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Volterra-Fredholm nonlinear systems with modified
argument via weakly Picard operators theory

CLAUDIA BACOŢIU

ABSTRACT.
In the present paper we consider the following system of nonlinear Volterra-Fredholm integral equa-
tions with modified argument:

u(t, x) = g(t, x, u(t, x), u(0, a))

+

∫ t

0

∫ b

a
K
(
t, x, s, y, u(s, y), u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds, u ∈ C(D, Rm).

For this system, we will prove: the existence of the solution, the data dependence of the solution,
comparison theorems and a lower and upper subsolutions theorem.

1. INTRODUCTION

In this paper we consider the following system of nonlinear integral equation
of Volterra-Fredholm (VF on short) type:

u(t, x) = g(t, x, u(t, x), u(0, a))(1.1)

+
∫ t

0

∫ b

a

K
(
t, x, s, y, u(s, y), u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds

for all (t, x) ∈ [0, T ]× [a, b] := D; u ∈ C(D,Rm), where b > a > 0 and T > 0.
Volterra-Fredholm integral equations often arise from the mathematical mod-
elling of the spreading, in space and time, of some contagious diseases, in the
theory of nonlinear parabolic boundary value problem and in many physical and
biological models.

Most results for VF equation establish numerical approximation of the solu-
tions, e.g. [8], [9], [24], [4], [11], [5], [7].

In [23], H. R. Thieme considered a model for the spatial spread of an epidemic
consisting of a nonlinear integral equation of Volterra-Fredholm type having an
unique solution. The author showed that this solution has a temporally asymp-
totic limit which describes the final state of the epidemic and is the minimal solu-
tion of another nonlinear integral equation.
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In [6], O. Diekmann described, derived and analysed a model of spatio-temporal
development of an epidemic. The model considered leads (see [14]) to the follow-
ing nonlinear integral equation of Volterra-Fredholm type:

(1.2) u(t, x) = g(t, x) +
∫ t

0

∫
Ω

g(u(t− τ, ξ))S0(ξ)A(τ, x, ξ)dξdτ

for all (t, x) ∈ [0,∞]× Ω, where Ω is a bounded domain in Rn.
In [14] B. G. Pachpatte considered the integral equation

(1.3) u(t, x) = g(t, x) +
∫ t

0

∫
Ω

g(t, x, s, y, u(s, y))dyds

for all (t, x) ∈ [0, T ] × Ω = D, where Ω is a bounded domain in Rn. Using
the contraction mapping principle, the author proved that, under appropriate
assumptions, (1.3) has a unique solution in a subset S of C(D,Rn). The result
was then applied to show the existence and uniqueness of solutions to certain
nonlinear parabolic differential equations and mixed Volterra-Fredholm integral
equations occurring in specific physical and biological problems (e.g. a reliable
treatment of the Diekmann’s model mentioned above is given).

In [10], D. Mangeron and L. E. Krivos̆ein obtained existence, uniqueness and
stability conditions for the solutions of a class of boundary problems for linear
and nonlinear heat equation with delay. Under certain conditions, this problem
is equivalent with the following nonlinear VF equation:

u(t, x) = n(t, x) +
∫ t

0

∫ a

0

[
G(x, ξ, t− α)g

(
ξ, α, u(ξ, α), u

(
ξ, α− r1(α)

))
+
∫ a

0

∫ α

0

K(ξ, α, s, y)g
(
s, y, u(s, y), u

(
s, y − r2(s)

))
dyds

]
dξdα,

where

n(t, x) =
∫ a

0

[
2
a

∞∑
i=1

e−(πia )2t · sinπix
a
· sinπiξ

a
· ϕ0(ξ)

]
dξ.

Applying the contraction mapping principle, an existence and uniqueness theo-
rem is obtained.

In [15], the following problem is considered:{
ut(t, x) = a2uxx(t, x) + g

(
u(t, x), u(x, [t])

)
u(x, 0) = ϕ(x) t ∈ R

where [t] means the integer part of t. Using integration by parts twice for the
equation above, under appropriate conditions, the problem is equivalent with a
VF equation and the successive approximation method is applied.

