CARPATHIAN J. MATH. **24** (2008), No. 2, 37 - 44

Some results in *L*-fuzzy metric spaces

HAKAN EFE

ABSTRACT.

The purpose of this paper to prove Baire's theorem and uniform limit theorem for \mathcal{L} -fuzzy metric spaces. Also, we show every separable \mathcal{L} -fuzzy metric spaces are second countable and subspace of a separable \mathcal{L} -fuzzy metric space is separable.

1. INTRODUCTION

Since the introduction of the concept of fuzzy set by Zadeh [17] in 1965, many authors have introduced the concept of fuzzy metric space in different ways [2, 5, 9, 11, 12]. George and Veeramani [6, 7] modified the concept of fuzzy metric space introduced by Kromosil and Michalek [12] and defined a Hausdorff topology on this fuzzy metric space. Using to idea of \mathcal{L} -fuzzy sets [8], Saadati et al. [15] introduced the notion of \mathcal{L} -fuzzy metric space due to George and Veeramani [6] and intuitionistic fuzzy metric space due to Park and Saadati [13, 14]. Recently, Saadati [16] proved some known results of metric spaces including Uniform continuity theorem and Ascoli–Arzela theorem for \mathcal{L} -fuzzy metric space. He also proved that every \mathcal{L} -fuzzy metric space has a countably locally finite basis and used this result to conclude that every \mathcal{L} -fuzzy metric space is metrizable.

In this paper we show that every \mathcal{L} -fuzzy metric space is Hausdorff. We also show every compact subset of an \mathcal{L} -fuzzy metric space is $\mathcal{L}F$ -strongly bounded. Then we prove Baire's theorem for \mathcal{L} -fuzzy metric spaces. Furthermore we show that separable \mathcal{L} -fuzzy metric spaces are second countable and subspace of a separable \mathcal{L} -fuzzy metric space is separable. Finally, we prove uniform limit theorem for \mathcal{L} -fuzzy metric spaces.

2. PRELIMINARIES

Definition 2.1. [7] Let $\mathcal{L} = (L, \leq_L)$ be a complete lattice, and U a non-empty set called universe. An \mathcal{L} -fuzzy set \mathcal{A} on U is defined as a mapping $\mathcal{A} : U \to L$. For each u in $U, \mathcal{A}(u)$ represents the degree (in L) to which u satisfies \mathcal{A} .

Lemma 2.1. [4] Consider the set L^* and operation \leq_{L^*} defined by $L^* = \{(x_1, x_2) : (x_1, x_2) \in [0, 1]^2 \text{ and } x_1 + x_2 \leq 1\}, (x_1, x_2) \leq_{L^*} (y_1, y_2) \iff x_1 \leq y_1 \text{ and } x_2 \geq y_2,$ for every $(x_1, x_2), (y_1, y_2) \in L^*$. Then (L^*, \leq_{L^*}) is a complete lattice.

Received: 14.02.2008; In revised form: 21.04.2008; Accepted: 30.09.2008

²⁰⁰⁰ Mathematics Subject Classification. 06B23, 46S40.

Key words and phrases. *L-fuzzy metric space, separable metric space, compactness, boundedness.*

Definition 2.2. [1] An intuitionistic fuzzy set $A_{\zeta,\eta}$ on a universe U is an object $A_{\zeta,\eta} = \{(\zeta_A(u), \eta_A(u)) : u \in U\}$, where, for all $u \in U$, $\zeta_A(u) \in [0, 1]$ and $\eta_A(u) \in [0, 1]$ are called the membership degree and the non-membership degree, respectively, of u in $A_{\zeta,\eta}$, and furthermore satisfy $\zeta_A(u) + \eta_A(u) \leq 1$.

Classically, a triangular norm T on $([0,1], \leq)$ is defined as an increasing, commutative, associative mapping $T : [0,1]^2 \rightarrow [0,1]$ satisfying T(x,1) = x, for all $x \in [0,1]$. These definitions can be straightforwardly extended to any lattice $\mathcal{L} = (L, \leq_L)$. Define first $0_{\mathcal{L}} = \inf L$ and $1_{\mathcal{L}} = \sup L$.

Definition 2.3. A **triangular norm** (*t***-norm**) on \mathcal{L} is a mapping $\mathcal{T} : L^2 \to L$ satisfying the following conditions:

- (i) $(\forall x \in L)(\mathcal{T}(x, 1_{\mathcal{L}}) = x)$; (boundary condition)
- (ii) $(\forall (x,y) \in L^2)(\mathcal{T}(x,y) = \mathcal{T}(y,x); \text{ (commutativity)})$
- (iii) $(\forall (x, y, z) \in L^3)(\mathcal{T}(x, \mathcal{T}(y, z)) = \mathcal{T}(\mathcal{T}(x, y), z)$; (associativity)
- (iv) $(\forall (x, x', y, y') \in L^4)(x \leq_L x' \text{ and } y \leq_L y' \Rightarrow \mathcal{T}(x, y) \leq_L \mathcal{T}(x', y'))$ (monotonicity).

