CARPATHIAN J. MATH. **23** (2007), No. 1 - 2, 172 - 176

Dedicated to Professor Ioan A. RUS on the occasion of his 70th anniversary

Existence and data dependence of fixed points and strict fixed points for multivalued *Y***-contractions**

GABRIELA PETRUŞEL

ABSTRACT. The purpose of this paper is to study the existence and data dependence of the fixed points and strict fixed points of some multivalued *Y*-contractions in complete ordered metric spaces.

1. INTRODUCTION

Throughout this paper, the standard notations and terminologies in nonlinear analysis (see [11], [13]) are used. For the convenience of the reader we recall some of them.

Let (X, d) be a metric space. By $\tilde{B}(x_0, r)$ we denote the closed ball centered at $x_0 \in X$ with radius r > 0.

Also, we will use the following symbols:

 $P(X) := \{Y \subset X \mid Y \text{ is nonempty}\}, P_{cl}(X) := \{Y \in P(X) \mid Y \text{ is closed}\},\$

 $P_b(X) := \{Y \in P(X) | Y \text{ is bounded } \}, P_{b,cl}(X) := P_{cl}(X) \cap P_b(X).$

Let *A* and *B* be nonempty subsets of the metric space (X, d). The gap between these sets is

$$D(A, B) = \inf\{d(a, b) | a \in A, b \in B\}.$$

In particular, $D(x_0, B) = D(\{x_0\}, B)$ (where $x_0 \in X$) is called the distance from the point x_0 to the set B.

The Pompeiu-Hausdorff generalized distance between the nonempty closed subsets *A* and *B* of the metric space (X, d) is defined by the following formula:

$$H(A,B) := \max\{\sup_{a \in A} \inf_{b \in B} d(a,b), \sup_{b \in B} \inf_{a \in A} d(a,b)\}.$$

If $A, B \in P_{b,cl}(X)$, then one denotes

$$\delta(A,B) := \sup\{d(a,b) \mid a \in A, \ b \in B\}.$$

The symbol $T : X \to Y$ means $T : X \to P(Y)$, i. e. *T* is a set-valued operator from *X* to *Y*. We will denote by $Graf(T) := \{(x, y) \in X \times Y | y \in T(x)\}$ the graph of *T*. Recall that the set-valued operator is called closed if Graf(T) is a closed subset of $X \times Y$.

For $T : X \to P(X)$ the symbol $Fix(T) := \{x \in X | x \in T(x)\}$ denotes the fixed point set of the set-valued operator T, while $SFix(T) := \{x \in X | \{x\} = T(x)\}$ is the strict fixed point set of T.

Received: 05.11.2006; In revised form: 19.01.2007; Accepted: 19.02.2007

²⁰⁰⁰ Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. Strict fixed point, multivalued operator, data dependence, generalized contraction.

If (X, d) is a metric space, $T : X \to P_{cl}(X)$ is called a multivalued *a*-contraction if $a \in]0,1[$ and $H(T(x_1), T(x_2)) \le a \cdot d(x_1, x_2)$, for each $x_1, x_2 \in X$.

Let $T : X \to P_{cl}(X)$ be a multivalued operator. A sequence $(x_n)_{n \in \mathbb{N}}$ in X such that:

i) $x_0 = x, x_1 = y$

ii) $x_{n+1} \in T(x_n)$, for all $n \in \mathbb{N}$

is called the sequence of successive approximations of T starting from x_0 .

The following open question was considered by I. A. Rus in [10]:

Open problem. Let (X, d) be a metric space and $Y \subseteq X \times X$. The operator $T : X \rightarrow P_{cl}(X)$ is called a set-valued (Y, a)-contraction if:

(1.1)
$$a \in [0, 1[and H(T(x_1), T(x_2)) \le a \cdot d(x_1, x_2), for each (x_1, x_2) \in Y.$$

Construct a fixed point theory for set-valued (Y, a)-contractions.

In the previous definition, one can also consider generalized type conditions for *T*, as well as, similar assumptions with respect to δ instead of *H*.

The purpose of this paper is to study the existence and data dependence of the fixed points and strict fixed points of some multivalued *Y*-contractions in complete ordered metric spaces.

Our results generalize and extend some results given in [1], [6], [10] and [12].

2. Data dependence of the fixed point set

Let (X, \leq) be an partially ordered set. Denote $X_{\leq} := \{(x, y) \in X \times X | x \leq y \text{ or } y \leq x\}$. Also, if $x, y \in X$, with $x \leq y$ then by $[x, y]_{\leq}$ we will denote the ordered segment joining x and y, i. e. $[x, y]_{\leq} := \{z \in X | x \leq z \leq y\}$.

