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On the asymptotic behaviour of the number of
maximum points of a simple random walk

EUGEN PĂLTĂNEA

ABSTRACT. For a sequence (Xi)i≥1 of independent and identically distributed random variables,
taking the values -1, 0 and 1, we define S0 = 0 and Sk =

∑k
i=1 Xi, for k ≥ 1. We study the

asymptotic behaviour of the sequence of random variables (Qn)n≥1, where Qn indicates the number
of absolute maximum points of the simple random walk S0, S1, · · · , Sn. The paper extends some
results of Dwass [2], Révész [11], Katzenbeisser and Panny [7], [8].

1. INTRODUCTION

Let (Xi)i≥1 be a sequence of i.i.d. random variables, Xi ∈ {−1, 0, 1} with
P{Xi = 1} = α, P{Xi = 0} = β and P{Xi = −1} = γ, where α, γ > 0. The paper
deals with the simple random walk Sk in the sense of Cox and Miller [1], S0 = 0
and Sk =

∑k
i=1 Xi for k = 1, 2, · · · . We study the related random variable Qn

defined by:
Qn = card{ k ∈ N : 0 ≤ k ≤ n, Sk = Mn},

where Mn = max{S0, S1, · · · , Sn}, for n ≥ 1. Obviously Qn corresponds to the
number of times where the sequence {S0, S1, · · · , Sn} reaches its maximum. We
also investigate the conditioned random variable [Qn |Sn = 0 ], under the as-
sumption that P{Sn = 0} > 0.

The papers [2], [11] and [7] deal with the classical case β = 0 and α = γ =
1
2 . The general case is considered by Katzenbeisser and Panny [8], but for an
alternative definition Q′

n. The difference is due to the treatment of consecutive
maxima (comprising one or more 0-steps). Thus, Qn counts all points belonging
to a consecutive maximum, whereas for Katzenbeisser, Panny’s Q′

n a consecutive
maximum contributes only 1. Remark that the results for Qn are not directly
obtained from the corresponding results on Q′

n, except for the case β = 0.
The main results of the present paper are given in Theorems 4.1, 4.3 and 4.4.

Thus, Theorem 4.1 deals with the probability function for P{Qn = r, Sn = k}.
Theorem 4.3 gives exact and asymptotic expressions for E(Qn|Sn = 0):

E(Qn | Sn = 0) =
P{Sn+1 = 1}

P{S1 = 1}P{Sn = 0}
= 2 +

β
√

αγ
+ O

(
n−1

)
, as n →∞.
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Theorem 4.4 deals with E(Qn) including its asymptotic behavior:

E(Qn) =
1

max{α, γ}
+ O

(
n−

1
2

)
, as n →∞.

2. THE DISTRIBUTION OF Sn

Let n be a positive integer. The random variable Sn takes integer values in
the interval [−n, n] and its distribution can be formulated by means of ordinary
trinomial coefficients (see [8]).

Lemma 2.1. For an integer k, such that −n ≤ k ≤ n, we have:

P{Sn = k} =
∑

a+b+c=n;

a−c=k

(
n

a, b, c

)
αaβbγc,(2.1)

with the convention 00 = 1.

Let us denote ϕ(z) = αz + β + γz−1 the generating function of X1 and let

[zk] { f(z) }
as be the coefficient of zk into Laurent’s development near the origin of the ratio-
nal complex function f .
From the theorem of residues we obtain:

(2.2) [zk] { f(z) } =
1

2πi

∮
|z|=ρ

f(z)
zk+1

dz,

where ρ > 0.
Thus, the following useful integral formula for P{Sn = k} holds (see [8]).

Lemma 2.2. For any integer k,

(2.3) P{Sn = k} = [zk] {ϕn(z)} =
1
π

(
α

γ

) k
2
∫ π

0

(β + 2
√

αγ cos t)n cos kt dt.

Let us consider the following sequence:

(2.4) pn := P{Sn = 0} =
1
π

∫ π

0

(β + 2
√

αγ cos t)n dt, n ∈ N.

