 4x + 14x2 + 104x3 + 14x4 + 4x5 + x6

is not log-concave, since 142−4∗104 = −220. In other words, the recursions of Theorem
2.3, without the initial values of J0 and J1, are not enough to conclude with log-concavity
of all Jn.
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Using Theorem 2.3, we obtain successively,

J2(x) = 1 + 4x + x2, J3(x) = 1 + 7x + 13x2 + 7x3 + x4,

J4(x) = 1 + 8x + 17x2 + 8x3 + x4,

J5(x) = 1 + 11x + 41x2 + 63x3 + 41x4 + 11x5 + x6,

J6(x) = 1 + 12x + 49x2 + 80x3 + 49x4 + 12x5 + x6,

J7(x) = 1 + 15x + 85x2 + 231x3 + 321x4 + 231x5 + 85x6 + 15x7 + x8,

J8(x) = 1 + 16x + 97x2 + 280x3 + 401x4 + 280x5 + 97x6 + 16x7 + x8.

It is easy to see that these polynomials are log-concave. In general, since Jn(x)
is unimodal and palindromic, we may deduce that b2 ≥ a · c, where a, b, c are
the middle coefficients of Jn(x). In other words, Jn(x) satisfies the log-concavity
condition at least at this point. The examples presented above give support to the
following conjecture: all the polynomials Jn(x) are log-concave.

3. CONCLUSIONS

In this paper we proved that the independence polynomials of graphs Hn are
both palindromic and unimodal. In [4] it is proved that the independence poly-
nomial of a claw-free graph has only real roots. It is worth noticing that Hn are
not claw-free graphs, but the examples of Jn(x), n ≤ 20, (the first eight of them
are listed above), have only real roots. Moreover, all their roots are located in the
interval (−6, 0), which we think is true in general.
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