Definition 2.1. Let *X* be a nonempty set. Then, by definition, (X, d, \leq) is an ordered metric space if and only if:

- (i) (X, d) is a metric space
- (ii) (X, \leq) is a partially ordered set

(iii) $(x_n)_{n \in \mathbb{N}} \to x$, $(y_n)_{n \in \mathbb{N}} \to y$ and $x_n \leq y_n$, for each $n \in \mathbb{N} \Rightarrow x \leq y$.

The following result was proved in [12]:

Theorem 2.1. Let (X, d, \leq) be an ordered complete metric space and $T : X \to P_{cl}(X)$ a set-valued operator. Suppose that the following assertions hold:

(*i*) there exists $x_0 \in X$ such that if $y \in T(x_0)$ then $(x_0, y) \in X_{<}$;

(ii) for each $x, y \in X$, with $(x, y) \notin X_{\leq}$ there exists $c(x, y) \in X$ such that $(x, c(x, y)) \in X_{\leq}$ and $(y, c(x, y)) \in X_{\leq}$;

(*iii*) $(x, y) \in X_{\leq}$ implies $(u \in T(x) \text{ and } v \in T(y) \text{ then } (u, v) \in X_{\leq})$;

(iv) T is a closed set-valued operator;

(v) T is a set-valued (X_{\leq}, a) -contraction.

Then for each $x \in X$ there is a sequence $(x_n)n \in \mathbb{N}$ of successive approximations of T starting from x, that converges to a fixed point of T.

A data dependence theorem is the following.

Theorem 2.2. Let (X, d, \leq) be an ordered complete metric space and $T_1, T_2 : X \rightarrow P_{cl}(X)$ two multivalued operators. Let us suppose that the following assumptions hold:

(i) there is $x_0 \in X$ such that, if $y \in T_1(x_0)$ then $(x_0, y) \in X_{\leq}$;

Gabriela Petruşel

(*ii*) there is $y_0 \in X$ such that, if $y \in T_2(y_0)$ then $(y_0, y) \in X_{\leq}$;

(*iii*) for every $x, y \in X$, with $(x, y) \notin X_{\leq}$ there exists $c(x, y) \in X$ such that $(x, c(x, y)) \in X_{\leq}$ and $(y, c(x, y)) \in X_{\leq}$;

(iv) if $(x, y) \in X_{\leq}$ then the following implication is true $(u \in T_i(x) \text{ si } v \in T_i(y),$ then $(u, v) \in X_{\leq})$, for $i \in \{1, 2\}$;

(v) T_i is closed, for $i \in \{1, 2\}$;

(vi) T_i is a multivalued (X_{\leq}, a_i) -contraction, i. e.

 $a_i \in]0,1[$ and $H(T_i(x),T_i(y)) \le a_i \cdot d(x,y),$ for each $x,y \in X, x \le y,$

for $i \in \{1, 2\}$;

(vii) if $x_0^* \in FixT_1$ then for each $y \in T_2(x_0^*)$ we have $(x_0^*, y) \in X_{\leq}$; (viii) if $y_0^* \in FixT_2$ then for each $y \in T_1(y_0^*)$ we have $(y_0^*, y) \in X_{\leq}$; (ix) there exists $\eta > 0$ such that $H(T_1(x), T_2(x)) \leq \eta$, for each $x \in X$. Then:

(a) $Fix(T_i) \neq \emptyset$, for $i \in \{1, 2\}$; (b) $H(Fix(T_1), Fix(T_2)) \leq \frac{\eta}{1 - \max\{a_1, a_2\}}$.

Proof. From Theorem 2.1 we have that $Fix(T_i) \neq \emptyset$, for $i \in \{1, 2\}$. Moreover,

since T_i is closed, for each $i \in \{1, 2\}$, we immediately get that $Fix(T_i)$ is closed, for $i \in \{1, 2\}$.

We will show now the assertion (b). Let q > 1 and $x_0^* \in Fix(T_1)$. Then, there exists $x_1 \in T_2(x_0^*)$ such that $d(x_0^*, x_1) \leq qH(T_1(x_0^*), T_2(x_0^*)) \leq q\eta$. For $x_1 \in T_2(x_0^*)$ there exists $x_2 \in T_2(x_1)$ such that $d(x_1, x_2) \leq qH(T_2(x_0^*), T_2(x_1)) \leq qa_2d(x_0^*, x_1)$, since $(x_0^*, x_1) \in X_{\leq}$. We get that the sequence $(x_n)_{n \in \mathbb{N}}$ has the properties:

(1) $x_{n+1} \in T(x_n), n \in \mathbb{N};$

(2) $d(x_n, x_{n+1}) \leq (qa_2)^n d(x_0^*, x_1)$, for each $n \in \mathbb{N}$.