A *t*-norm \mathcal{T} on \mathcal{L} is said to be **continuous** if for any $x, y \in \mathcal{L}$ and any sequences $\{x_n\}$ and $\{y_n\}$ which converge to x and y we have $\lim_n \mathcal{T}(x_n, y_n) = \mathcal{T}(x, y)$.

For example, $T(x, y) = \min(x, y)$ and T(x, y) = xy are two continuous *t*-norms on [0, 1].

A *t*-norm can also be defined recursively as an (n + 1)-ary operation $(n \in \mathbb{N})$ by $\mathcal{T}^1 = \mathcal{T}$ and

$$\mathcal{T}^{n}(x_{1},...,x_{n+1}) = \mathcal{T}(\mathcal{T}^{n-1}(x_{1},...,x_{n}),x_{n+1})$$

for $n \geq 2$ and $x_i \in L$.

Definition 2.4. [3] A *t*-norm \mathcal{T} on L^* is called *t*-representable if and only if there exist a *t*-norm T and a *t*-conorm S on [0,1] such that, for all $x = (x_1, x_2)$, $y = (y_1, y_2) \in L^*$,

$$\mathcal{T}(x,y) = (T(x_1,y_1), S(x_2,y_2)).$$

Definition 2.5. A **negation** on \mathcal{L} is any decreasing mapping $\mathcal{N} : L \to L$ satisfying $\mathcal{N}(0_{\mathcal{L}}) = 1_{\mathcal{L}}$ and $\mathcal{N}(1_{\mathcal{L}}) = 0_{\mathcal{L}}$. If $\mathcal{N}(\mathcal{N}(x)) = x$, for $x \in L$, then \mathcal{N} is called an involutive negation.

The negation N_s on $([0,1], \leq)$ defined as, for all $x \in [0,1]$, $N_s(x) = 1 - x$, is called the standard negation on $([0,1], \leq)$. We show $(N_s(x), x) = \mathcal{N}_s(x)$.

Definition 2.6. [15] The 3-tuple $(X, \mathcal{M}, \mathcal{T})$ is said to be an \mathcal{L} -fuzzy metric space if X is an arbitrary (non-empty) set, \mathcal{T} is a continuous t-norm on \mathcal{L} and \mathcal{M} is an \mathcal{L} -fuzzy set on $X^2 \times (0, +\infty)$ satisfying the following conditions for every x, y, z in X and t, s in $(0, +\infty)$:

- (a) $\mathcal{M}(x, y, t) >_L 0_{\mathcal{L}}$;
- (b) $\mathcal{M}(x, y, t) = 1_{\mathcal{L}}$ for all t > 0 if and only if x = y;
- (c) $\mathcal{M}(x, y, t) = \mathcal{M}(y, x, t);$
- (d) $\mathcal{T}(\mathcal{M}(x, y, t), \mathcal{M}(y, z, s)) \leq_L \mathcal{M}(x, z, t+s);$
- (e) $\mathcal{M}(x, y, \cdot) : (0, +\infty) \to L$ is continuous.

In this case \mathcal{M} is called an \mathcal{L} -fuzzy metric. If $\mathcal{M} = \mathcal{M}_{M,N}$ is an intuitionistic fuzzy set (see Definition 2.2) then the 3-tuple $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is said to be an intuitionistic fuzzy metric space.

Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. For $t \in (0, +\infty)$, we define the open ball B(x, r, t) with center $x \in X$ and radius $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$, as

$$B(x,r,t) = \{ y \in X : \mathcal{M}(x,y,t) >_L \mathcal{N}(r) \}.$$

A subset $A \subseteq X$ is called open if for each $x \in A$, there exist t > 0 and $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ such that $B(x, r, t) \subseteq A$. Let $\tau_{\mathcal{M}}$ denote the family of all open subsets of X. Then $\tau_{\mathcal{M}}$ is called the \mathcal{L} -fuzzy topology induced by the \mathcal{L} -fuzzy metric \mathcal{M} .

