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Some results in £-fuzzy metric spaces

ABSTRACT.

The purpose of this paper to prove Baire’s theorem and uniform limit theorem for
L-fuzzy metric spaces. Also, we show every separable £-fuzzy metric spaces are second countable
and subspace of a separable £-fuzzy metric space is separable.

1. INTRODUCTION

Since the introduction of the concept of fuzzy set by Zadeh [17] in 1965, many
authors have introduced the concept of fuzzy metric space in different ways [2, 5,
9,11,12]. George and Veeramani [6, 7] modified the concept of fuzzy metric space
introduced by Kromosil and Michalek [12] and defined a Hausdorff topology on
this fuzzy metric space. Using to idea of £-fuzzy sets [8], Saadati et al. [15] intro-
duced the notion of £-fuzzy metric spaces with the help of continuous ¢t-norms as
a generalization of fuzzy metric space due to George and Veeramani [6] and in-
tuitionistic fuzzy metric space due to Park and Saadati [13, 14]. Recently, Saadati
[16] proved some known results of metric spaces including Uniform continuity
theorem and Ascoli-Arzela theorem for £ -fuzzy metric spaces. He also proved
that every £ -fuzzy metric space has a countably locally finite basis and used this
result to conclude that every £-fuzzy metric space is metrizable.

In this paper we show that every L-fuzzy metric space is Hausdorff. We also
show every compact subset of an £-fuzzy metric space is LF-strongly bounded.
Then we prove Baire’s theorem for £-fuzzy metric spaces. Furthermore we show
that separable £-fuzzy metric spaces are second countable and subspace of a sep-
arable £-fuzzy metric space is separable. Finally, we prove uniform limit theorem
for L-fuzzy metric spaces.

2. PRELIMINARIES

Definition 2.1. [7] Let £ = (L, <) be a complete lattice, and U a non-empty set
called universe. An L-fuzzy set A on U is defined as a mapping A : U — L. For
each v in U, A(u) represents the degree (in L) to which u satisfies A.

Lemma 2.1. [4] Consider the set L* and operation <p- defined by L* = {(x1,z2) :
(z1,2) € [0,1)% and x1 + xo < 1}, (21,22) <p- (y1,2) <= 21 < y1 and xp > yp,
for every (z1,x2), (y1,y2) € L*. Then (L*, <p«) is a complete lattice.
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Definition 2.2. [1] An intuitionistic fuzzy set A, on a universe U is an ob-
ject Acy = {(Ca(w),na(w)) : w € U}, where, for all u € U, {4(u) € [0,1] and
na(u) € [0,1] are called the membership degree and the non-membership degree,
respectively, of u in A¢ ,, and furthermore satisfy ¢4 (u) + n4(u) < 1.

Classically, a triangular norm T on ([0, 1], <) is defined as an increasing, com-
mutative, associative mapping 7" : [0,1]> — [0, 1] satisfying T'(x,1) = =, for all
xz € [0,1]. These definitions can be straightforwardly extended to any lattice
L = (L,<p). Define first 0, = inf L and 1, = sup L.

Definition 2.3. A triangular norm (t-norm) on £ is a mapping 7 : L? — L satis-
fying the following conditions:

(i) (Vx € L)(T (z,1z) = x); (boundary condition)
(i) (V(z,y) € L*)(T (z,y) = T (y, z); (commutativity)
(i) (V(z,y,2) € L3)(T (2,7 (y,2)) = T (7T (z,y), 2); (associativity)
(iv) (V(z,2',y,y") € L) (z <p 2’ andy <p v = T (z,y) <1 T(z',')) (mono-
tonicity).

A t-norm 7 on L is said to be continuous if for any z,y € £ and any sequences
{z,} and {y, } which converge to = and y we have lim,, 7 (z,,, y,) = 7 (z, ).

For example, 7 (z,y) = min(z,y) and 7 (z, y) = zy are two continuous t-norms
on [0,1].

A t-norm can also be defined recursively as an (n + 1)-ary operation (n € N)
by 7' = T and

Ty Tpg1) = T(T" (@1, ooy T), T 1)
forn>2and z; € L.