The purpose of the present paper is to give results concerning the following
problems related to system (1.1): the existence of the solution, the data depen-
dence of the solution, lower and upper subsolutions, comparison theorems.
Notations and basic notions

For any x, y ∈ Rm, x = (x1, x2, ..., xm), y = (y1, y2, ..., ym): x ≤ y ⇐⇒ xi ≤ yi
for all i ∈ {1, 2, ...,m};
|x| := (|x1|, |x2|, ..., |xm|);
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max{x, y} :=
(

max{x1, y1},max{x2, y2}, ...,max{xm, ym}
)
.

Definition 1.1. Let X be a nonempty set and d : X ×X → Rm such that:
(i) d(x, y) ≥ 0 ∈ Rm for all x, y ∈ X and d(x, y) = 0⇔ x = y;
(ii) d(x, y) = d(y, x) for any x, y ∈ X ;
(iii) for any x, y, z ∈ X , d(x, y) ≤ d(x, z) + d(z, y).

Then (X, d) is said to be a generalized a metric space (g.m.s. on short).

Let (X, d) be a metric space (generalized or not) and A : X → X an operator.

FA := {x ∈ X : A(x) = x};

A0 := 1X , An+1 := A ◦An for all n ∈ N.
and if (X, d,≤) is an ordered metric space (generalized or not):

(LF )A :=
{
x ∈ X : x ≤ A(x)

}
(UF )A :=

{
x ∈ X : x ≥ A(x)

}
Because the tool used in the present paper is the weakly Picard operators theory,
for the convenient of the reader, we present some results concerning this impor-
tant class of operators.

2. WEAKLY PICARD OPERATORS

Definition 2.2. (Rus [16]) Let (X, d) be a metric space (generalized or not). An
operator A : X → X is said to be:

(i) weakly Picard if for any x0 ∈ X we have: An(x0) → x∗0, where x∗0 ∈ FA
may depend on x0.

(ii) Picard if FA = {x∗} and for any x0 ∈ X we have: An(x0)→ x∗.
For a Po A, consider the mapping A∞ defined by:

A∞ : X → X, A∞(x) := lim
n→∞

An(x).

Notice that A∞(X) = FA. If A is a Po, then A∞(x) = x∗ for all x ∈ X , where x∗ is
the unique fixed point of A.

Example 2.1. Any operator satisfying the conditions of Perov fixed point theorem
(see [17]) is a Po.

The following characterization theorem of wPo represents a basic tool in the
study of this class of operators.

Theorem 2.1. (Rus [16]) Let (X, d) be a metric space (generalized or not) and
A : X → X an operator. Then A is wPo if and only if there exists a partition of X ,
X =

⋃
λ∈Λ

Xλ such that:

(i) for any λ ∈ Λ, we have Xλ ∈ I(A);
(ii) for any λ ∈ Λ, the restriction A|Xλ : Xλ → Xλ is Po.

Data dependence of the fixed points of wPo
In order to study the data dependence of the solutions, the following abstract

result (which generalizes a Rus theorem - see [17]) is required:
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Definition 2.3. Let (X, d) be a g.m.s. The generalized Pompeiu - Hausdorff func-
tional is

H : P (X)× P (X)→ Rm+ , H = (H1, H2, ...,Hm)

defined by:

Hi(Y, Z) := max

{
sup
y∈Y

inf
z∈Z

di(y, z), sup
z∈Z

inf
y∈Y

di(y, z)
}

for all i = 1,m.

for any Y, Z ∈ P (X).

Remark 2.1. With H defined above, (Pcl,b(X), H) is a g.m.s., where Pcl,b(X) =
{Y ⊂ X : Y nonempty, closed and bounded}.

Definition 2.4. [1] Let (X, d) be a g.m.s. An operator A : X → X is said to be
C-weakly Picard if it is wPo and there exists a matrix C ∈Mm(R+) such that

d (x,A∞(x)) ≤ Cd (x,A(x)) for all x ∈ X.

Furthermore, if A is Po, then it is said to be C-Picard

Example 2.2. [1] Let (X, d) be a complete g.m.s. and A : X → X an orbitally
continuous operator. If there exists M ∈ Mm(R+) which converges to zero such
that:

d
(
A2(x), A(x)

)
≤Md (A(x), x) for all x ∈ X,

then A is C-wPo with C = (I −M)−1

Theorem 2.2. [1] Let (X, d) be a complete g.m.s. and A,B : X → X two operators.
Assume that:
(i) there exist C,D ∈ Mm(R+) such that A is C-weakly Picard and B is D-weakly
Picard;
(ii) there exists η ∈ Rm+ such that

d (A(x), B(x)) ≤ η for all x ∈ X.