Example 2.1. Let (X,d) be a metric space. Define $\mathcal{T}(a,b) = (a_1b_1, \min(a_2 + b_2, 1))$ for all $a = (a_1, a_2)$ and $b = (b_1, b_2)$ in L^* and let M and N be fuzzy sets on $X^2 \times (0, +\infty)$ defined as follows:

$$\mathcal{M}_{M,N}(x,y,t) = (M(x,y,t), N(x,y,t)) = \left(\frac{ht^n}{ht^n + md(x,y)}, \frac{md(x,y)}{ht^n + md(x,y)}\right)$$

for all $t, h, m, n \in \mathbb{R}^+$. Then $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is an intuitionistic fuzzy metric space. If h = m = n = 1 then $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is a standard intuitionistic fuzzy metric space. Also, if we define

$$\mathcal{M}_{M,N}(x,y,t) = \left(M(x,y,t), N(x,y,t)\right) = \left(\frac{t}{t + md(x,y)}, \frac{d(x,y)}{t + d(x,y)}\right),$$

where m > 1. Then $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is an intuitionistic fuzzy metric space in which $\mathcal{M}_{M,N}(x, x, t) = 1_{L^*}$ and $\mathcal{M}_{M,N}(x, y, t) <_{L^*} 1_{L^*}$ for $x \neq y$.

Example 2.2. Let $X = \mathbb{N}$. Define $\mathcal{T}(a, b) = (\max(0, a_1+b_1-1), a_2+b_2-a_2b_2)$ for all $a = (a_1, a_2)$ and $b = (b_1, b_2)$ in L^* and let M and N be fuzzy sets on $X^2 \times (0, +\infty)$ defined as follows:

$$\mathcal{M}_{M,N}(x,y,t) = (M(x,y,t), N(x,y,t)) = \begin{cases} \left(\frac{x}{y}, \frac{y-x}{y}\right) & \text{if } x \le y, \\ \left(\frac{y}{x}, \frac{x-y}{y}\right) & \text{if } y \le x, \end{cases}$$

for all $x, y \in X$ and t > 0. Then $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is an intuitionistic fuzzy metric space.

Lemma 2.2. Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. Then, $\mathcal{M}(x, y, t)$ is nondecreasing with respect to t, for all $x, y \in X$.

Definition 2.7. [16] A sequence $\{x_n\}$ in an \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ is called a **Cauchy sequence**, if for each $\varepsilon \in L \setminus \{0_{\mathcal{L}}\}$ and t > 0, there exists $n_0 \in \mathbb{N}$ such that for all $m \ge n \ge n_0$ $(n \ge m \ge n_0)$

$$\mathcal{M}(x_m, x_n, t) >_L \mathcal{N}(\varepsilon).$$

The sequence $\{x_n\}$ is said to be **convergent** to $x \in X$ in the \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ (denoted by $x_n \xrightarrow{\mathcal{M}} x$) if $\mathcal{M}(x_n, x, t) = \mathcal{M}(x, x_n, t) \to 1_{\mathcal{L}}$ as $n \to \infty$ for every t > 0. An \mathcal{L} -fuzzy metric space is said to be **complete** iff every Cauchy sequence is convergent.

Henceforth, we assume that \mathcal{T} is a continuous *t*-norm on lattice \mathcal{L} such that for every $\mu \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$, there is a $\lambda \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ such that

$$\mathcal{T}^{n-1}(\mathcal{N}(\lambda), ..., \mathcal{N}(\lambda)) >_L \mathcal{N}(\mu).$$

3. MAIN RESULTS

Theorem 3.1. Every *L*-fuzzy metric space is Hausdorff.

Proof. Let $(X, \mathcal{M}, \mathcal{T})$ be the given \mathcal{L} -fuzzy metric space. Let x, y be two distinct points of X. Then $\mathcal{M}(x, y, t) \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$. Let $\mathcal{M}(x, y, t) = \mathcal{N}(r), r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$. Then for each $r_0, r_0 <_L r$, we can find a $r_1 \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ such that $\mathcal{T}(\mathcal{N}(r_1), \mathcal{N}(r_1)) >_L \mathcal{N}(r_0)$. Now consider the open balls $B(x, r_1, t/2)$ and $B(y, r_1, t/2)$. Then $B(x, r_1, t/2) \cap B(y, r_1, t/2) = \emptyset$. For if there exists $z \in B(x, r_1, t/2) \cap B(y, r_1, t/2)$ then,

$$\mathcal{N}(r) = \mathcal{M}(x, y, t) \geq_L \mathcal{T}(\mathcal{M}(x, z, t/2), \mathcal{M}(z, y, t/2))$$

$$\geq {}_L \mathcal{T}(\mathcal{N}(r_1), \mathcal{N}(r_1)) >_L \mathcal{N}(r_0) >_L \mathcal{N}(r),$$

which is a contradiction.