Definition 2.4. [3] A t-norm 7 on L* is called ¢-representable if and only if there
exist a t-norm T" and a t-conorm S on [0, 1] such that, for all z = (z1,22), y =
(y1,92) € L%,

T(z,y) = (T(21,1), S(22,12))-

Definition 2.5. A negation on £ is any decreasing mapping N : L — L satisfying
N(@Og) =1gand N(1z) = 0. N (N(2z)) = z, for € L, then N is called an

involutive negation.

The negation NN, on ([0, 1], <) defined as, for all z € [0,1], Ny(z) = 1 —z, is
called the standard negation on ([0, 1], <). We show (N,(z),z) = Ny(z).

Definition 2.6. [15] The 3-tuple (X, M, T) is said to be an £-fuzzy metric space
if X is an arbitrary (non-empty) set, 7 is a continuous ¢-norm on £ and M is an
L-fuzzy set on X2 x (0, +00) satisfying the following conditions for every z,y,
in X and ¢, s in (0, +00):

(@) M(z,y,t) > 0g;

(b) M(z,y,t) =1, forallt > 0if and only if z = y;
(© M(z,y,t) = M(y, z,1);

(d) T(M(z,y,t), M(y, 2, 5)) <L M(z,2,t+s);

(e) M(z,y,-):(0,4+00) — L is continuous.
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In this case M is called an £-fuzzy metric. If M = M, y is an intuitionis-
tic fuzzy set (see Definition 2.2) then the 3-tuple (X, My n,7T) is said to be an
intuitionistic fuzzy metric space.

Let (X, M, T) be an L-fuzzy metric space. For ¢ € (0, +00), we define the open
ball B(z,r,t) with center x € X and radius r € L\{0z, 1.}, as

B(z,rt) ={y € X : M(z,y,t) > N(r)}.

A subset AC X is called open if for each z € A, there exist ¢ > 0 and r € L\{0¢, 1.}
such that B(z,r,t) C A. Let 7 denote the family of all open subsets of X. Then
Tpm is called the £-fuzzy topology induced by the £-fuzzy metric M.

Example 2.1. Let (X,d) be a metric space. Define 7 (a,b) = (a1b1, min(as + be, 1))
for all a = (ay,az)and b = (b1, bs) in L* and let M and N be fuzzy sets on X2 x
(0, +00) defined as follows:

MI\LN(xvy7t) = (M(x,y,t),N(x,y,t)) = (

ht™ md(x,y)
ht" + md(z,y) ht™ +md(x,y) )’
forall ¢, h,m,n € R*. Then (X, My n,7T) is an intuitionistic fuzzy metric space.

If h = m = n = 1then (X, My n,7) is a standard intuitionistic fuzzy metric
space. Also, if we define

MM,N(x,y,t)=(M(a;,y,t),N(a;,y,t)):< t d(z,y) )

t+md(z,y) t + d(x,y)

where m > 1. Then (X, My n, T) is an intuitionistic fuzzy metric space in which
My n(z,x,t) =1« and My n(z,y,t) <p- 11~ for x # y.

Example 2.2. Let X = N. Define 7 (a,b) = (max(0, a1 +b1—1), ag+ba—asbs) for all
a = (a1,az)and b = (by, by) in L* and let M and N be fuzzy sets on X? x (0, +00)

defined as follows:
<x7y—33> if z<y,
Yy Yy

o
(% y) if y<um,
Ty

for all z,y € X and ¢ > 0. Then (X, My n,7) is an intuitionistic fuzzy metric
space.

Lemma 2.2. Let (X, M,T) be an L-fuzzy metric space. Then, M(z,y,t) is nonde-
creasing with respect to t, forall z,y € X.

MM,N(xay7t) = (M(SE,y,t),N(fE,y,t)) =

Definition 2.7. [16] A sequence {z,} in an £-fuzzy metric space (X, M,T) is
called a Cauchy sequence, if for each ¢ € L\{0.} and ¢ > 0, there exists no € N
such that forallm > n > ng (n > m > ngp)
M(T Ty t) >1 N ().