From the integral formula of pn given by (2.4) it results that the sequence (pn)n≥1

satisfies the following reccurent formula:

(2.5) pn+2 = β
2n + 3
n + 2

pn+1 + (4αγ − β2)
n + 1
n + 2

pn, n = 1, 2, · · ·

Using (2.3) for k ∈ {1, 2} we get the following statements:

P{Sn = 1} =
1
2γ

(pn+1 − βpn);(2.6)

P{Sn = 2} =
1

2γ2

(
2αγn + β2

n + 2
pn −

β

n + 2
pn+1

)
.

The following lemma states the asymptotic behaviour of the probability of the
event Sn = 0.
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Lemma 2.3. For β = 0 and n an even number we have:

pn =
d

2
√

nπ
(β + 2

√
αγ)n+ 1

2 (αγ)−
1
4
(
1 + O(n−1)

)
, as n →∞,

where

d =
{

1 if β > 0
2 if β = 0.

Proof. From (2.4) we obtain:

pn =
(β + 2

√
αγ)n

π

∫ π

0

(b + 2a cos t)n dt,

where a =
√

αγ

β+2
√

αγ > 0 and b = β
β+2

√
αγ ≥ 0 such that 2a+ b = 1. Using Laplace’s

method for integrals (see [10]), we obtain:

1
π

∫ π

0

(b + 2a cos t)n dt =
d

2
√

anπ
( 1 + O(n−1) ), n →∞

where d is given above. Thus, the lemma has been proved. �

We get the following consequence.

Corollary 2.1. For a fixed k we have:

(2.7)
pn+k

pn
= (β + 2

√
αγ)k + O(n−1) , as n →∞.

Indeed,

pn+k

pn
= (β +2

√
αγ)k

√
n

n + k

(
1 + O(n−1)

)
= ( β +2

√
αγ)k +O(n−1), as n →∞.

We express now the asymptotic behaviour of Sn.

Lemma 2.4. The following assertions hold:

P{Sn ≥ 0} ≤ (β + 2
√

αγ)n n→∞−→ 0, if α < γ

P{Sn ≤ 0} ≤ (β + 2
√

αγ )n n→∞−→ 0, if α > γ
P{Sn ≥ 0} = P{Sn ≤ 0} = 1/2 + O(n−1/2), if α = γ.

Proof. We observe that β +2
√

αγ = 1− (
√

α−√γ)2 ≤ 1, with equality if and only

if α = γ. Assume α < γ. Let h be the increasing function h(t) =
(

γ
α

)t/2
, t ∈ R.

Then, according to Tchebyshev’s inequality, we find P{Sn ≥ 0} ≤ E(h(Sn))
h(0) . But

h(0) = 1 and E(h(Sn)) = E (
∏n

i=1 h(Xi)) = En (h(X1)) = (β + 2
√

αγ )n. Since
β + 2

√
αγ < 1, (β + 2

√
αγ )n n→∞−→ 0. Similarly, we get the second assertion.

Remark that the first two statements also follow from the central limit theorem.
If α = γ, from Lemma 2.2 and Lemma 2.3 we obtain:

P{Sn ≥ 0} = P{Sn ≤ 0} =
1 + pn

2
=

1
2

+ O(n−
1
2 ), n →∞.

The lemma has been proved. �
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3. ADMISSIBLE PATHS WITH GIVEN NUMBER OF MAXIMA

Let us denote Un = {0} × {−1, 0, 1}n. To each vector x = (xj)n
0 ∈ Un we

associate the n-steps path s = σ(x), s = (si)n
0 ∈ Zn+1, defined by si =

i∑
j=0

xj .

For a path s we define:

(3.8) ms = max{si}; Vs = {i : si = ms}; V ∗
s = {i ∈ Vs : i = 0 or si−si−1 = 1}.

The elements of the set Vs are the points where the path s reaches its maximum
ms. Each element of the set V ∗

s is an isolated maximum point or the first one point
of a group of consecutive maximum points.