Definition 3.8. [10] Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space and $A \subseteq X$. The \mathcal{L} -fuzzy diameter of a set A is defined by

$$\delta_A = \sup_{t>0} \inf_{x,y\in A} \sup_{\varepsilon < t} \mathcal{M}(x,y,\varepsilon).$$

If $\delta_A = 1_{\mathcal{L}}$ then we say that the set *A* is $\mathcal{L}F$ -strongly bounded.

Lemma 3.3. [10] The set $A \subseteq X$ is $\mathcal{L}F$ -strongly bounded if and only if for arbitrary negation $\mathcal{N}(r)$ and each $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ there exists t > 0 such that $\mathcal{M}(x, y, t) >_L \mathcal{N}(r)$ for all $x, y \in A$.

Theorem 3.2. Every compact subset A of a \mathcal{L} -fuzzy metric space X is $\mathcal{L}F$ -strongly bounded.

Proof. Let *A* be a compact subset of *X*. Fix t > 0 and $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$. Consider an open cover $\{B(x, r, t) : x \in A\}$ of *A*. Since *A* is compact, there exist $x_1, x_2, ..., x_n \in A$ such that $A \subseteq \bigcup_{i=1}^n B(x_i, r, t)$. Let $x, y \in A$. Then $x \in B(x_i, r, t)$ and $y \in B(x_j, r, t)$ for some i, j. Thus we have $\mathcal{M}(x, x_i, t) >_L \mathcal{N}(r)$ and $\mathcal{M}(y, x_j, t) >_L \mathcal{N}(r)$. Now let $\alpha = \min\{\mathcal{M}(x_i, x_j, t) : 1 \leq i, j \leq n\}$. Then $\alpha \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ and there exists $s \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ such that $\mathcal{T}^2(\mathcal{N}(r), \mathcal{N}(r), \alpha) >_L \mathcal{N}(s)$. Therefore,

$$\mathcal{M}(x,y,t) \geq {}_{L}\mathcal{T}^{2}\left(\mathcal{M}\left(x,x_{i},\frac{t}{3}\right), \mathcal{M}\left(x_{i},x_{j},\frac{t}{3}\right), \mathcal{M}\left(x_{j},y,\frac{t}{3}\right)\right)$$
$$\geq {}_{L}\mathcal{T}^{2}(\mathcal{N}(r),\mathcal{N}(r),\alpha) >_{L} \mathcal{N}(s)$$

for all $x, y \in A$. Hence A is $\mathcal{L}F$ -strongly bounded.

Remark 3.1. In an \mathcal{L} -fuzzy metric space every compact set closed and $\mathcal{L}F$ -strongly bounded.

Lemma 3.4. Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. If t > 0 and $r, s \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ such that $\mathcal{T}(\mathcal{N}(s), \mathcal{N}(s)) \geq_L \mathcal{N}(r)$, then $\overline{B(x, s, t/2)} \subset B(x, r, t)$.

Proof. Let $y \in \overline{B(x, s, t/2)}$ and let B(y, s, t/2) be an open ball with center $x \in X$ and radius $s \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$. Since $B(y, s, t/2) \cap B(y, s, t/2) \neq \emptyset$, there exists $z \in B(y, s, t/2) \cap B(x, s, t/2)$. Then we have

$$\mathcal{M}(x, y, t) \geq {}_{L}\mathcal{T}\left(\mathcal{M}\left(x, z, \frac{t}{2}\right), \mathcal{M}\left(y, z, \frac{t}{2}\right)\right)$$
$$> {}_{L}\mathcal{T}(\mathcal{N}(s), \mathcal{N}(s)) \geq_{L} \mathcal{N}(r).$$

Hence $z \in B(x, r, t)$ and thus $\overline{B(x, s, t/2)} \subset B(x, r, t)$.

Theorem 3.3. A subset A of an \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ is nowhere dense if and only if every nonempty open set in X contain an open ball whose closure is disjoint from A.

Proof. Let *U* be a nonempty open subset of *X*. Then there exists a nonempty open set *V* such that $V \subset U$ and $V \cap \overline{A} \neq \emptyset$. Let $x \in V$. Then there exist t > 0 and $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ such that $B(x, r, t) \subset V$. Choose $s \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ such that $\mathcal{T}(\mathcal{N}(s), \mathcal{N}(s)) \geq_L \mathcal{N}(r)$. By Lemma 3.4 $\overline{B(x, s, t/2)} \subset B(x, r, t)$. Thus $B(x, s, t/2) \subset U$ and $\overline{B(x, s, t/2)} \cap A = \emptyset$.

