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General constructive fixed point theorems for
Ćirić-type almost contractions in metric spaces

VASILE BERINDE

ABSTRACT.
Existence and existence and uniqueness results for fixed points of single-valued Ćirić almost contrac-
tions as well as convergence theorems for Picard iteration to these fixed points are proved. The Ćirić
type almost contraction condition appear to be one of the most general metrical condition for which
the set of fixed points is not a singleton but the fixed points can be approximated by means of Picard
iteration. Our results unify, generalize and extend most of the fundamental metrical fixed point the-
orems in literature (Banach, Kannan, Bianchini, Reich, Rus, Chatterjea, Rhoades, Hardy and Rogers,
Zamfirescu, Ćirić etc.) from the case of a unique fixed point to the case of non unique fixed points.

1. INTRODUCTION

The classical Banach’s contraction principle is one of the most useful results in
nonlinear analysis. In a metric space setting the full statement of the contraction
mapping principle is given by the next theorem.

Theorem B. Let (X, d) be a complete metric space and T : X → X a map satisfying

(1.1) d(Tx, Ty) ≤ a d(x, y) , for all x, y ∈ X ,

where 0 ≤ a < 1 is constant. Then:
(p1) T has a unique fixed point x∗ in X ;
(p2) The Picard iteration {xn}∞n=0 defined by

(1.2) xn+1 = Txn , n = 0, 1, 2, . . .

converges to x∗, for any x0 ∈ X .
(p3) The following estimate holds:

(1.3) d(xn+i−1, x
∗) ≤ ai

1− a
d(xn, xn−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . .

(p4) The rate of convergence of Picard iteration is given by

(1.4) d(xn, x
∗) ≤ a d(xn−1, x

∗) , n = 1, 2, . . .

Remark 1.1. A map satisfying (p1) and (p2) is said to be a Picard operator, see [37],
[38].
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Theorem B has many applications in solving nonlinear equations. Its merit
is not only to state the existence and uniqueness of the fixed point of the strict
contraction T but also to show that the fixed point can be approximated by means
of Picard iteration (1.2). Moreover, for this iterative method, the a priori

d(xn, x
∗) ≤ an

1− a
d(x0, x1) , n = 0, 1, 2, . . .

and a posteriori

d(xn, x
∗) ≤ a

1− a
d(xn, xn−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . .

error estimates are available, which are both obtained from the compact estimate
(1.3), suggested by a similar result in [26]. On the other hand, the inequality (1.4)
shows that the rate of convergence of Picard iteration is linear.

Despite these important features, Theorem B suffers from one drawback - the
contractive condition (1.1) forces T be continuous on X .

It was then natural to ask if there exist or not weaker contractive conditions
which do not imply the continuity of T . This was answered in the affirmative by
R. Kannan [21] in 1968, who proved a fixed point theorem which extends Theo-
rem B to mappings that need not be continuous on X (but are continuous at their
fixed point, see [33]), by considering instead of (1.1) the next contractive condi-

tion: there exists a constant b ∈

[
0,

1
2

)
such that

(1.5) d(Tx, Ty) ≤ b
[
d(x, Tx) + d(y, Ty)

]
, for all x, y ∈ X .

Following the Kannan’s theorem, a lot of papers were devoted to obtaining
fixed point or common fixed point theorems for various classes of contractive
type conditions that do not require the continuity of T , see, for example, [36],
[39], [6] and the references therein.

One of them, actually a sort of dual of Kannan fixed point theorem, due to
Chatterjea [11], is based on a condition similar to (1.5): there exists a constant

c ∈

[
0,

1
2

)
such that

(1.6) d(Tx, Ty) ≤ c
[
d(x, Ty) + d(y, Tx)

]
, for all x, y ∈ X.

For a presentation and comparison of such kind of fixed point theorems, see
[31], [32], [23] and [6].

On the other hand, in 1972, Zamfirescu [42] obtained a very interesting fixed
point theorem which gather together all three contractive conditions mentioned
above, i.e., conditions (1.1) of Banach, (1.5) of Kannan and (1.6) of Chatterjea,
in a rather unexpected way: if T is such that, for any x, y ∈ X , at least one of
the conditions (1.1), (1.5) and (1.6) holds, then T has a unique fixed point. Note
that considering conditions (1.1), (1.5) and (1.6) all together is not trivial since, as
shown later by Rhoades [31], see also [16], the contractive conditions (1.1), (1.5)
and (1.6), are independent to each other.

