
CARPATHIAN J. MATH.
23 (2007), No. 1 - 2, 165 - 171

Dedicated to Professor Ioan A. RUS on the occasion of his 70
th anniversary

Least squares data shape preserving

ELENA PELICAN and CONSTANTIN POPA

ABSTRACT. Least squares data fitting is an important task in many fields of applied mathematics
([3, 4]). Essentially, in two dimensions it means to find an element from a a given class of functions
which best approximates a given set of points in the real plane, by also preserving their shape. In
this paper we use for such an approximation, classical and Bernstein polynomials. The (generally in-
consistent) least squares problems so obtained are solved by both a Kaczmarz-like projection method,
and an approximate orthogonalization technique (previously developed by the one of the authors in
[1, 2]). Numerical experiments and comparisons are also provided.

1. INTRODUCTION

We shall present in this section the generalized interpolation (for short, GI)
problem with respect to the linear subspace of real polynomial functions of de-
gree less or equal than a given value n ≥ 1, denoted by Pn. We shall suppose that
a basis {P1, P2, . . . , Pn+1} is known in Pn. With these assumptions we can state
the GI problem as follows: if N1(x1, y1),...,Nm(xm, ym) are m ≥ 1 given points
(nodes) in the real plane R

2, find a polynomial f ∈ Pn, such that the “orthogo-
nal” distances di, i = 1, ...,m defined by (see (1.1) and Figure 1)

(1.1) di = dist{Ni(xi, yi), (xi, f(xi)} = |yi − f(xi)|

satisfy

(1.2)
m

∑

i=1

d2
i = min !,

where the notations ‖Ax∗ − b‖ = min ! means that we want to find x∗ ∈ R
n with

the property ‖Ax∗ − b‖ = inf {‖Ax − b‖, x ∈ R
n}.

Because f ∈ Pn, we have

(1.3) f(x) = a1P1 + ... + an+1Pn+1,

which introduced in (1.1)-(1.2) gives

(1.4)
m

∑

i=1





n+1
∑

j=1

ajPj(xi) − yi





2

= min !.

If we define the m × (n + 1) matrix A, m-vector b and (n + 1)-vector u by
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FIGURE 1. Generalized interpolation, f ∈ Pn

(1.5) A =

















P1(x1) P2(x1) P3(x1) · Pn+1(x1)
P1(x2) P2(x2) P3(x2) · Pn+1(x2)

· · · · ·
· · · · ·
· · · · ·

P1(xm) P2(xm) P3(xm) · Pn+1(xm)

















,

(1.6) b = (y1, y2, . . . , ym)t, u = (a1, a2, . . . , an+1)
t,

then, (1.2) (or (1.4)) can be written as a least squares problem: find u ∈ R
n+1 such

that

(1.7) ‖Au − b‖
2

= min !.

We shall denote by LSS(A; b) the set of all solutions for (1.7) and by uLS the
minimal norm one.

Remark 1.1. Usually the number m of the given data N1, . . . , Nm exceeds the
number of fitting function parameters (a1, a2, . . . , an+1, in our case), i.e the prob-
lem (1.7) is overdetermined. Moreover, the abscissas x1, . . . , xm of the given
points N1, . . . , Nm have no special properties (i.e. may exist points Ni and Nj , i 6=
j with the same abscissas xi = xj). This means that the matrix A in (1.5) will have
no more full row or column rank, thus (1.7) will also be rank-defficient.

2. STANDARD AND BERNSTEIN-LIKE POLYNOMIALS

In our procedure, we used the following two different basis {P1, P2, . . . , Pn+1}
in Pn:
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I. Standard polynomials

(2.8) P1(x) = 1, Pi(x) = xi−1, i = 2, . . . , n + 1, x ∈ [0, 1] ;

II. Bernstein-like polynomials

(2.9) Pi(x) = Ci−1
n xi−1(1 − x)n−i+1, i = 1, . . . , n + 1, x ∈ [0, 1] .

Remark 2.2. In practical applications, the interval [a, b] from (2.8) is defined such
that

(2.10) min
1≤i≤m

xi = a < b = max
1≤i≤m

xi

where x1, . . . , xm are the abscissas of the points N1, . . . , Nm from (1.1).

Remark 2.3. The polynomials in (2.8) or (2.9) are restricted to the unit interval
[0, 1] ⊂ R. For an arbitrary interval [a, b] (e.g. as in (2.10)) we consider the trans-
lation ϕ

(2.11) ϕ : [a, b] → [0, 1] , ϕ(x) =
x − a

b − a

and define the basis {P̂1, . . . , P̂n+1} by

(2.12) P̂i(x) = Pi(ϕ(x)), x ∈ [a, b] .

With the above notations and definitions, we have the following result.

Proposition 2.1. Let Pn ([0, 1]) be the vector space of the restrictions f |[0,1] of the ele-
ments f ∈ Pn. Then {P1, . . . , Pn+1} with Pi from (2.8) or (2.9) is a basis in Pn ([0, 1]).

