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Analysis of a generalization of the Signorini
problems. Contact boundary conditions and frictions
laws

NICOLAE POP

ABSTRACT. The contact conditions between two deformable bodies are approximated by a gener-
alization of the Signorini problem due to the presence of a second deformable body. In the formulation
of the contact problems, we must introduce a new notational framework in which the contact areas,
the contact forces and the motions of associated boundaries are unknown beforehand, and must be
determined as part of the solution. We obtain inequations which describe a restriction of the points
from the contact boundary, supposing that these points move in a normal direction at one of the
boundaries in contact. In this paper the strong and the variational of the boundaries contact condi-
tions is presented, and we will formulate of the contact conditions and of the friction contact laws
between two deformable bodies.

1. INTRODUCTION

Two main lines can be followed to impose contact conditions in normal di-
rection: these are the non-penetration condition as geometrical constraints and
constitutive laws for the micromechanical approach within the contact area. The
interfacial behavior in the tangential direction (frictional response) is even more
complicated. The most frequently used constitutive equation is the classical law
of Coulomb. The purpose of the modelling of the contact conditions and of the
friction contact laws between two deformable bodies, will be parametered by
means of two applications one to one, we will also mention, under a functional
framework, the transmission of forces in contact area, the contact stress and the
friction law. The objective of this paper to emphasize dependency of the frictional
coefficient with respect to the velocity of sliding, the difference between the ad-
herence friction coefficient (fix contact) and the slide coefficient (sliding contact),
and to give the variational form of the contact conditions with friction. However,
other frictional laws are available which take into account local, micromechanical
phenomena within the contact interface, see e.g. [3]. An extensive overview may
be found in [6], and for the physical background see e.g. [7]. During the few last
years frictional phenomena have also been considered within the framework of
the theory of plasticity, this leads to non-associative slip rules.
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2. FORMULATION OF THE PROBLEM

Let us consider two linear elastic bodies that at a given time t = 0 occupy
domains Ω1 and Ω2 ⊂ R

d respectively, where d = 2 or d = 3. The boundary of
each body, is divided into three subregions such that

∂Ω1 = Γ1 = Γ
1

U ∪ Γ
1

N ∪ Γ
1

C and ∂Ω2 = Γ2 = Γ
2

U ∪ Γ
2

N ∪ Γ
2

C ,

which are topologically open, and disjoint, only Γ1
C and Γ2

C being accepted to
have common points:

Γi
U ∩ Γj

N = ∅ for (U, i) 6= (N, j), (U,N) 6= (C,C) and mess (Γi
N ) > 0, i, j = 1, 2.

Figure 1. The contact of two elastic bodies

The displacement u(t, x) will be prescribed on ΓU = Γ
1

U ∩ Γ
2

U and traction

h(t, x) is to given on ΓN = Γ1
N ∪ Γ2

N . For the beginning, the boundary ΓN =

Γ1
N ∪Γ2

N is considered without tensions. At the same time the stress vector σ(n)(u)
is defined, oriented towards the exterior of the boundary ∂Ω = ∂Ω1 ∪ ∂Ω2. The
initial displacement u(0, x) = u0(x), the initial velocity u̇(0, x) = u1(x) and the
density of body force f are also given.

So long as the two bodies do not touch each other, the field of the displace-
ments will be the solution of a boundary value problem of the differential equa-
tions of elastodynamics. If the two bodies touch one another, then in the contact
boundary there are forces strong enough to prevent the interaction (penetration)
of the two bodies. The condition that needs to be expressed in order to describe
this process is called ”the contact condition”. Beside these forces there may ap-
pear in the contact area friction forces as well, which a law of friction can describe.
The contact problem in a time interval with, has the following form.

The elastodynamic equation on Ω = Ω1 ∪ Ω2

(2.1) ρü(t, x) − σij,j(u(t, x)) = f(t, x) on [0, tE ] × Ω.

The boundary conditions

(2.2) u(t, x) = u(t, x) on [0, tE ] × ΓU ,

(2.3) σ(n)(u)(t, x) = h(t, x) on [0, tE ] × ΓN .
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The contact condition and the friction law on [0, tE ] × ΓC will be further pre-
sented, and the initial conditions are

u(0, x) = u0(x) and u̇(0, x) = u1(x).