One of the most general contraction condition of this kind for which the map
satisfying it is still a Picard operator, has been obtained in 1974 by Ciric [15]: there
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exists 0 ≤ h < 1 such that for all x, y ∈ X ,

(1.7) d(Tx, Ty) ≤ h ·max {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} .

Remark 1.2. A mapping satisfying (1.7) is commonly called quasi contraction. It
is obvious that each of the conditions (1.1), (1.5) and (1.6) does imply (1.7). As
shown in [3], any quasi contraction with h < 1/2 is an almost contraction, too.

The Zamfirescu fixed point theorem [42] has been further extended in [5] to
almost contractions, a class of contractive type mappings which exhibits new fea-
tures with respect to the ones of the particular results incorporated, i.e., an almost
contraction does not have in general a unique fixed point, but the fixed point(s)
can be approximated by Picard iteration, as illustrated by the next theorem, see
also the papers [3], [4] and [6].

Theorem 1.1. ([5], Theorem 2.1) Let (X, d) be a complete metric space and T : X → X
an almost contraction, that is, a mapping for which there exist a constant δ ∈ [0, 1) and
some L ≥ 0 such that

(1.8) d(Tx, Ty) ≤ δ · d(x, y) + Ld(y, Tx) , for all x, y ∈ X.

Then
1) Fix (T ) = {x ∈ X : Tx = x} 6= ∅;
2) For any x0 ∈ X , the Picard iteration {xn}∞n=0 given by (1.2) converges to some

x∗ ∈ Fix (T );
3) The following estimate holds

(1.9) d(xn+i−1, x
∗) ≤ δi

1− δ
d(xn, xn−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . .

Note that in Theorem 1.1 we can have δ = 0, provided that, in this case, we
automatically consider L = 0. On the other hand, let us notice that any quasi-
contraction has a unique fixed point, while an almost contraction needs not have
a unique fixed point, see Examples 1-2.

The main aim of this paper is to extend Theorem 1.1 by combining the Ćirić
and almost contractive conditions. The fixed point theorems thus obtained are
indeed very important, are genuine generalizations, and unify and extend the
most important fixed point theorems of this kind in literature, amongst which we
mention the results due to Banach [2], Kannan [21], Chatterjea [11], Zamfirescu
[42], and Ćirić [15].

2. CONTRACTING ORBITAL MAPPINGS

In order to prove our main results in this paper we need the following concepts
and results from [15].

Definition 2.1. Let (X, d) be a metric space and T : X → X a self map. De-
note O(x, n) = {x, Tx, . . . , Tnx}, for any positive integer n. The set O(x,∞) =
{x, Tx, . . . , Tnx, . . . } is called the orbit of T at x. The metric space X is said to be
T -orbitally complete iff every Cauchy sequence which is contained in O(x,∞) for
some x ∈ X , converges in X .
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Clearly, any complete metric space is T -orbitally complete, but the reverse is
not true.

We can state now the Ćirić’s fixed point theorem for the sake of completness
and in view of its generalization.

Theorem C. (Ciric [15], Theorem 1) Let T be a quasi-contraction on a metric space
(X, d) and let X be T -orbitally complete metric space. Then
(a) T has a unique fixed point u in X ;
(b) lim

n→∞
Tnx = u, and

(c) d(Tnx, u) ≤ (hn/(1− h))d(x, Tx) for every x ∈ X .

In order to prove Theorem C, Ćirić used the following two lemmas which will
also be essential for us in proving our main results.

Lemma 2.1. (Ciric [15]) Let T be a quasi-contraction on X and let n be any positive
integer. Then, for each x ∈ X and all positive integers i and j, i, j ∈ {1, 2, . . . , n}
implies

d(T ix, T jx) ≤ h · δ[O(x, n)],
where for A ⊂ X , δ(A) = sup{d(a, b) : a, b ∈ A}.
Remark 2.3. Note that, in view of Lemma 2.1, for each n, there exist k ≤ n such
that

d(x, T kx) = δ[O(x, n)].

Lemma 2.2. (Ciric [15]) If T is a quasi-contraction on X , then the inequality

δ[O(x, n)] ≤ 1
1− h

d(x, T kx)

holds for all x ∈ X .

3. MAIN RESULTS

We state and prove our main results in a metric space setting, although they
could be easily stated and proved in the more general case of a T -orbitally com-
plete metric space.