The sequence {z,} is said to be convergent to = € X in the £-fuzzy metric space
(X, M, T) (denoted by z,, M ) if M(xp,z,t) = M(x,zp,t) — 1z asn — oo for
every t > 0. An L-fuzzy metric space is said to be complete iff every Cauchy
sequence is convergent.
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Henceforth, we assume that 7 is a continuous ¢t-norm on lattice £ such that for
every u € L\{Oz, 1.}, thereisa A € L\{0¢, 1.} such that

T YN, s NOV) > N (1),

3. MAIN RESULTS
Theorem 3.1. Every L-fuzzy metric space is Hausdorff.

Proof. Let (X, M, T) be the given L-fuzzy metric space. Let x,y be two distinct
points of X. Then M(z,y,t) € L\{0Oz,1.}. Let M(z,y,t)=N(r), re L\{Oz, 1.}.
Then for each ro, 7o <r r, we can find a r; € L\{0gz, 1.} such that 7 (N (ry),
N(r1)) > N(rg). Now consider the open balls B(z,r,t/2) and B(y,r1,t/2).
Then B(z,71,t/2) N B(y,m1,t/2) = &. For if there exists z € B(x,r1,t/2) N
B(y,r1,t/2) then,

N(r) = M(z,y,t) > T(M(x,2,t/2), M(z,y,t/2))
> TN(r),N(r1)) > N(ro) > N(r),

which is a contradiction. O

Definition 3.8. [10] Let (X, M, T) be an £-fuzzy metric space and A C X. The
L-fuzzy diameter of a set A is defined by

d4 =sup inf sup M(z,y,e).
t>0 T,YEA e<t

If 64 = 1. then we say that the set A is LF-strongly bounded.

Lemma 3.3. [10] The set A C X is LF-strongly bounded if and only if for arbitrary
negation N (r) and each r € L\{O., 1.} there exists t > 0 such that M(x,y,t) >,
N(r) forall x,y € A.

Theorem 3.2. Every compact subset A of a L-fuzzy metric space X is LF-strongly
bounded.

Proof. Let A be a compact subset of X. Fixt > 0and r € L\{0,, 12}. Consider an
open cover { B(xz,r,t):x € A} of A. Since A is compact, there exist 21, z3, ..., 2, € A
such that A C U, B(z;,7,t). Letz,y € A. Then € B(z;,r,t) and y € B(z;,r,t)
for some 4, j. Thus we have M(z,z;,t) > N(r) and M(y,z;,t) > N(r). Now
let @ = min{M(x;,z;,t) : 1 < 4,5 < n}. Then a € L\{0, 1.} and there exists
s € LI\{Oz, 1.} such that T2(N(r), N'(r),a) >1, N (s). Therefore,

M(%Qyt) > LT2 <M (l’,l‘l‘, ;) 7M (xi7xj7 ;) 7M (333‘»% ;))
> [TAN(r),N(r),a) > N(s)
forall z,y € A. Hence A is LF-strongly bounded. O

Remark 3.1. Inan £-fuzzy metric space every compact set closed and £ F-strongly
bounded.

Lemma 3.4. Let (X, M, T) be an L-fuzzy metric space. Ift > 0and r,s € L\{0z,1.}
such that T (N (s), N (s)) > N(r), then B(z, s,t/2) C B(x,r,t).
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Proof. Lety € B(z,s,t/2) and let B(y, s,t/2) be an open ball with center z € X
and radius s € L\{Oz,1.}. Since B(y,s,t/2) N B(y,s,t/2) # o, there exists
z € B(y,s,t/2) N B(x, s,t/2). Then we have

M(may7t) > LT (M <'T7Z7;> aM <y727 ;))

> TN (s),N(s)) 2L N(r).
Hence z € B(z,r,t) and thus B(z, s,t/2) C B(z,r,t). O

Theorem 3.3. A subset A of an L-fuzzy metric space (X, M, T) is nowhere dense if and
only if every nonempty open set in X contain an open ball whose closure is disjoint from

Proof. Let U be a nonempty open subset of X. Then there exists a nonempty
open set V such that V. C U and VN A # @. Let z € V. Then there exist
t > 0and r € L\{Og,1.} such that B(z,r,t) C V. Choose s € L\{O.,1.}
such that 7 (N (s), N (s)) > N(r). By Lemma 3.4 B(z,s,t/2) C B(z,r,t). Thus
B(x,s,t/2) C U and B(z,s,t/2) N A= .