Then
H(FA, FB) ≤ max{Cη,Dη}.

WPo in ordered metric spaces

Lemma 2.1. (Rus [19]) Let (X, d,≤) be an ordered metric space (generalized or not)
and A : X → X such that:

(i) A is increasing; (ii) A is wPo.
Then A∞ is increasing.

Lemma 2.2. (Abstract comparison lemma; Rus [19]) Let (X, d,≤) be an ordered metric
space (generalized or not) and A,B,C : X → X such that:
(i) A ≤ B ≤ C; (ii) A,B,C are wPo; (iii) B is increasing.
If x, y, z ∈ X , with x ≤ y ≤ z, then

A∞(x) ≤ B∞(y) ≤ C∞(z).
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Lemma 2.3. (Gronwall abstract lemma; Rus [19])
Let (X, d,≤) be an ordered metric space (generalized or not) and A : X → X such that:
(i) A is increasing; (ii) A is Po; Let FA = {x∗A}.
Then:

(LF )A ≤ x∗A ≤ (UF )A.

Applications of wPo theory in the study of various differential or integral
equations may be found in: [21], [20], [19], [22], [13], [12], [2].

3. EXISTENCE THEOREM

Consider the system (1.1).

Theorem 3.3. Assume that the following conditions are satisfied:
(c1) g ∈ C(D×Rm×Rm,Rm),K ∈ C(D×D×Rm×Rm,Rm), ϕ1 ∈ C(D, [0, T ])

and ϕ2 ∈ C(D, [a, b]);
(c2) there exists a matrix Lg ∈Mm(R+) such that:

(3.4) |g(t, x, u, u)− g(t, x, v, v)| ≤ Lg (|u− v|+|u− v|)

for all (t, x) ∈ D and u, v, u, v ∈ Rm;
(c3) there exists a matrix LK ∈Mm(R+) such that:

(3.5) |K(t, x, s, y, u, u)−K(t, x, s, y, v, v)| ≤ LK (|u− v|+ |u− v|)

for all (t, x, s, y) ∈ D ×D and u, v, u, v ∈ Rm;
(c4) the matrix Lg converges to zero;
(c5) g(0, a,Λ,Λ) = Λ for all Λ ∈ Rm;
(c6) there exists τ > 0 such that the matrix L defined by:

(3.6) L := Lg +
b− a
τ

LK + max

{∫ t

0

∫ b

a

eτ [ϕ2(s,y)−t]dyds : t ∈ [0, T ]

}
LK

converges to zero. Then (1.1) has a non finite number of solutions in C(D,Rm).

Proof. Let the space C(D,Rm) be endowed with a Bielecki-Chebysev suitable
norm

‖u‖BC = (‖u1‖BC , ‖u2‖BC , ..., ‖um‖BC),

where

(3.7) ‖ui‖BC := sup{|ui(t, x)|e−τt : t ∈ [0, T ], x ∈ [a, b]}, τ > 0 i = 1,m.

Consider the operator A : C(D,Rm)→ C(D,Rm) defined by:

A(u)(t, x) : = g(t, x, u(t, x), u(0, a))(3.8)

+
∫ t

0

∫ b

a

K
(
t, x, s, y, u(s, y), u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds

for all u ∈ C(D,Rm) for all (t, x) ∈ D. For any Λ ∈ Rm, consider the sets:

(3.9) XΛ :=
{
u ∈ C(D,Rm) : u(0, a) = Λ

}
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It is easy to show that C(D,Rm) =
⋃

Λ∈Rm
XΛ is a partition of the space C(D,Rm)

and XΛ are closed subsets for all Λ ∈ Rm. Moreover, for all u ∈ XΛ, we have:

A(u)(0, a) = g(0, a,Λ,Λ) = Λ, i.e. A(u) ∈ XΛ

So, XΛ is invariant under A, for all Λ ∈ Rm.
We will show that, for all Λ ∈ Rm, A|XΛ : XΛ → XΛ is Po. Let u, v ∈ XΛ.