Proof. The result is clear for Pi from (2.8). Let Pi, i = 1, . . . , n+1 be given by (2.9)
such that

(2.13) α1P1(x) + . . . + αn+1Pn+1(x) = 0, ∀x ∈ [0, 1]

and suppose that it exists an index i ∈ {1, . . . m}} such that αi 6= 0. Then from
(2.13) we get

(2.14) E1(x) + αi + E2(x) = 0, ∀x ∈ (0, 1)

with

(2.15) E1(x) =
i−1
∑

j=1

αj

Cj−1
n

Ci−1
n

(1 − x)i−j

xi−j
, E2(x) =

n+1
∑

j=i+1

αj

Cj−1
n

Ci−1
n

xj−i

(1 − x)j−i

x ∈ (0, 1), thus

(2.16) lim
x→0,x>0

E1 (x)= lim
x→1,x<1

E2 (x)=±∞; lim
x→0,x>0

E2 (x)= lim
x→1x<1

E1 (x)=0,

from which we obtain that

(2.17) α1 = . . . = αi−1 = αi+1 = . . . = αn+1 = 0

and together with (2.14) we get αi = 0. But, this contradicts our initial assumption
about αi. It rests that all the αi ’s from the linear combination (2.13) are zero and
the proof is complete. �

Corollary 2.1. {P̂1, . . . , P̂n+1} with P̂i from (2.12) and Pi from (2.8) or (2.9) is a basis
in the vector space Pn ([a, b]) (defined as Pn ([0, 1])) w.r.t. [a, b] ).



168 Elena Pelican and Constantin Popa

Remark 2.4. The Bernstein-like polynomial (on [0, 1]), Bn(x) =

n+1
∑

i=1

aiPi(x)(with

Pi(x) from (2.9)) is a convex combination of the numbers ai. For this we expect a
“better shape preserving” by using them for the GI problem ( see the next section
of the paper).

3. NUMERICAL EXPERIMENTS

We used as numerical (iterative) solvers for the problem (1.7) the Kaczmarz Ex-
tended (KE) and the Right hand side Kovarik (rhs-Ko) algorithms. In what follows,
we shall briefly describe the above mentioned methods. For details, see [1, 2].
Kaczmarz Extended (KE)
Let ai, i = 1, . . . ,m, αj , j = 1, . . . , n be the i-th row and the j-th column of A

respectively, and bi the i-th component of b; assume that ai 6= 0, αj 6= 0, (∀) i =
1, . . . ,m, j = 1, . . . , n. We define the projections (see e.g. [1]) fi(b; ·), F (b; ·) :
R

n → R
n and ϕj , φ : R

m → R
m by

(3.18)

fi(b;u) = u − <u,ai>−bi

‖ai‖2 ai, F (b;u) = (f1 ◦ . . . ◦ fm)(b;u), u ∈ R
n,

ϕj(y) = y −
<y,αj>

‖αj‖2 αj , j = 1, . . . , n, φ(y) = (ϕ1 ◦ . . . ◦ ϕn)(y), y ∈ R
m.

Let y0 = b, x0 ∈ R
n (arbitrary) and uk ∈ R

n already computed. The next itera-
tion, uk+1, is obtained as follows

(3.19) yk+1 = φ(yk), bk+1 = b − yk+1, uk+1 = F (bk+1;uk), k ≥ 0.

Theorem 3.1. ([1]) Under the above assumptions, the sequence (u0)k≥0 generated by
the algorithm (3.19) converges, and lim

k→∞
uk = u∗ ∈ LSS (A; b). Moreover, for u0 = 0

we get u∗ = uLS .

Right hand side Kovarik (rhs-KO)

Let A0 = A, b0 = b; for k = 0, 1, ... do

(3.20) Hk = I − AkAt
k; Γk = I +

1

2
Hk, Ak+1 = ΓkAk, bk+1 = Γkbk.

Theorem 3.2. ([2]) With the following scaling

A = A ·
1

√

‖AAt‖∞ + 1
; b = b ·

1
√

‖AAt‖∞ + 1
,

the sequence (At
kbk)k≥0 generated in the iterations in (3.20), converges and

lim
k→∞

At
kbk = uLS .

We considered in our experiments the following set of points

Problem 1. Input data

x 0.0 0.125 0.25 0.5 0.5 0.75 1.0
y 0.0 0.5 1.0 1.0 0.5 0.5 0.5
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Problem 2. Input data

x 0.0 0.1 0.3 0.35 0.45 0.45 0.6 0.8 0.9
y 0.2 0.1 0.3 0.8 0.6 0.8 0.3 0.9 1.0

The tests were performed with dim(Pn) = 11 for Problem 1 and dim(Pn) = 13 for
Problem 2. The results are shown in Figures 2-5. As it shall be noticed, the results
obtained by MATLAB function are the worst in both cases, since it obtains graphs
with very high “amplitudes”. In comparison, the Bernstein polynomials give us
a better “shape” of the graph, as it was expected. With respect to the solver,
in this particular cases, the rhs-KO is better than the KE. As future work, we
want to improve the implementation of KE and rhs-KO algorithms and find an
appropriate hybrid KE–rhs-KO method, to solve the problem for closed contours,
and to extend the above mentioned algorithms to surfaces.

Interpolation using KE solver Interpolation using rhs-KO solver

Interpolation using MATLAB function

FIGURE 2. Problem 1-Bernstein polynomials
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Interpolation using KE solver Interpolation using rhs-KO solver

Interpolation using MATLAB function

FIGURE 3. Problem 2-Standard polynomials

Interpolation using KE solver Interpolation using rhs-KO solver

Interpolation using MATLAB function

FIGURE 4. Problem 2-Bernstein polynomials
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