Conversely, suppose A is not nowhere dense. Then int(A) # &, so there ex-
ists a nonempty set U such that U C A. Let B(z,r,t) be an open ball such that
B(x,r,t) C U. Then B(z,r,t) N A # @. This is a contradiction. O

Theorem 3.4. (Baire’s Theorem) Let {U,, : n € N} be a sequence of dense open subsets
of a complete L-fuzzy metric space (X, M, T). Then NpenU, is also dense in X.

Proof. Let V be a nonempty open set of X. Since U; is dense in X, V NU; # @.
Let 1 € V NU;. Since V N U; is open, there exist 11 € L\{0z,1.} and t; > 0
such that B(zy,7r1,t1) € V NU;. Choose 7y <p 7 and ¢} = min{¢1,1} such
that B(z1,7],t)) C V NU;. Since Us is dense in X, B(xq,r},t)) N Uz # . Let
x9 € B(x1,7],t)) NUs. Since B(z1,7],t)) NUs is open, there exist ro € L\{0¢, 1.}
and to > 0 such that B(ze,72,t3) C B(x1,7],t]) N Us. Choose ry <p 1o and
5 = min{ty, 1/2} such that B(za,75,t,) C B(z1,71,t}) N Us. Contiuning in this
manner we obtain a sequence {z,,} in X and a sequence {t/,} such that0 < ¢, < &
and B(zp, 75, t),) C B(xp-1,7),_1,t,_1) N U, in which r}, — 0.

Now we claim that {z,} is a Cauchy sequence. For a given¢ > 0 and ¢ €
I\{0z,1.}, choose ny € N such that n%) < t and nio <, €. Then for n > ny and
m>n,

Mienszst) 22 M (20 1) 20 N2 1 N6

Therefore, {z,} is a Cauchy sequence. Since X is complete, there exists z € X
such that z,, — z. Since z, € B(zp, 7}, t)) for k > n, we obtain x € B(x,,r/,,t.).

Hence z € B(xn, 7!, t)) C B(xn_1,7_1,th_1) N U, for all n € N. Therefore
V N (NpenUn) # @. Hence NyenU, is dense in X O

Remark 3.2. Since any complete £-fuzzy metric space cannot be represented as
the union of a sequence of nowhere dense sets, it is not of the first category.
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Definition 3.9. Let (X, M, 7T) be an L-fuzzy metric space. A collection of sets
{Fy }ner is said have £-fuzzy diameter zero if and only if for arbitrary negation
N(r)and eachr € L\{0z,1.} and t > 0, there exists n € I such that M(xz,y,t) >,
N(r)forallz,y € F,,.

Remark 3.3. A nonempty subset F' of an L-fuzzy metric space X has L-fuzzy
diameter zero if and only if F is a singleton set.

Theorem 3.5. An L-fuzzy metric space (X, M, T) is complete if and only if every nested
sequence of nonempty closed sets { F,, }o°, with L-fuzzy diameter zero we have nonempty
intersection.

Proof. First suppose that the given condition is satisfied. We claim that (X, M, T)
is complete. Let {z,,} be a Cauchy sequence in X. Take A,, = {xn, Trt1, Tnt2, ...}
and F,, = A, then we claim that {F},} has £-fuzzy diameter zero. For given s €
L\{0z,1.},t>0,wecan find are L\{0,, 1.}, such that 72 (N (r), N'(r), N'(r)) >,
N(s). Since {z,} is a Cauchy sequence, for r € L\{Oz,1.}, t > 0, there exists
no € N such that M (2, @y, %) >z N(r) forallm > n > ng (n > m > no).
Therefore, M (z,y, %) >, N(r) forall 2,y € A,,. Let z,y € F,,. Then there
exist sequences {z],} and {y;} in A,, such that 2}, — = and y,, — y. Hence
), € B (x,r,£) and y, € B (y,r, ) for sufficiently large n. Now

t t t
M(I7y’t) Z LTZ <M <CC,I;” 3) 7M <x;my;u 3> 7M <y',nay7 3)>

> L TAN(r), N (r), N (r))
> LN(S).