3. THE CONTACT CONDITION

The contact condition will have to contain the condition of non-penetration of
one body in the other (or their intersection (penetration), according to another
law), the relative slip in the contact area, and the correct description of the trans-
mission of forces between bodies. These processes must be expressed mathemat-
ically correct so that they could be approached by means of variational methods.
Because of the difficulty that appears, the contact condition is approximated by
the Signorini condition [1]. To approximate the contact conditions, we will situate
in the linear elasticity theory.

Fig. 2 The parametrization of the contact area

We will start by parametrization of the two contact boundaries Γ1
C and Γ2

C

assumed to be disjoint. To this end, let us consider two one to one applications

x(1) : P → Γ1
C and x(2) : P → Γ2

C of a domain P of C1 class with the dimension
d − 1 for each contact zone.

So, in any x ∈ P we can define the next notions:
– normal to Γ1

C

(3.4) n(x) :=
x2(x) − x1(x)

|x2(x) − x1(x)|
,

– initial gap

(3.5) g(x) := |x2(x) − x1(x)|,

– relative displacement, defined for a displacement field u given by

(3.6) uR(x) = u(1)
(

x(1)(x)
)

− u(2)
(

x(2)(x)
)

,

where u(j) = u
∣

∣

∂Ω
represents the trace of u on ∂Ω.

Further, we define the components uN := u · n in direction n for a vectorial
field u : P → R

d and uT = u − uN orthogonal on n.
The non-penetration condition of the two bodies will be determined as a geo-

metrical contact condition. It is approximated by equation

uN (x, t) ≤ g(x).

This inequality describes the contact condition if the points on the contact zone
move in the direction given by n(x). We will analyze the error that results from
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this approximation. For this purpose the parameterizations x(1), x(2) and the
boundaries Γ1

C , Γ2
C , which may touch one another must fulfill the conditions

grouped under:

Hypothesis 3.1. Assume the next hypothesis:
H1) Displacements ui and deformations eij must be small, i.e.,

(3.7) ui(x) ≤ ε and |eij(x)| ≤ ε,

where ε is a small positive parameter.

H2) The contact boundaries Γ1
C and Γ2

C are in neighborhood, i.e.

|g(x)| ≤ 2ε, x ∈ P.

H3) The curvatures of the two contact boundaries Γ1
C and Γ2

C are bounded.

H4) The direction vector n(x) must not deviate much from the normal n(1)(x(1))
at Γ1

C (normal oriented towards the exterior) than normal n(2)(x(2)) at Γ2
C and

vice-versa:

(3.8)
∣

∣

∣
n(x) − n(1)(x(1)(x))

∣

∣

∣
≤
∣

∣

∣
n(1)(x(1)(x)) + n(2)(x(2)(x))

∣

∣

∣
for x ∈ P,

(3.9)
∣

∣

∣
n(x) + n(2)(x(2)(x))

∣

∣

∣
≤
∣

∣

∣
n(1)(x(1)(x)) + n(2)(x(2)(x))

∣

∣

∣
for x ∈ P.

The different signs before n(1) and n(2) are caused by the different orientation
of these values.

Lemma 3.1. Under the conditions of Hypothesis 3.1 the condition ”Γ1
C and Γ2

C do not
intersect” is equivalent to the inequality

uR
N (x) ≤ g(x) + r(x),

where r(x) is the error that satisfies the condition |r(x)| ≤ Kε3/2.

The proof of this result can be found in [2].
The contact condition has to correctly describe the transmission of forces be-

tween bodies and fulfill the next hypothesis, too:
1◦. Newton’s law regarding the equilibrium of forces must be valid, that is to

say that force F 12, which is exercised by body Ω1 upon body Ω2, must be contrary
to force F 21 exercised by Ω2 upon Ω1.