Then $d(x_n, x_{n+p}) \leq (qa_2)^n \frac{1}{1-qa_2} d(x_0^*, x_1)$, for each $n \in \mathbb{N}$ and $p \in \mathbb{N}^*$. So, by choosing $q \in]1, a_2^{-1}[$ we have that the sequence (x_n) is convergent and its limit is a fixed point for T_2 . Let us denote this fixed point by x_2^* .

a fixed point for T_2 . Let us denote this fixed point by x_2^* . When $p \to +\infty$ we have that $d(x_n, x_2^*) \leq (qa_2)^n \frac{1}{1-qa_2} d(x_0^*, x_1)$, for each $n \in \mathbb{N}$. For n = 0, we have that $d(x_0^*, x_2^*) \leq \frac{q\eta}{1-qa_2}$.

By a similar argument with respect to T_1 we are able to construct a sequence of successive approximations for T_1 starting from $y_0^* \in Fix(T_2)$. It follows that there exists $x_1^* \in Fix(T_1)$ such that $d(y_0^*, x_1^*) \leq \frac{q\eta}{1-qa_1}$.

From the above two relations we deduce

$$H(Fix(T_1), Fix(T_2)) \le \frac{q\eta}{1 - q \max\{a_1, a_2\}}$$

If we take $q \searrow 1$ the conclusion follows.

3. STRICT FIXED POINTS

We are now interested for the existence of the strict fixed points for a multivalued operator satisfying a contractive type condition with respect to δ .

A first result in this direction is the following.

Theorem 3.3. Let (X, d, \leq) be an ordered complete metric space and $T : X \to P_{b,cl}(X)$ a set-valued operator. Suppose that the following assertions hold:

(*i*) there exists $x_0 \in X$ such that if $y \in T(x_0)$ then $(x_0, y) \in X_{\leq}$;

174

Existence and data dependence of fixed points and strict fixed points ...

(*ii*) $(x, y) \in X_{\leq}$ implies $(u \in T(x) \text{ and } v \in T(y) \text{ then } (u, v) \in X_{\leq})$;

- *(iii) T is a closed set-valued operator;*
- (iv) there exist $a, b, c \in \mathbb{R}_+$, with $a + b + c \in]0, 1[$ such that

 $\delta(T(x), T(y)) \le ad(x, y) + b\delta(x, T(x)) + c\delta(y, T(y))$ for each $x, y \in X$, with $x \le y$. Then $Fix(T) = SFix(T) \ne \emptyset$.

Proof. Let q > 1. Then there exists $x_1 \in T(x_0)$ such that $\delta(x_0, T(x_0)) \le qd(x_0, x_1)$. Then we have successively:

 $\delta(x_1, T(x_1)) \leq \delta(T(x_0), T(x_1)) \leq ad(x_0, x_1) + b\delta(x_0, T(x_0)) + c\delta(x_1, T(x_1)) \leq ad(x_0, x_1) + bqd(x_0, x_1) + c\delta(x_1, T(x_1)), \text{ since } x_0 \leq x_1. \text{ Hence}$

$$\delta(x_1, T(x_1)) \le \frac{a+bq}{1-c} \cdot d(x_0, x_1).$$

We can construct a sequence $(x_n)n \in \mathbb{N}$ of successive approximations for *T* having the property:

$$d(x_n, x_{n+1}) \le \delta(x_n, T(x_n)) \le \left[\frac{a+bq}{1-c}\right]^n d(x_0, x_1), \text{ for } n \in \mathbb{N}.$$

By choosing $q > \frac{b}{1-a-c}$, we obtain that the sequence $(x_n)_{n \in \mathbb{N}}$ is Cauchy and hence convergent to a certain $x^* \in X$. Since *T* is closed, we have that $x^* \in Fix(T)$.

Let us establish now the relation $Fix(T) \subset SFix(T)$. For this purpose, let $x^* \in Fix(T)$. Using (iv) for $x = y = x^*$ we get:

$$\delta(T(x^*)) \le (b+c)\delta(x^*, T(x^*)) \le (b+c)\delta(T(x^*)).$$

If we suppose $card(\delta(T(x^*))) > 1$ then we obtain the contradiction $b + c \ge 1$. Hence $\delta(T(x^*)) = 0$ and so, since $x^* \in Fix(T)$ we have got the conclusion $\{x^*\} = T(x^*)$.