Conversely, suppose *A* is not nowhere dense. Then $int(\overline{A}) \neq \emptyset$, so there exists a nonempty set *U* such that $U \subset \overline{A}$. Let B(x, r, t) be an open ball such that $B(x, r, t) \subset U$. Then $\overline{B(x, r, t)} \cap A \neq \emptyset$. This is a contradiction. \Box

Theorem 3.4. (Baire's Theorem) Let $\{U_n : n \in \mathbb{N}\}$ be a sequence of dense open subsets of a complete \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$. Then $\cap_{n \in \mathbb{N}} U_n$ is also dense in X.

Proof. Let *V* be a nonempty open set of *X*. Since U_1 is dense in *X*, $V \cap U_1 \neq \emptyset$. Let $x_1 \in V \cap U_1$. Since $V \cap U_1$ is open, there exist $r_1 \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ and $t_1 > 0$ such that $B(x_1, r_1, t_1) \subset V \cap U_1$. Choose $r'_1 <_L r_1$ and $t'_1 = \min\{t_1, 1\}$ such that $\overline{B(x_1, r'_1, t'_1)} \subset V \cap U_1$. Since U_2 is dense in *X*, $B(x_1, r'_1, t'_1) \cap U_2 \neq \emptyset$. Let $x_2 \in B(x_1, r'_1, t'_1) \cap U_2$. Since $B(x_1, r'_1, t'_1) \cap U_2$ is open, there exist $r_2 \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ and $t_2 > 0$ such that $B(x_2, r_2, t_2) \subset B(x_1, r'_1, t'_1) \cap U_2$. Choose $r'_2 <_L r_2$ and $t'_2 = \min\{t_2, 1/2\}$ such that $\overline{B(x_2, r'_2, t'_2)} \subset B(x_1, r'_1, t'_1) \cap U_2$. Continuing in this manner we obtain a sequence $\{x_n\}$ in *X* and a sequence $\{t'_n\}$ such that $0 < t'_n < \frac{1}{n}$ and $\overline{B(x_n, r'_n, t'_n)} \subset B(x_{n-1}, r'_{n-1}, t'_{n-1}) \cap U_n$ in which $r'_n \longrightarrow 0_{\mathcal{L}}$.

and $\overline{B(x_n, r'_n, t'_n)} \subset B(x_{n-1}, r'_{n-1}, t'_{n-1}) \cap U_n$ in which $r'_n \longrightarrow 0_{\mathcal{L}}$. Now we claim that $\{x_n\}$ is a Cauchy sequence. For a given t > 0 and $\varepsilon \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$, choose $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < t$ and $\frac{1}{n_0} <_L \varepsilon$. Then for $n \ge n_0$ and $m \ge n$,

$$\mathcal{M}(x_n, x_m, t) \ge_L \mathcal{M}\left(x_n, x_m, \frac{1}{n}\right) \ge_L \mathcal{N}(\frac{1}{n}) >_L \mathcal{N}(\varepsilon).$$

Therefore, $\{x_n\}$ is a Cauchy sequence. Since X is complete, there exists $x \in X$ such that $x_n \longrightarrow x$. Since $x_k \in B(x_n, r'_n, t'_n)$ for $k \ge n$, we obtain $x \in \overline{B(x_n, r'_n, t'_n)}$. Hence $x \in \overline{B(x_n, r'_n, t'_n)} \subset B(x_{n-1}, r'_{n-1}, t'_{n-1}) \cap U_n$ for all $n \in \mathbb{N}$. Therefore $V \cap (\cap_{n \in \mathbb{N}} U_n) \neq \emptyset$. Hence $\cap_{n \in \mathbb{N}} U_n$ is dense in X.

Remark 3.2. Since any complete *L*-fuzzy metric space cannot be represented as the union of a sequence of nowhere dense sets, it is not of the first category.

Definition 3.9. Let $(X, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. A collection of sets $\{F_n\}_{n \in I}$ is said have \mathcal{L} -fuzzy diameter zero if and only if for arbitrary negation $\mathcal{N}(r)$ and each $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ and t > 0, there exists $n \in I$ such that $\mathcal{M}(x, y, t) >_L \mathcal{N}(r)$ for all $x, y \in F_n$.

Remark 3.3. A nonempty subset F of an \mathcal{L} -fuzzy metric space X has \mathcal{L} -fuzzy diameter zero if and only if F is a singleton set.

Theorem 3.5. An \mathcal{L} -fuzzy metric space $(X, \mathcal{M}, \mathcal{T})$ is complete if and only if every nested sequence of nonempty closed sets $\{F_n\}_{n=1}^{\infty}$ with \mathcal{L} -fuzzy diameter zero we have nonempty intersection.