2◦. On the contact area only compressive forces can be transmitted.
3◦. The forces can be transmitted only in such places where the bodies touch

each other.
Condition 1◦ means

(3.10) σ(n)(x(1)(x))J1(x) = −σ(n)(x(2)(x))J2(x) =: σ(x), x ∈ P,

with Gram determinants of the parameterizations x(1) and x(2):

Jk(x)

∣

∣

∣

∣

∣

det

(

(〈

∂x(k)

∂xi
,
∂x(k)

∂xj

〉)d

i,j=1

)∣

∣

∣

∣

∣

, k = 1, 2.

Equation (3.10) can also be expressed as: let x ∈ P and a surface ∆s ⊂ P ,

x ∈ ∆s. The surface element ∆s is built by parameterizations x(1), x(2) and
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corresponds to the surface elements ∆s(1) ⊂ Γ1
C and ∆s(2) ⊂ Γ2

C . Force F 21

transmitted by Ω2 through the surface element ∆s(1) upon Ω1 is

F 21 =

∫

∆s(1)

σ(n)(y)ds.

Accordingly, Ω1 transmits through ∆s(2) upon Ω2 the force

F 12 =

∫

∆s(2)

σ(n)(y)ds.

After the transformation of the integral on the parameterized domain P , the equi-
librium of forces is

∫

∆s

σ(n)(x(1)(x))J1(x)ds = −

∫

∆s

σ(n)(x(2)(x))J2(x)ds.

Dividing by ∆s and letting |∆s| → 0 , it results (3.10). The vectorial field σ(x)
defined in this way is given by the contact stress.

Condition 2◦ can be expressed in the following way:

σN (x) ≤ 0 for x ∈ P,

where σN = σjnj represents the contact stress component in the direction of
vector n.

Condition 3◦ represents:

σN (x)
(

uR
N (x) − g(x)

)

= 0, ∀x ∈ P.

In conclusion, the contact conditions can be modelled in the following way:

(3.11) (σ(n) ◦ x(1))J1 = −(σ(n) ◦ x(2))J2 =: σ,

(3.12) uR
N ≤ g; σN ≤ 0; σN (uR

N − g) = 0.

The variational expression of condition (3.12) has the form

(3.13) uR
N ≤ g; σN

(

vR
N − uR

N

)

≥ 0, ∀ vR
N ∈ T.

So far, the stress on the boundary has been considered continuous functions
in the local system. In the case of weak solutions of the elasticity equations, the
boundaries stresses are generally defined as functions in the Sobolev space

H−1/2(Γ1
C , Rd) × H−1/2(Γ2

C , Rd).

We will show how one can extend the operations with stresses on the contact
boundaries Γ1

C and Γ2
C upon the parametrical surface P . We will define the con-

tact stress and will express the balance of forces for a functional which models
the contact conditions as well.

For this the following hypothesis is necessary upon x(1) and x(2).

Hypothesis 3.2. Let be the Lipschitz continuous parameterizations x(1) and x(2),
with continuous inverses and the Gram determinants of the transformations J1
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and J2 be bounded, which have bounded inverses, too. This means that the there
exist the constants 0 < c0 ≤ C0 and 0 < c1 ≤ C1 such that

(3.14) c0|x − y| ≤
∣

∣

∣
x(k)(x) − x(k)(y)

∣

∣

∣
≤ C0|x − y|, ∀x, y ∈ P, k = 1, 2,

(3.15) c1 ≤ |J1(x)|, |J2(x)| ≤ C1.

For 0 < α < 1 the function spaces with indexes α have the form

H
α

ΓU
(Γk

C) :=
{

u
∣

∣

Γk

C

: u ∈ Hα(Γk), u = 0 on Γk
U

}

, k = 1, 2

and

H
α

k (P ) :=
{

u ◦ x(k) : u ∈ Hα
ΓU

(Γk
C)
}

,

and their dual

H−α
ΓU

(Γk
C) :=

(

H
α

ΓU
(Γk

C)
)∗

and H−α
k (P ) :=

(

H
α

k (P )
)∗

.

Now, we can define the operators

(3.16) x∗
k : H

α
(Γk

C) → H
α

k (P ), u → u ◦ xk.