In a similar way to Theorem 2.2 we can prove the following data dependence theorem for the strict fixed point set of a multivalued operator satisfying a contractive type condition with respect to δ .

Theorem 3.4. Let (X, d, \leq) be an ordered complete metric space and $T_1, T_2 : X \rightarrow P_{b,cl}(X)$ two multivalued operators. Let us suppose that the following assumptions hold:

(i) there is $x_0 \in X$ such that, if $y \in T_1(x_0)$ then $(x_0, y) \in X_{\leq}$;

(*ii*) there is $y_0 \in X$ such that, if $y \in T_2(y_0)$ then $(y_0, y) \in X_{\leq}$;

(*iii*) if $(x, y) \in X_{\leq}$ then the following implication is true $(u \in T_i(x) \text{ si } v \in T_i(y),$ then $(u, v) \in X_{\leq})$, for $i \in \{1, 2\}$;

(*iv*) T_i is closed, for $i \in \{1, 2\}$

(v) there exist $a_i, b_i, c_i \in \mathbb{R}_+$, with $a_i + b_i + c_i \in]0, 1[$ such that

$$\delta(T_i(x), T_i(y)) \le a_i d(x, y) + b_i \delta(x, T_i(x)) + c_i \delta(y, T_i(y)),$$

for each $x, y \in X$, with $x \leq y$ and for $i \in \{1, 2\}$;

(vi) if $x_0^* \in FixT_1$ then for each $y \in T_2(x_0^*)$ we have $(x_0^*, y) \in X_{\leq}$;

(vii) if $y_0^* \in FixT_2$ then for each $y \in T_1(y_0^*)$ we have $(y_0^*, y) \in X_{\leq}$;

(viii) there exists $\eta > 0$ such that $\delta(T_1(x), T_2(x)) \le \eta$, for each $x \in X$. Then:

(a) $Fix(T_i) = SFix(T_i) \in P_{cl}(X)$, for $i \in \{1, 2\}$;

Gabriela Petruşel

(b)
$$H(SFix(T_1), SFix(T_2)) \le \frac{(1-\min\{c_1, c_2\})\eta}{1-\max\{a_1+b_1+c_1, a_2+b_2+c_2\}}$$

References

- [1] Ćirić, L. B., Fixed points for generalized multi-valued contractions, Math. Vesnik, 9(24)(1972), 265-272
- [2] Covitz, H. and Nadler Jr., S. B., Multi-valued contraction mapping in generalized metric spaces, Israel J. Math., 8 (1970), 5-11
- [3] Nadler Jr., S. B., Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475-488
- [4] Petruşel, A., Generalized multivalued contractions, Nonlinear Analysis, 47 (2001), 649-659
- [5] Petruşel, A., Multivalued weakly Picard operators and applications, Scientiae Mathematicae Japonicae, 59 (2004), 169-202
- [6] Reich, S., Fixed points of contractive functions, Boll. U.M.I. (4), 5 (1972), 26-42
- [7] Reich, S., A fixed point theorem for locally contractive multi-valued functions, Rev. Roum. Math. Pures et Appl., 17 (1972), 569-572
- [8] Rus, I. A., Fixed point theorems for multivalued mappings in complete metric spaces, Math. Japonica, 20 (1975), 21-24
- [9] Rus, I. A., Strict fixed point theory, Fixed Point Theory, 4 (2003), 177-186
- [10] Rus, I. A., Generalized Contractions and Applications, Transilvania Press Cluj-Napoca, 2001
- [11] Rus, I. A., Petruşel, A. and Petruşel, G., *Fixed Point Theory 1950-2000 : Romanian Contributions*, House of the Book of Science, Cluj-Napoca, 2002
- [12] Rus, I. A., Petruşel, A. and Petruşel, G., Fixed point theorems for set-valued Y-contractions, Proc. of the International Conf. on Fixed Point Theory and Applications-Dedicated to the Memory of James Dugundji, Bedlewo, 2005, Publ. Stefan Banach Center (to appear)
- [13] Rus, I. A., Petruşel, A. and Sîntămărian, A., Data dependence of the fixed point set of some multivalued weakly Picard operators, Nonlinear Analysis, **52** (2003), 1947-1959

DEPARTMENT OF APPLIED MATHEMATICS "BABEŞ-BOLYAI" UNIVERSITY CLUJ-NAPOCA KOGĂLNICEANU 1, 400084, CLUJ-NAPOCA, ROMANIA *E-mail address*: gabip@math.ubbcluj.ro