Theorem 3.2. Let (X, d) be a complete metric space and let T : X → X be a Ćirić
almost contraction, that is, a mapping for which there exist a constant α ∈ [0, 1) and
some L ≥ 0 such that

(3.10) d(Tx, Ty) ≤ α ·M(x, y) + Ld(y, Tx) , for all x, y ∈ X ,

where

M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
.

Then
1) Fix (T ) = {x ∈ X : Tx = x} 6= ∅;
2) For any x0 = x ∈ X , the Picard iteration {xn}∞n=0 given by (1.2) converges to

some x∗ ∈ Fix (T );
3) The following estimate holds

(3.11) d(xn, x
∗) ≤ αn

(1− α)2
d(x, Tx) , n = 1, 2, . . .
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Proof. We shall prove that T has at least a fixed point in X . To this end, let x ∈ X
be arbitrary and let {xn}∞n=0 be the Picard iteration defined by (1.2) with x0 = x.
By taking x := xn−1, y := xn in (3.10), we obtain

d(xn, xn+1) = d(Txn−1, Txn) ≤ α ·M(xn−1, xn) ,

since d(xn, Txn−1) = 0. Then, for n ≥ 1, by Lemma 2.1 we have

d(Tnx, Tn+1x) = d(TTn−1x, T 2Tn−1x) ≤ α · δ[O(Tn−1x, 2)] .

Now by Remark 2.3, there exist a positive integer k1, 1 ≤ k1 ≤ 2 such that

δ[O(Tn−1x, 2)] = d(Tn−1x, T k1Tn−1x)

and therefore
d(xn, xn+1) ≤ αd(Tn−1x, T k1Tn−1x).

By applying once again Lemma 2.1, we have, for n ≥ 2,

d(Tn−1x, T k1Tn−1x) = d(TTn−2x, T k1+1Tn−2x) ≤

≤ α · δ[O(Tn−2x, k1 + 1)] ≤ α · δ[O(Tn−2x, 3)].
Therefore

d(Tnx, Tn+1x) ≤ α · δ[O(Tn−1x, 2)] ≤ α2 · δ[O(Tn−2x, 3)].

Continuing in this manner we get

(3.12) d(Tnx, Tn+1x) ≤ α · δ[O(Tn−1x, 2)] ≤ · · · ≤ αn · δ[O(x, n+ 1)].

On the other hand, by Lemma 2.2 we have that

δ[O(x, n+ 1)] ≤ δ[O(x,∞] ≤ 1
1− α

d(x, Tx)

which by (3.12) yields

(3.13) d(Tnx, Tn+1x) ≤ αn

1− α
d(x, Tx).

Now, using the triangle inequality, it is a simple task to derive from (3.13) the
following estimate

(3.14) d(Tnx, Tn+px) ≤ αn

1− α
· 1− α

p

1− α
d(x, Tx).

which, in view of the fact that 0 ≤ α < 1, shows that {xn}∞n=0 is a Cauchy se-
quence and hence it is convergent. Let us denote

x∗ = lim
n→∞

xn .

Then

d(x∗, Tx∗) ≤ d(x∗, xn+1) + d(xn+1, Tx
∗) = d(Tn+1x, x∗) + d(Tnx, Tx∗)

≤ d(Tn+1x, x∗) + αmax{d(Tnx, u), d(Tnx, Tn+1x), d(x∗, Tx∗),

d(Tnx, Tx∗), d(Tn+1x, x∗)}+ Ld(x∗, Txn)

≤ d(Tn+1x, x∗) + α
(
d(Tnx, u) + d(Tnx, Tn+1x) + d(x∗, Tx∗)

+d(Tn+1x, x∗)
)

+ Ld(x∗, Txn)
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from which we obtain

d(x∗, Tx∗) ≤ 1
1− α

[
(1 + α)d(Tn+1x, x∗)(3.15)

+ (α+ L)d(x∗, Txn) + αd(Tnx, Tn+1x)
]
.

Letting n→∞ in (3.15) we obtain

d(x∗, Tx∗) = 0

i.e. x∗ is a fixed point of T .
The estimate (3.11) is obtained from (3.14) by letting p→∞. �

Remark 3.4. 1) Note that, like in the case of Theorem 1.1, in Theorem 3.2 we
can have α = 0 provided that, in this case, we automatically consider L = 0.
This ensure the fact that Theorem 3.2 includes Ćirić fixed point theorem in its
complete form as a particular case. As we already mentioned, Theorem 3.2 is a
significant extension of Theorem B, Kannan’s fixed point theorem, Chatterjea’s
fixed point theorem, Zamfirescu’s fixed point theorem, as well as of Theorem 1.1
and of many other related results based on related similar contractive conditions.