We notice that x∗
1 and x∗

2 are linear operators. The continuity results from the
property of the Sobolev-Slobodeckij norm.

‖x∗
1(u)‖2

Hα(p) =

∫

P

|u(x(1)(x))|2dsx +

∫

P

∫

P

|u(x(1)(x)) − u(x(1)(y))|2

|x − y|d−1+2α
dsxdsy

=

∫

Γ1
C

|u(x′)|2J−1
1 (x′)dsx′

+

∫

Γ1
C

∫

Γ1
C

|u(x′) − u(y′)|2

|(x(1))−1(x′) − (x(1))−1(y′)|d−1+2α
J−1

1 (x′)J−1
1 (y′)dsx′dsy′

≤ c−1
1

∫

Γ1
C

|u(x′)|2dsx′ +
Cd−1+2α

0

c2
1

∫

Γ1
C

∫

Γ1
C

|u(x′) − u(y′)|2

|x′ − y′|d−1+2α
dsx′dsy′

≤ k(C0, c1, d, α)‖u‖2
Hα(Γk

C
).

From (3.14), x∗
k is bijection application and the inverse (x∗

k)−1 = u ◦ (x(k))−1

applies the space H
α

k (P ) on the space H
α

ΓU
(Γk

C). With the help of x∗
1 and x∗

2 we
can define the transformations

xk : H
−α

ΓU
(Γk

C) → H
−α

k (P ), k = 1, 2

by

(3.17) 〈xkf, x∗
ku〉P := 〈f, u〉Γk

C

, ∀ f ∈ H−α
ΓU

(Γk
C), ∀ u ∈ Hα

ΓU
(Γk

C).

Operators x∗
k, k = 1, 2 are well defined and because they are invertible and

continuous, from (3.17) results that xk are continuous as well.
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For a function f ∈ L2(Γ
k
C) we have:

〈xkf, u〉P =
〈

f, (x∗
k)−1u

〉

Γk

C

=

∫

Γk

C

f(x)u
(

x−1
k (x)

)

dsx =

∫

P

f
(

xk(x)
)

u(x)Jk(x)dsx

so (xkf)(x) = f
(

x(k)(x)
)

Jk(x) which is the definition xk and is in accordance

with the definition of the boundaries Γk
C on a parametrization field P . Thus, the

balance of forces for the stress on the contact area

σn ∈ H
−1/2
ΓU

(

Γ1
C , Rd

)

× H
−1/2
ΓU

(

Γ2
C , Rd

)

is given by

x1

(

σn|Γ1
C

)

= −x2

(

σn|Γ2
C

)

and the contact stress σ is given by σ = x1

(

σ(n)|Γ2
C

)

.

4. THE FRICTION LAW

The oldest friction law (historically speaking) is the Coulomb friction law,
which states that force FR necessary for the movement of a body on a solid foun-
dation is proportional with force FN with which the body presses normal on the
base.

In order to correctly describe the friction law and to mark out the difference
between the adherence friction coefficient (in the case of the fixed contract) and
the sliding friction coefficient (in the case of the sliding contact), the friction coef-
ficient F must depend upon the velocity u̇

R
T (x) with which the bodies slide one

by the other in point x.
The friction law will be:

(4.18)



















u̇
R
T = 0 ⇒ σT = F (0)|σN |

u̇
R
T

|u̇R
T |

u̇
R
T 6= 0 ⇒ σT = F (u̇R

T )|σn|
u̇

R
T

|u̇R
T |

.

The law describes the dependence of the tangential stress upon the normal
stress and upon the velocity of sliding:

– if the bodies are adherent to one another (fix contact) in point x, we have
u̇

R
T = 0 and so the value of the tangential forces density is smaller than the result

of the multiplication of the adherence friction coefficient and the value of the
normal forces density. This defines the adherent friction (fix contact);

– if the bodies slide in x one by the other, then u̇
R
T 6= 0 and the friction also

causes a density of the tangential force which opposes the sliding force and whose
value is equal to the result of the multiplication of the friction coefficient and the
value of the normal force density.