We intend to classify the vectors x of Un after their composition and num-
ber of maximum points of the associated paths σ(x). Thus, we say that x ∈ Un

has (a, b, c) − composition if its structure is the following: a components 1, b + 1
components 0 and c components -1. The associated path s = σ(x) reaches after
n = a + b + c steps the end value sn = a− c.

Let us denote Ua,b,c the set of all vectors x with (a, b, c)− composition. Hence:

Un =
⋃

a,b,c∈N; a+b+c=n

Ua,b,c.

Denoting Na,b,c = card (Ua,b,c) and supposing a + b + c = n, we have:

(3.9) Na,b,c =
(

n
a, b, c

)
.

For positive integers a, b, c, r, v, such that 1 ≤ v ≤ r ≤ a + b + c + 1, we denote

(3.10) Ur,v
a,b,c = {x ∈ Ua,b,c : card

(
Vσ(x)

)
= r; card

(
V ∗

σ(x)

)
= v}

and
Nr,v

a,b,c = card
(
Ur,v

a,b,c

)
.

Firstly, we refer to the case b = 0. Here we have r = v. There holds the following
well-known result (see [3], [9] or [8]).

Lemma 3.5. We have

(3.11) Uv,v
a,0,c 6= ∅ ⇔ 1 ≤ v ≤ 1 + min{a, c}

and in this case

Nv,v
a,0,c =

 1 if a = c = 0
Na−1,0,c−v+1 if max{a, c} = a ≥ 1
Na−v+1,0,c−1 if max{a, c} = c ≥ 1.

Now, using a standard method, namely so-called Goodman-Narayana’s tech-
nique, we translate the counting result for {−1, 1} paths into the corresponding
result for {−1, 0, 1} paths (see [4]).

Lemma 3.6. We have

(3.12) Ur,v
a,b,c 6= ∅ ⇔

 max {a, c} ≥ 1
1 ≤ v ≤ 1 + min {a, c}
v ≤ r ≤ b + v

or

 a = c = 0
v = 1
r = b + 1.
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In this case, supposing max{a, c} ≥ 1,

(3.13) Nr,v
a,b,c =

(
r − 1
v − 1

)(
a + b + c− r

a + c− v

)
Nv,v

a,0,c.

From the two previous lemmas and (3.9) we obtain the following statement.

Lemma 3.7. Under the conditions (3.12) we have:

Nr,v
a,b,c =



1 if a = c = 0(
r − 1
v − 1

)(
a + b + c− r

a− 1, b + v − r, c− v + 1

)
if max{a, c} = a ≥ 1

(
r − 1
v − 1

)(
a + b + c− r

a− v + 1, b + v − r, c− 1

)
if a < c.

This above result clear up the counting of the admissible paths with given
number of maxima.

4. MAIN RESULTS

Now, we translate the counting results of Lemma 3.7 into the calculus of a
probability distribution.

Theorem 4.1. Let n and r be two positive integers, with r ≤ n + 1. Also let k ∈ Z.
(i) If P{ Qn = r; Sn = k} > 0 then

(4.14) |k| ≤ n + 1− r.

(ii) Independently on above condition, there holds:

P{Qn = r; Sn = k} =

 [zk] {αz(β + γz−1)r−1ϕn−r(z)}, if k ≥ 0

[z−k] {γz(β + αz−1)r−1ϕn−r(z−1)}, if k < 0,

where ϕ is the generating function of the distribution of X1.

Proof. (i) Using the definitions (3.10), we have:

(4.15) P{Qn = r; Sn = k} =
∑

1≤v≤r

∑
a+b+c=n;

a−c=k

Nr,v
a,b,c αaβbγc.

Let us suppose that P{Qn = r; Sn = k} > 0. From (4.15) and Lemma 3.7 there
exists a vector (a, b, c, r, v) with natural components such that a+b+c = n, a−c =
k and (3.12) holds. Hence, if max{a, c} ≥ 1 then |k| = |a− c| ≤ a+ c−min{a, c} =
n− b−min{a, c} ≤ n+1− b− v ≤ n+1− r. If a = c = 0 then |k| = 0 = n+1− r.