We have (see [3]):

‖A(u)−A(v)‖BC

≤

[
Lg +

b− a
τ

LK + max
{∫ t

0

∫ b

a

eτ [ϕ2(s,y)−t]dyds : t ∈ [0, T ]
}
LK

]
‖u− v‖BC

From (c6), by Example 2.1 it follows that the operator A : XΛ → XΛ is a Po.
We are in the conditions of Theorem 2.1, so A : C(D,Rm)→ C(D,Rm) is a wPo.
For all u0 ∈ C(D,Rm), A|Xu0(0,a) : Xu0(0,a) → Xu0(0,a) is Po, so there exists a
unique solution in Xu0(0,a). Let u∗(u0) be this solution; obviously it depends on
u0. �

Remark 3.2. Condition (c6) from Theorem 3.3 can be replaced by:

(c7) ϕ2(t, x) ≤ t for all (t, x) ∈ D

In this case the operator A given by (3.8) is a L-contraction, with

(3.10) L = Lg +
2(b− a)

τ
LK

and L converges to zero for a suitable chosen τ .

4. DATA DEPENDENCE OF THE SOLUTIONS

In order to prove the dependence of the solutions of (1.1) on g and K, let us
consider one more VF system:

u(t, x) = h(t, x, u(t, x), u(0, a))(4.11)

+
∫ t

0

∫ b

a

N
(
t, x, s, y, u(s, y), u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds,

for all (t, x) ∈ D; u ∈ C(D,Rm), with h ∈ C(D × Rm × Rm,Rm) and
N ∈ C(D ×D × Rm × Rm,Rm).

Theorem 4.4. Consider both systems (1.1) and (4.11) under the conditions (c1)-(c5)
and (c7), with L1 and L2 the matrices from (c7). Assume there exist η1, η2 ∈ Rm+ such
that:
|g(t, x, u, u)− h(t, x, u, u)| ≤ η1 for all (t, x, u, u) ∈ D × Rm × Rm;
|K(t, x, s, y, u, u)−N(t, x, s, y, u, u)| ≤ η2 for all (t, x, s, y, u, u) ∈ D×D×Rm×Rm.
If S1 and S2 are the sets of solutions of the systems in C(D,Rm), then:
a) S1 6= ∅ , S2 6= ∅ and

b) H(S1, S2) ≤ max
{

(I −L1)−1
[
η1 + T (b− a)η2

]
, (I −L2)−1

[
η1 + T (b− a)η2

]}
,
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where H = (H1, H2, ...,Hm) is the Pompeiu-Hausdorff functional

H : P
(
C(D,Rm)

)
× P

(
C(D,Rm)

)
→ Rm+ ,

defined by:

(4.12) H(U, V ) :=


max

{
sup
u∈U

inf
v∈V
‖u1 − v1‖BC , sup

v∈V
inf
u∈U
‖u1 − v1‖BC

}
...

max
{

sup
u∈U

inf
v∈V
‖um − vm‖BC , sup

v∈V
inf
u∈U
‖um − vm‖BC

}


for all U, V ∈ P
(
C(D,Rm)

)
.

Proof. Consider the operators A1, A2(D,Rm)→ C(D,Rm) defined by:

A1(u)(t, x) : = g(t, x, u(t, x), u(0, a))

+
∫ t

0

∫ b

a

K
(
t, x, s, y, u(s, y), u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds

and

A2(u)(t, x) : = h(t, x, u(t, x), u(0, a))

+
∫ t

0

∫ b

a

N
(
t, x, s, y, u(s, y), u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds.

The systems (1.1) and (4.11) are fulfil conditions of Theorem 3.3, so A1 and A2 are
wPo. Moreover, by Example 2.2, A1 is C1-wPo, with C1 =

(
I − L1

)−1
and A2 is

C2-wPo, with C2 =
(
I − L2

)−1
.

From hypotheses, it follows that for all u ∈ C(D,Rm) we have:

‖A1(u)−A2(u)‖BC ≤ η1 + T (b− a)η2

We can apply now Theorem 2.2 and the conclusion follows. �

5. DATA DEPENDENCE: MONOTONICITY

In this section we give two comparison theorems and a Gronwall type theo-
rem. Consider the system (1.1).