This can be summarized in the following way: for higher sliding velocities, F
is equal with the friction coefficient, sliding coefficient or is asymptotically ap-
proaching it, for lower velocities, because F is a continuous function, in point
u̇

R
T = 0 will take the value of the adherence friction (fix contact). The results of
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the experimental research, which confirm a continuous dependence of the friction
coefficient upon the sliding velocity, can be found in [7].

Fig. 3. Dependency of the friction coefficient with respect to velocity of sliding

If the friction coefficient is considered to be independent from the sliding ve-
locity, then the conditions found in the specialty literature have the form:

(4.19) |σσσT | ≤ F |σσσN | ⇒ u̇
R
T = 0, |σσσT | = F |σN | ⇒ ∃ λ > 0, u̇̇u̇uR

T = λ · σσσT .

The variational form of the friction law has the form:

(4.20) σσσT

(

vvvR
T − u̇

R
T

)

+ F
(

u̇
R
T

)

|σσσN |
(

|vvvR
T | − |u̇R

T |
)

≥ 0, ∀ vvvR
T ∈ T,

where T = T (x) is for x ∈ P orthogonal subspace at n(x), T ⊂ R
d.

Proposition 4.1. The formulation of friction law given by (4.18) and (4.20) are equiva-
lent.

Proof. (i) (4.18) ⇒ (4.20). In the case u̇
R
T = 0 we have u̇

R
T = 0, so for each νR

T

results

σσσT

(

vR
T − u̇

R
T

)

+ F
(

u̇R
T

)

|σσσN |
(

|vR
T | − |u̇R

T |
)

= σσσT · vvvR
T + F (0)|σσσN |vR

T ≥ (−|σσσN | + F (0)|σσσN |) |vvvR
T | ≥ 0.

For u̇
R
T 6= 0 we have |σT | = −F

(

u̇
R
T

)

|σNσNσN | u̇
R

T

|u̇R

T
|

, hence for ∀ vvvR
T ∈ T results

σσσT

(

vvvR
T − u̇

R
T

)

+ F
(

u̇R
T

)

|σσσN |
(

|vvvR
T | − |u̇R

T |
)

= F
(

u̇
R
T

)

|σσσN |

(

−u̇
R
T

|u̇R
T |

vvvR
T + |vR

T |

)

≥ F
(

u̇R
T

)

|σσσN |
(

−|vvvR
T | + |vvvR

T |
)

= 0

so (4.20) is proved.
(ii) (4.20) ⇒ (4.18). If we take vR

T = −λ · σT , in (4.20) by division with λ, for
λ → ∞ and by division with |σT |, results

(4.21) |σT | ≤ F
(

u̇
R
T

)

|σN |.

For u̇
R
T = 0 results the statement (4.18). If u̇

R
T 6= 0, we put vvvR

T = 2u̇R
T and vvvR

T =
1
2 u̇

R
T in (4.20) and we obtain

(4.22) σσσT u̇
R
T + F

(

u̇
R
T

)

|σσσN | · |u̇R
T | = 0.
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Using (4.22) and (4.21) we obtain

|σσσT | = −|σσσT |
u̇

R
T

|u̇R
T |

,

this means that σσσT is has to be oriented to u̇
R
T , so we will have:

σσσT · u̇R
T = −|σσσT | |u̇

R
T |.

Using (4.22) and |σσσT | = F
(

u̇
R
T

)

|σσσN | we have

σσσT = −F
(

u̇
R
T

)

|σσσN |
u̇

R
T

|u̇R
T |

.

With this we are able to completely express the dynamic contact problem.
One other concept over of the friction law, is associated friction law equivalent
with (4.19):

(4.23)











|σσσT | ≤ F
(

u̇̇u̇uR
T

)

p(|RσσσN |),

|σσσN | < F (0)p(|RσσσN |) ⇒ u̇
R
T = 0,

|σσσT | < F
(

u̇
R
T

)

p(RσσσN |) ⇒ ∃ λ s.t. σσσT = −λu̇
R
T

Here R is a normal regularization operator that is, a linear and continuous op-

erator R : H− 1
2 (P ) → L2(P ) need it to regularize the normal trace of the stress

tensor on P . The function p is a non-negative function, the so-called friction bound.
This friction law (4.23) states that tangential shear cannot exceed the maximum
frictional resistance F

(

u̇
R
T

)

p(|RσN |, and non-local smoothing operator R is intro-
duced for technical reasons, since the trace of the stress tensor on the boundary is
too rough.