(ii) Let us consider that (4.14) holds. Suppose k ≥ 0.
If r = n + 1 then k = 0 and we have:

[z0] {αz(β + γz−1)nϕ−1(z)} = [z0] {αz−1(β + γz)nϕ−1(z−1)} =

= [z0] {(β + γz)n} − [z0]
{

z(β + γz)n+1

α + βz + γz2

}
= βn = P{Qn = n + 1; Sn = 0}.
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If 1 ≤ r ≤ n we apply (4.15), (4.14) and Lemma 3.7. But v = 2v− v ≤ 2(1+ c)+
(b− r) = n− k − r + 2 and (from the assumption) n− k − r + 2 ≥ 1. Therefore:

P{Qn = r;Sn = k} =
∑

1≤v≤min{r,n−k−r+2}

∑
a,b,c∈N;

a+b+c=n; a−c=k

Nr,v
a,b,cα

aβbγc

=
∑

1≤v≤min{r,n−k−r+2}

(
r − 1
v − 1

)
αβr−vγv−1

∑
s,t,u∈N;

s+t+u=n−r;

s−u=k+v−2

(
n− r
s, t, u

)
αsβtγu

= α

min{r,n−k−r+2}∑
v=1

[z1−v] {(β + γz−1)r−1} . [zk+v−2] {(αz + β + γz−1)n−r}

= [zk] {αz(β + γz−1)r−1(αz + β + γz−1)n−r}.
Now, replacing α with γ and also k with −k we derive the result for k < 0.
When |k| > n + 1− r, the conclusion also holds because all terms are null.
Thus, the statements of the theorem are proved. �

From Theorem 4.1 and Lemma 2.2 we find the distribution function of the
random variable [ Qn |Sn = 0].

Corollary 4.2. Assuming P{Sn = 0} > 0 and 1 ≤ r ≤ n + 1, we have:

P{ Qn = r | Sn = 0 } =
[z0] {(αz + β + γz−1)n−r(β + γz−1)r−1(αz)}

[z0] { (αz + β + γz−1)n }
.

Example 4.1. For the classical random walk with α = γ = 1
2 we obtain:

P{Q2m = r | S2m = 0} =
[z0] {z2−r(z + 1

z )2m−r}
[z0] {(z + 1

z )2m}
=

=

(
2m− r
m− 1

)
(

2m
m

) =
1
2r

∫ π

0
cos(r − 2)t cos2m−r t dt∫ π

0
cos2m t dt

, r = 1, 2, · · ·m + 1.

Remark 4.1. The above combinatorial expression can be found in [2], pp. 1047.

To estimate the moments of the random variable [Qn |Sn = 0 ] we need some
technical results. Thus, let us start from the well-known identity:

(4.16) rk =
k∑

j=1

{
k
j

}
r

j
− , k ∈ N∗,

where r
j
− := r(r− 1) · · · (r− j + 1), and

{
k
j

}
designates the Stirling’s numbers

of the second kind. Referring to the sum
∑∞

r=1 rkzr, we shall prove a ”finite
version” of a well-known identity (see [5]).



162 Eugen Păltănea

Lemma 4.8. For the natural numbers k and n, such that k ≤ n + 1, the following
identity holds:

n+1∑
r=1

rkzr =
k∑

j=1

{
k
j

}(
j!zj

(1− z)j+1
+

zn+2

(1− z)j+1
Θj(z)

)
, z ∈ C, z 6= 1,

where Θj(z) is a polynomial function of degree j.

Proof. We prove by induction that there exist some polynomial functions Θj(z)
of degree j ≤ n + 1 such that:

dj

dzj

(
n+1∑
r=0

zr

)
=

j! + zn+2−jΘj(z)
(1− z)j+1

, z ∈ C, z 6= 1.

From (4.16) we get:
n+1∑
r=0

rkzr =
k∑

j=1

{
k
j

} n+1∑
r=j

r
j
−zr =

k∑
j=1

zj

{
k
j

}
dj

dzj

(
n+1∑
r=0

zr

)
.