Proof. First suppose that the given condition is satisfied. We claim that $(X, \mathcal{M}, \mathcal{T})$ is complete. Let $\{x_n\}$ be a Cauchy sequence in X. Take $A_n = \{x_n, x_{n+1}, x_{n+2}, ...\}$ and $F_n = \overline{A_n}$, then we claim that $\{F_n\}$ has \mathcal{L} -fuzzy diameter zero. For given $s \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}, t > 0$, we can find a $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$, such that $\mathcal{T}^2(\mathcal{N}(r), \mathcal{N}(r), \mathcal{N}(r)) >_L \mathcal{N}(s)$. Since $\{x_n\}$ is a Cauchy sequence, for $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}, t > 0$, there exists $n_0 \in \mathbb{N}$ such that $\mathcal{M}(x_m, x_n, \frac{t}{3}) >_L \mathcal{N}(r)$ for all $m \ge n \ge n_0$ ($n \ge m \ge n_0$). Therefore, $\mathcal{M}(x, y, \frac{t}{3}) >_L \mathcal{N}(r)$ for all $x, y \in A_{n_0}$. Let $x, y \in F_{n_0}$. Then there exist sequences $\{x'_n\}$ and $\{y'_n\}$ in A_{n_0} such that $x'_n \longrightarrow x$ and $y'_n \longrightarrow y$. Hence $x'_n \in B(x, r, \frac{t}{3})$ and $y'_n \in B(y, r, \frac{t}{3})$ for sufficiently large n. Now

$$\mathcal{M}(x, y, t) \geq {}_{L}\mathcal{T}^{2}\left(\mathcal{M}\left(x, x_{n}^{\prime}, \frac{t}{3}\right), \mathcal{M}\left(x_{n}^{\prime}, y_{n}^{\prime}, \frac{t}{3}\right), \mathcal{M}\left(y_{n}^{\prime}, y, \frac{t}{3}\right)\right)$$
$$> {}_{L}\mathcal{T}^{2}(\mathcal{N}(r), \mathcal{N}(r), \mathcal{N}(r))$$
$$> {}_{L}\mathcal{N}(s).$$

Therefore, $\mathcal{M}(x, y, t) >_L \mathcal{N}(s)$ for all $x, y \in F_{n_0}$. Thus $\{F_n\}$ has \mathcal{L} -fuzzy diameter zero. Hence by hypothesis $\bigcap_{n=1}^{\infty} F_n$ is nonempty.

Take $x \in \bigcap_{n=1}^{\infty} F_n$. Then for $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}, t > 0$, there exists $n_1 \in \mathbb{N}$ such that $\mathcal{M}(x_n, x, t) >_L \mathcal{N}(r)$ for all $n \ge n_1$. Therefore, for each t > 0, $\mathcal{M}(x_n, x, t) \to 1_{\mathcal{L}}$ as $n \to \infty$. Hence $x_n \to x$. Therefore, $(X, \mathcal{M}, \mathcal{T})$ is a complete \mathcal{L} -fuzzy metric space. Conversely, suppose that $(X, \in \mathcal{M}, \mathcal{T})$ is \mathcal{L} -fuzzy complete and $\{F_n\}_{n=1}^{\infty}$ is a

nested sequence of nonempty closed sets with \mathcal{L} -fuzzy diameter zero. Let $x_n \in F_n$, n = 1, 2, ... Since $\{F_n\}$ has \mathcal{L} -fuzzy diameter zero, for $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$, t > 0, there exists $n_0 \in \mathbb{N}$ such that $\mathcal{M}(x, y, t) >_L \mathcal{N}(r)$ for all $x, y \in F_{n_0}$. Therefore, $\mathcal{M}(x_n, x_m, \frac{t}{3}) >_L \mathcal{N}(r)$ for all $m \ge n \ge n_0$ ($n \ge m \ge n_0$). Since $x_n \in F_n \subset F_{n_0}$ and $x_n \in F_m \subset F_{n_0}$, $\{x_n\}$ is a Cauchy sequence. But $(X, \mathcal{M}, \mathcal{T})$ a complete \mathcal{L} -fuzzy metric space and hence x_n converges to x for some $x \in X$. Now for each fixed $n, x_k \in F_n$ for all $k \ge n$. Therefore, $x \in \overline{F_n} = F_n$ for every n, and hence $x \in \cap_{n=1}^{\infty} F_n$. This completes the proof.

Remark 3.4. The element $x \in \bigcap_{n=1}^{\infty} F_n$ is unique. For if there are two elements $x, y \in \bigcap_{n=1}^{\infty} F_n$, since $\{F_n\}_{n=1}^{\infty}$ has \mathcal{L} -fuzzy diameter zero, for each fixed t > 0, $\mathcal{M}(x, y, t) >_L \mathcal{N}(\frac{1}{n})$ for each n. This implies $\mathcal{M}(x, y, t) = 1_{\mathcal{L}}$ and hence x = y.