The friction law (4.23), was used with

p(r) = r or

p(r) = r(1 − αr)+,

where α is a small positive coefficient related to the wear and hardness of surface
and r+ = max{0, r}. This friction law was derived from thermodynamic consid-
erations and means that the normal stress is too large, that is, it exceeds 1/α, the
surface disintegrates and offers no resistance to the motion, see e.g. [8], [9] and
[10].

We are looking for the solution u of the differential equations system

(ρ(x)ü(t, x) − σσσij,j(uuu)(t, x) = f(t, x) on [0, tE ] × Ω

with boundary conditions

uuu(t, x) = uuu(t, x) on [0, tE ] × ΓU ,

σσσ(n)(uuu)(t, x) = hhh(t, x) on [0, tE ] × ΓN ,
(

σσσ(n) ◦ xxx(1)
)

J1 = −
(

σσσ(n) ◦ xxx(2)
)

J2 =: σσσ

uuuR
T ≤ ggg, σσσN = 0, σσσN

(

u
R
N − ggg

)

= 0

u̇
R
T = 0 ⇒ |σσσT | ≤ F (0)|σσσN |

u̇
R
T 6= 0 ⇒ σσσT = −F

(

u̇
R
T

)

|σσσN | u̇
R

T

|u̇R

T
|



























on [0, tE ] × P,
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and initial conditions

u(x, 0) = u0(x), u̇(0, x) = u1(x).

�

The objective of this paper to emphasize dependency of the frictional coeffi-
cient with respect to the velocity of sliding, the difference between the adherence
friction coefficient (fix contact) and the slide coefficient (sliding contact), and to
give the variational form of the contact conditions with friction.

A correct physical interpretation of the static problem is possible only when it
is considered as an incremental step in a temporal discretisation of the dynamic
problem.

Acknowledgement. The author acknowledges support from the Ministry of
Education and Research under CEEX Grant No. 2-CEEX-06-11-96/19.09.2006.

REFERENCES

[1] Cocu, M., Unilateral contact problems with friction for an elastoviscoplastic material with internal state
variable, Proc. Contact Mechanics Int. Symp., Ed. A. Curnier; PPUR, 1992, 207-216

[2] Drabla, S. and Sofonea, M., Analysis of a Signorini problem with friction, IMA J. of App. Math., 63

(1999) 113-130
[3] Duvaut, G., Loi de frottement non locale, J. Mec. The. Appl. Special Issue, 1982, 73-78
[4] Eck, C., Existenz und Regularitat der Losungen fur Kontaktproblememit Reiburg, Dissertation, Univ.

Stuttgart, 1966
[5] Laursen, T. A., Computational contact impact mechanics. Fundamentals of modeling interfacial phenom-

ena in nonlinear finite element analysis, Springer-Verlag Berlin Heidelberg New York, 2003
[6] Oden, J. T. and Martins, J. A. C., Models and computational methods for dynamic friction phenomena,

Comp. Meth. Appl. Mech. Eng., 52 (1986), 527-634
[7] Pop, N., Aplicatii ale inecuatiilor variationale ı̂n probleme de contact cu frecare, Cub Press 22, 1998
[8] Signorini, A., Sopra alcune questioni di elastostatica, Atti. Soc. Ital. Progr. Sci., 1933
[9] Tabor, D., Friction - The present state of our understanding, J. Lubr. Technol., 103 (1981), 169-170

[10] Woo, K. L. and Thomas, T. R., Contact of rough surface: A review of experimental work, Wear, 58

(1980), 331-340

NORTH UNIVERSITY OF BAIA MARE

DEPARTMENT OF MATHEMATICS AND

COMPUTER SCIENCE

VICTORIEI 76, 430122 BAIA MARE, ROMÂNIA
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