Theorem 5.5. Assume conditions (c1)-(c5) and (c7) be satisfied.
Moreover: g(t, x, ·.·) is increasing for all (t, x) ∈ D and K(t, x, s, y, ·, ·) is increasing

for all (t, x, s, y) ∈ D ×D.
If u and v are solutions of (1.1), with u(0, a) ≤ v(0, a), then:

u ≤ v

Proof. Consider the operator A : C(D,Rm) → C(D,Rm) given by (3.8), for all
(t, x) ∈ D. For any Λ ∈ Rm, consider the sets XΛ given by (3.9). We are in the
conditions of Theorem 3.3, so A|XΛ is Po for all Λ ∈ Rm, and A is wPo. From
hypotheses, A is increasing. Therefore, we are in the conditions of Lemma 2.1.

For any α ∈ Rm, consider the function α̃ given by:

α̃ : D → R; α̃(t, x) := α for all (t, x) ∈ D.
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Obviously, u ∈ FA. But u ∈ Xu(0,a), so u is the unique fixed point of A in Xu(0,a).

It is clear that ũ(0, a) ∈ Xu(0,a); from here it follows that A∞(ũ(0, a)) = u.

In the same way, A∞(ṽ(0, a)) = v. We have ũ(0, a) ≤ ṽ(0, a) and, applying
Lemma 2.1, we obtain

A∞(ũ(0, a)) ≤ A∞(ṽ(0, a)) so: u ≤ v. �

Consider now three VF systems:

u(t, x) = gi(t, x, u(t, x), u(0, a))(5.13)

+
∫ t

0

∫ b

a

Ki

(
t, x, s, y, u(s, y), u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds i = 1, 2, 3

for all (t, x) ∈ D; u ∈ C(D,Rm).

Theorem 5.6. Assume that the systems (5.13) are fulfil conditions (c1)-(c5) and (c7).
Moreover, assume that

(c8) g2(t, x, ·, ·) is increasing for all (t, x) ∈ D and K2(t, x, s, y, ·, ·) is increasing for
all (t, x, s, y) ∈ D ×D;

(c9) g1 ≤ g2 ≤ g3 and K1 ≤ K2 ≤ K3.
If u, v and w are solutions of (5.13) with u(0, a) ≤ v(0, a) ≤ w(0, a), then:

u ≤ v ≤ w.

Proof. By Theorem 3.3 Ai : C(D,Rm)→ C(D,Rm) given by:

Ai(u)(t, x) : = gi(t, x, u(t, x), u(0, a))

+
∫ t

0

∫ b

a

Ki

(
t, x, s, y, u(s, y), u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds, i = 1, 2, 3

are wPo.
From (c8), A2 is increasing, and from (c9) it follows that

A1 ≤ A2 ≤ A3

Therefore, the conditions of Lemma 2.2 are fulfilled.
As in the proof of Theorem 5.5, we have (by Lemma 2.2),

A∞1 (ũ(0, a)) ≤ A∞2 (ṽ(0, a)) ≤ A∞3 (w̃(0, a))

and
A∞1 (ũ(0, a)) = u, A∞2 (ṽ(0, a)) = v, A∞3 (w̃(0, a)) = w

It follows that u ≤ v ≤ w. �

For the system (1.1) we have the following Gronwall type theorem.

Theorem 5.7. Assume that the conditions (c1)-(c5) and (c7) are fulfilled. Let u be a
solution, v a lower subsolution and w an upper subsolution.
If v(0, a) ≤ u(0, a) ≤ w(0, a), then:

v ≤ u ≤ w
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Proof. By Theorem 3.3, A : C(D,Rm)→ C(D,Rm) given by (3.8) is Po. Because u

is solution of the system, it follows that A∞(ũ(0, a)) = u.

v(0, a) ≤ u(0, a) implies A∞(ṽ(0, a)) ≤ A∞(ũ(0, a)). But v is a lower subsolu-

tion so, applying Lemma 2.3, it follows that: v ≤ A∞(ṽ(0, a)).

We obtain: v ≤ A∞(ṽ(0, a)) ≤ A∞(ũ(0, a)) = u. In the same way it can be
showed that u ≤ w. �
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”SAMUEL BRASSAI” HIGH SCHOOL

21 DECEMBRIE 1989 NO 9
400105, CLUJ-NAPOCA, ROMANIA

E-mail address: Claudia.Bacotiu@clujnapoca.ro


	1. Introduction
	2. Weakly Picard operators
	3. Existence theorem
	4. Data dependence of the solutions
	5. Data dependence: monotonicity
	References