Theorem 3.6. Every separable *L*-fuzzy metric space is second countable.

Proof. Let $(X, \mathcal{M}, \mathcal{T})$ be the given separable \mathcal{L} -fuzzy metric space. Let $\mathcal{A} = \{a_n : n \in \mathbb{N}\}$ be a countable dense subset of X. Consider $\mathcal{B} = \{B(a_j, r_k, 1/k) : j, k \in \mathbb{N}\}$

where $r_k \longrightarrow 0_{\mathcal{L}}$. Then *B* is countable. We claim that *B* is a base for the family of all open sets in *X*. Let *G* be an arbitrary open set in *X*. Let $x \in G$, then there exist $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}, t > 0$ such that $B(x, r, t) \subset G$. Since $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$, we can find $s <_L r$ such that $\mathcal{T}(\mathcal{N}(s), \mathcal{N}(s)) >_L \mathcal{N}(r)$. Choose $m \in \mathbb{N}$ such that $1/m <_L \min\{s, t/2\}$. Since *A* is dense in *X*, there exists $a_j \in A$ such that $a_j \in B(x, r_m, 1/m)$ where $r_m \longrightarrow 0_{\mathcal{L}}$. Now if $y \in B(a_j, r_m, 1/m)$ then

$$\mathcal{M}(x, y, t) \geq {}_{L}\mathcal{T}\left(\mathcal{M}\left(x, a_{j}, \frac{t}{2}\right), \mathcal{M}\left(y, a_{j}, \frac{t}{2}\right)\right)$$
$$\geq {}_{L}\mathcal{T}\left(\mathcal{M}\left(x, a_{j}, \frac{1}{m}\right), \mathcal{M}\left(y, a_{j}, \frac{1}{m}\right)\right)$$
$$\geq {}_{L}\mathcal{T}\left(\mathcal{N}(\frac{1}{m}), \mathcal{N}(\frac{1}{m})\right)$$
$$\geq {}_{L}\mathcal{T}\left(\mathcal{N}(s), \mathcal{N}(s)\right) >_{L} \mathcal{N}(r).$$

Thus, $y \in B(x, r, t)$ and hence \mathcal{B} is a base.

Remark 3.5. Every subspace of separable *L*-fuzzy metric space is separable.

Proof. Let $(X, \mathcal{M}, \mathcal{T})$ be the given separable \mathcal{L} -fuzzy metric space and Y be a subspace of X. Let $A = \{x_n : n \in \mathbb{N}\}$ be a countable dense subset of X. For arbitrary but fixed $n, k \in \mathbb{N}$, if there are points $x \in X$ such that $\mathcal{M}(x_n, y, 1/k) >_L \mathcal{N}(\frac{1}{k})$, choose one of them and denote it by x_{n_k} . Let $B = \{x_{n_k} : n, k \in \mathbb{N}\}$, then B is countable. Now we claim that $Y \subset \overline{B}$. Let $y \in Y$. Given $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ and t > 0, we can find a $k \in \mathbb{N}$ such that $\mathcal{T}(\mathcal{N}(\frac{1}{k}), \mathcal{N}(\frac{1}{k})) >_L \mathcal{N}(r)$. Since A is dense in X, there exists an $m \in \mathbb{N}$ such that $\mathcal{M}(x_m, y, 1/k) >_L \mathcal{N}(\frac{1}{k})$. But by definition of B, there exists $x_{m_k} \in A$ such that $\mathcal{M}(x_{m_k}, x_m, 1/k) >_L \mathcal{N}(\frac{1}{k})$. Now

$$\mathcal{M}(x_{mk}, y, t) \geq {}_{L}\mathcal{T}\left(\mathcal{M}\left(x_{m_{k}}, x_{m}, \frac{t}{2}\right), \mathcal{M}\left(x_{m}, y, \frac{t}{2}\right)\right)$$
$$\geq {}_{L}\mathcal{T}\left(\mathcal{M}\left(x_{m_{k}}, x_{m}, \frac{1}{k}\right), \mathcal{M}\left(x_{m}, y, \frac{1}{k}\right)\right)$$
$$\geq {}_{L}\mathcal{T}\left(\mathcal{N}(\frac{1}{k}), \mathcal{N}(\frac{1}{k})\right) >_{L} \mathcal{N}(r).$$

Thus $y \in \overline{B}$ and hence Y is separable.

Definition 3.10. Let *X* be any nonempty set and $(Y, \mathcal{M}, \mathcal{T})$ be an \mathcal{L} -fuzzy metric space. Then a sequence $\{f_n\}$ of functions from *X* to *Y* is said to be **converge uniformly** to a function *f* from *X* to *Y* if for given $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ and t > 0, there exists $n_0 \in \mathbb{N}$ such that $\mathcal{M}(f_n(x), f(x), t) >_L \mathcal{N}(r)$ for all $n \ge n_0$ and for all $x \in X$.