Therefore we obtain the conclusion. �

Theorem 4.2. The random variable [Qn |Sn = 0] has the following k-moments, for
1 ≤ k ≤ n + 1:

E ( Qk
n | Sn = 0 ) =

1
pn

[z0]


k∑

j=1

{
k
j

}
j!

αjzj
(β + γz−1)j−1ϕn+1(z)

 .

Proof. From Corollary 4.2 and the property [z0] {f(z)} = [z0] {f(z−1)} of rational
complex functions f , we find:

P { Qn = r | Sn = 0 } =
1
pn

[z0]
{

α(α + βz + γz2)n

zn+1(β + γz)
Rr(z)

}
,

where R(z) := (βz + γz2)(α + βz + γz2)−1. From Lemma 4.8 we obtain:

E ( Qk
n | Sn = 0 ) =

n+1∑
r=1

rkP( Qn = r | Sn = 0 ) =

=
1
pn

k∑
j=1

{
k
j

} (
[z0]

{
j!

αjzn+1−j
(α + βz + γz2)n+1(β + γz)j−1

}
+

+ [z0]
{ z

αj
(β + γz)n+1(α + βz + γz2)j−1Θj(R(z))

} )
.

But all second terms of the parenthesis of above sum are null.
Hence, the theorem is proved. �

Now, we formulate one of the main results of the paper.

Theorem 4.3. The random variable [Qn |Sn = 0] has the following mean and variance:

E(Qn |Sn = 0) =
P{Sn+1 = 1}

P{S1 = 1}P{Sn = 0}
= 2 +

β
√

αγ
+ O(n−1), as n →∞
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V( Qn |Sn = 0) =
2 P{Sn+2 = 2}

P2{S1 = 1}P{Sn = 0}
−m(m + 1)

= 2 +
β2 + 3β

√
αγ

αγ
+ 0(n−1), as n →∞,

where m = E(Qn |Sn = 0) (taking only even naturals n, if β = 0).

Proof. We choose k = 1 in Theorem 4.2 and we obtain the exact formula of the
mean:

m =
1

αpn
[z0]

{
z−1(αz + β + γz−1)n+1

}
=

P{Sn+1 = 1}
P{S1 = 1}P{Sn = 0}

.

Also, from (2.6) and (2.7) we find the asymptotic behavior of the mean. In a
similar way, using (2.6), (2.7) and Theorem 4.2 (k = 2), we estimate the variance
of the r. v. [Qn |Sn = 0]. �

Remark 4.2. For α = γ = 1/2 we find the well-known results due to Katzen-
beisser and Panny [7], pp. 308.

Finally, we give exact and asymptotic formulas for E(Qn).

Theorem 4.4. The following estimations hold:

E(Qn) =
P{Sn+1 > 0}
P{S1 = 1}

+
P{Sn+1 < 0}
P{S1 = −1}

− P{Sn+1 = 1}
P{S1 = 1}

=
1

max{α, γ}
+ O(n−

1
2 ), as n →∞.

Proof. We have :

E(Qn) =
∑
|k|≤n

n+1−|k|∑
r=1

rP{Qn = r; Sn = k}.

From Theorem 4.1 we get:

n+1−|k|∑
r=1

rP(Qn = r; Sn = k) =


1
α [zk+1] {(αz + β + γz−1)n+1}, k ≥ 0

1
γ [z−k+1] {(γz + β + αz−1)n+1}, k ≤ 0.

But (cf. (2.3)) we have:

n+1−|k|∑
r=1

rP{Qn = r; Sn = k} =


P{Sn+1=k+1}

P{S1=1} , k ≥ 0

P{Sn+1=k−1}
P{S1=−1} , k ≤ 0.

By summing these relations we obtain the exact formula of the mean of the r.v.
Qn. The asymptotic behaviour of the mean follows from (2.6), Corollary 2.1 and
Lemma 2.4. �
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