2) Note that, although the first four fixed point theorems mentioned at 1) actu-
ally ensures the uniqueness of the fixed point, the Ćirić almost contractions need
not have a unique fixed point, as shown by Example 1 below.

3) Recall, see [37], [38], that an operator T : X → X is said to be a weakly Pi-
card operator if the sequence {Tnx0}∞n=0 converges for all x0 ∈ X and the limits
are fixed points of T . So, Theorem 3.2 provides a very large class of weakly Pi-
card operators. Note also that the fixed point x∗ attained by the Picard iteration
depends on the initial guess x0 ∈ X . However, the a priori estimate (3.11) we
obtained in Theorem 3.2 is not so good as (1.3) or the estimate given in Theorem
C.

It is possible to force the uniqueness of the fixed point of a Ćirić almost contrac-
tion, like in the case of simple almost contractions [5], by imposing an additional
contractive condition, quite similar to (3.10), as shown by the next theorem.

Theorem 3.3. Let (X, d) be a complete metric space and let T : X → X be a Ćirić
almost contraction for which there exist θ ∈ [0, 1) and some L1 ≥ 0 such that

(3.16) d(Tx, Ty) ≤ θ · d(x, y) + L1 · d(x, Tx) , for all x, y ∈ X .

Then
1) T has a unique fixed point, i.e. Fix (T ) = {x∗};
2) The Picard iteration {xn}∞n=0 given by (1.2) converges to x∗, for any x0 ∈ X ;
3) The a priori error estimate (3.11) holds.
4) The rate of convergence of the Picard iteration is given by

(3.17) d(xn, x
∗) ≤ θ d(xn−1, x

∗) , n = 1, 2, . . .

Proof. Assume T has two distinct fixed points x∗, y∗ ∈ X . Then by (3.16), with
x := x∗, y := y∗ we get

d(x∗, y∗) ≤ θ · d(x∗, y∗)⇐⇒ (1− θ) d(x∗, y∗) ≤ 0 ,

so contradicting d(x∗, y∗) > 0.
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Now letting y := xn, x := x∗ in (3.16), we obtain the estimate (3.17).
The rest of proof follows by Theorem 3.2. �

A stronger but simpler contractive condition that ensures the uniqueness of
the fixed point and which actually unifies (3.10) and (3.16), has been very recently
obtained by Babu et al. [1]. We state the fixed point theorem corresponding to this
uniqueness condition.

Theorem 3.4. Let (X, d) be a complete metric space and let T : X → X be a mapping
for which there exist α ∈ [0, 1) and some L ≥ 0 such that for all x, y ∈ X
(3.18) d(Tx, Ty) ≤ α ·M(x, y) + L min {d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} ,
where

M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
.

Then
1) T has a unique fixed point, i.e., Fix (T ) = {x∗};
2) The Picard iteration {xn}∞n=0 given by (1.2) converges to x∗, for any x0 ∈ X ;
3) The a priori error estimate (3.11) holds.

4. PARTICULAR CASES, EXAMPLES AND CONCLUDING REMARKS

1. If in Theorems 3.2-3.4 we have L = L1 = 0, then we obtain the well known
Ćirić’s fixed point theorem for single valued mappings given in [15]. As previ-
ously mentioned in this paper, the Ćirić’s contractive condition is one of the most
general metrical condition that ensures a unique fixed point that can be approxi-
mated by means of Picard iteration. Our contractive condition (3.10), which does
not assume a unique fixed point but still ensures that the fixed points could be
approximated by means of Picard iteration, is very general, indeed.

2. If

max {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} = d(x, y),

for all x, y ∈ X , then by Theorem 3.2 we obtain Theorem 2.1 in [5], while by
Theorem 3.3 we obtain Theorem 2.2 in the same paper [5]. Under the same as-
sumptions, from Theorem 3.4 we obtain Theorem 2.3 in [1].

3. As the contractive conditions (1), (4), (5), (7), (9), (11), (12), (14), (18) and
(19) in Rhoades’ classification [31] do imply the Ćirić contractive condition, num-
bered in [31] as condition (24), our Theorems 3.2-3.4 extend and unify all the
corresponding fixed point theorems established for these contractive conditions.