Theorem 3.7. (Uniform Limit Theorem) Let $f_n : X \longrightarrow Y$ be a sequence of continuous functions from a topological space X to an \mathcal{L} -fuzzy metric space Y. If $\{f_n\}$ converges uniformly to f then f is continuous.

Proof. Let *X* be a given topological space and $(Y, \mathcal{M}, \mathcal{T})$ be the given \mathcal{L} -fuzzy metric space. For any open set *V* in *Y*, let $x_0 \in f^{-1}(V)$ and let $y_0 \in f(x_0)$. Since

V is open, we can find $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ and t > 0 such that $B(y_0, r, t) \subset V$. Since $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$, we can find $s <_L r$ such that $\mathcal{T}^2(\mathcal{N}(s), \mathcal{N}(s), \mathcal{N}(s)) >_L \mathcal{N}(r)$.

Since $\{f_n\}$ converges uniformly to f, given $s \in L \setminus \{0_L, 1_L\}$ and t > 0, there exists $n_0 \in \mathbb{N}$ such that $\mathcal{M}(f_n(x), f(x), t/3) >_L \mathcal{N}(s)$ for all $n \ge n_0$. Since, for all $n \in \mathbb{N}$, f_n is continuous we can find a neighborhood U of x_0 , for a fixed $n \ge n_0$, such that $f_n(U) \subset B(f_n(x_0), s, t/3)$. Hence $\mathcal{M}(f_n(x), f_n(x_0), t/3) >_L \mathcal{N}(s)$ for all $x \in U$. Now

$$\mathcal{M}(f(x), f(x_0), t) \geq {}_{L}\mathcal{T}^2 \left(\begin{array}{c} \mathcal{M}\left(f(x), f_n(x), \frac{t}{3}\right), \mathcal{M}\left(f_n(x), f_n(x_0), \frac{t}{3}\right), \\ \mathcal{M}\left(f_n(x_0), f(x_0), \frac{t}{3}\right) \end{array} \right) \\ \geq {}_{L}\mathcal{T}^2(\mathcal{N}(s), \mathcal{N}(s), \mathcal{N}(s)) >_{L} \mathcal{N}(r).$$

Thus, $f(x) \in B(f(x_0), r, t) \subset V$ for all $x \in U$. Hence $f(U) \subset V$ and then f is continuous.

REFERENCES

- [1] Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96
- [2] Deng, Z. K., Fuzzy pseudo-metric spaces, J. Math. Anal. Appl. 86 (1982), 74-95
- [3] G. Deschrijver, G., Cornelis, C., Kerre, E. E., On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Trans. Fuzzy Systems 12 (2004), 45-61
- [4] Deschrijver, G., Kerre, E. E., On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems 133 (2003), 227-235
- [5] Erceg, M. A., Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69 (1979), 205-230
- [6] George, A. and Veeramani, P., On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), 395-399
- [7] George, A. and Veeramani, P., On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems 90 (1997), 365-368
- [8] Goguen, J., *L-fuzzy sets*, J. Math. Anal. Appl. 18 (1967), 145-174
- [9] Grabiec, M., Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27 (1988), 385-389
- [10] Ješić, S. N. and Babačev, N. A., Common fixed point theorems in intuitionistic fuzzy metric spaces and L-fuzzy metric spaces with nonlinear contractive condition, Chaos, Solitons & Fractals 37 (2008), 675-687
- [11] Kaleva, O. and Seikkala, S., On fuzzy metric spaces, Fuzzy Sets and Systems 12 (1984), 225-229
- [12] Kramosil, O. and Michalek, J., Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326-334
- [13] Park, J. H., Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals 22 (2004), 1039-1046
- [14] Saadati, R., Park, J. H., On the intuitionistic topological spaces, Chaos, Solitons & Fractals 27 (2006), 331-344
- [15] Saadati, R., Razani, A., Adibi, H., A common fixed point theorem in *L*-fuzzy metric spaces, Chaos, Solitons & Fractals 33 (2007), 358-363
- [16] Saadati, R., On the L-fuzzy topological spaces Chaos, Solitons & Fractals, 37 (2008), 1419-1426
- [17] Zadeh, L. A., Fuzzy sets, Inform. and Control 8 (1965), 338-353

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND ARTS GAZI UNIVERSITY TEKNIKOKULLAR, 06500 ANKARA, TURKEY *E-mail address*: hakanefe@gazi.edu.tr