4. Let us now consider the Meszaros’ alternative classification in various pa-
pers [23], in which Banach’s contractive condition (1.8) is denoted by (D.1.1), Kan-
nan’s contractive condition (1.5) is (D.2.1), Bianchini’s contractive condition [7]
is (D.3.1), Reich-Rus contractive condition [29]-[30], [35] is (D.4.1), Chatterjea’s
contractive condition (1.6) is (D.6.1), Hardy and Rogers’s contractive condition
[20] is (D.10.1), Zamfirescu’s contractive condition [42] is (D.11.1), while Ćirić’s
condition (1.7) is numbered (D.13.1). Note that all these conditions assume coeffi-
cients less than 1 for each of the displacements d(x, y), d(x, Tx), d(y, Ty), d(x, Ty),
d(y, Tx), while our contractive conditions (1.8) and (3.10) allow the coefficient of
d(y, Tx), L ≥ 0, to be arbitrary large.
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As condition (1.8) is obtained from (1.1) by adding the extra term Ld(y, Tx),
while (3.10) is obtained from (1.7) in the same manner, we can obtain similar gen-
eral contractive conditions corresponding to the remaining 11 contractive con-
ditions in Meszaros’ classification. The challenging problem would be now to
compare all these new contractive conditions, which do not ensure uniqueness of
the fixed point, in the same way as the original corresponding conditions were
compared in the papers [31], [32], [23], [16], [22].

5. Note that we can extend further Theorems 3.2-3.4, similarly to the results
obtained in [15], by considering a certain iterate T k instead of T or by consider-
ing a multi-valued mapping. All these will be approached in future works. We
note, in passing, that our results in this paper open new directions for theoreti-
cal investigations as well as for applications of fixed point theorems that extend
the contraction mapping principle. For some recent results that consider such
generalizations and applications of the contraction mapping principle we refer to
[8]-[10], [12], [17]-[19], [24]-[26], [27] and [34].

We end this paper with two examples that have an illustrative purpose. The
first one presents a Ćirić type almost contraction possessing exactly two fixed
points, while the second example shows a mapping with a reacher set of fixed
points, i.e., the entire interval [0, 1]. As the mapping in the second example is also
nonexpansive, this shows the close connection between Ćirić type almost con-
tractions and nonexpansive mappings. These examples also give an idea on how
general and important our contractive condition (3.10) is. Indeed, this condition
is general enough to allow the set of fixed points to contain more than one fixed
point and, simultaneously, sharp enough to ensure that any fixed point may be
effectively constructed by using the simplest fixed point iterative method, i.e., the
Picard iteration.

Example 4.1. Let [0, 1] be the unit interval with the usual norm and let T : [0, 1]→

[0, 1] be given by Tx =
1
2

for x ∈ [0, 2/3) and Tx = 1, for x ∈ [2/3, 1].

As T has two fixed points, that is, Fix (T ) =
{

1
2
, 1
}

, it does not satisfy neither

Ćirić’s condition (1.7), nor Banach, Kannan, Chatterjea and Zamfirescu contrac-
tive conditions but T satisfies the contraction condition (1.8), and therefore the
contractive condition (3.10), too. Indeed, for x, y ∈ [0, 2/3) or x, y ∈ [2/3, 1], (1.8)
is obvious. For x ∈ [0, 2/3) and y ∈ [2/3, 1] or y ∈ [0, 2/3) and x ∈ [2/3, 1] we
have d(Tx, Ty) = 1/2 and d(y, Tx) = |y − 1/2| ∈ [1/6, 1/2], in the first case, and
d(y, Tx) = |y − 1| ∈ [1/3, 1], in the second case, which shows that it suffices to
take L = 3 in order to ensure that (1.8) holds for all x, y ∈ X .

Example 4.2. Let [0, 1] be the unit interval with the usual norm and let T : [0, 1]→
[0, 1] be the identity map, i.e., Tx = x, for all x ∈ [0, 1]. Then

1) T does not satisfy the Ciric’s contractive condition (1.7), since M(x, y) =
|x− y| and

|x− y| > h · |x− y| , for all x 6= y and 0 < h < 1 .
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2) T satisfies condition (1.8) with δ ∈ (0, 1) arbitrary and L ≥ 1 − δ. Indeed
condition (1.8) is equivalent to

|x− y| ≤ δ|x− y|+ L · |y − x|

which is true for all x, y ∈ [0, 1] if we take δ ∈ (0, 1) arbitrary and L ≥ 1 − δ. It is
easy to check that T also satisfy the contractive condition (3.10)

3) The set of fixed points of T is the entire interval [0, 1]. i.e., Fix (T ) = [0, 1].
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