Therefore, M(z,y,t) > N(s) forall z,y € F,,. Thus {F,,} has £L-fuzzy diameter
zero. Hence by hypothesis N2, F;, is nonempty.

Take x € N2, F),. Then for r € L\{0g, 1.}, t > 0, there exists n; € N such that
M(zp,z,t) > N(r) for all n > n,. Therefore, for each t > 0, M(zp,x,t) — 1. as
n — oo. Hence x,, — z. Therefore, (X, M, T) is a complete £-fuzzy metric space.

Conversely, suppose that (X, M, T) is L-fuzzy complete and {F,,}>2, is a
nested sequence of nonempty closed sets with £-fuzzy diameter zero.

Letz, € F,,,n =1,2,.... Since { F,, } has L-fuzzy diameter zero, for r € L\{0,1.},
t > 0, there exists ny € N such that M(z,y,t) >, N(r) for all z,y € F,,.
Therefore, M (2, Zm,5) > N(r) forall m > n > ng (n > m > ng). Since
x, € F,, C Fp, and z,, € F,,, C F,,,, {z,,} is a Cauchy sequence. But (X, M, T)
a complete £-fuzzy metric space and hence z,, converges to « for some z € X.
Now for each fixed n, z), € F, for all k > n. Therefore, z € F,, = F,, for every n,
and hence x € N2 F},. This completes the proof. O

Remark 3.4. The element z € N2, F, is unique. For if there are two elements
z,y € NS, F,, since {F,}72, has L-fuzzy diameter zero, for each fixed ¢t > 0,
M(z,y,t) >, N (%) for each n. This implies M(z,y,t) = 1. and hence = = y.

Theorem 3.6. Every separable L-fuzzy metric space is second countable.

Proof. Let (X, M, T) be the given separable £L-fuzzy metric space. Let A = {a,, :
n € N} be a countable dense subset of X. Consider B = {B(a;,rx,1/k) : j,k € N}
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where 7, — 0.. Then B is countable. We claim that B is a base for the family
of all open sets in X. Let G be an arbitrary open set in X. Let z € G, then
there exist r € L\{0z, 1.}, t > 0 such that B(z,r,t) C G. Since r € L\{0z,1.},
we can find s <7 r such that T(N(s),N(s)) > N(r). Choose m € N such
that 1/m <, min{s,¢/2}. Since A is dense in X, there exists a; € A such that
a; € B(z,rp,1/m) where r,, — 0.. Now if y € B(a;, T, 1/m) then

M(.’E,y,t) Z LT (M (xvaja ;) aM (y7aj7;>)
oo ) oort)

o (WENG)

z 1T (N(s),N(s)) > N(r).
Thus, y € B(z,r,t) and hence B is a base. O

v

\%

V

Remark 3.5. Every subspace of separable £-fuzzy metric space is separable.

Proof. Let (X, M, T) be the given separable £-fuzzy metric space and Y be a sub-
space of X. Let A = {z,, : n € N} be a countable dense subset of X. For arbitrary
but fixed n,k € N, if there are points 2 € X such that M(z,,y,1/k) > N(3),
choose one of them and denote it by z,,,. Let B = {z,, : n,k € N}, then B is
countable. Now we claim that Y € B. Lety € Y. Givenr € L\{0, 1.} and
t >0, we can find a k € Nsuch that 7 (N ($),N (1)) >1 N( ). Since A is dense
in X, there exists an m € N such that M(z,,,y,1/k) > N(%). But by definition
of B, there exists x,,,, € A such that M (2, , 2m,1/k) > (% ). Now

M(xmlmyat) Z LT (M (-r'mkax’rru ;) <x’may7 ))

2 LT (M (Z‘mk,.’Em7 ]i) (xm7y7 ))
1 1
> T (NN ) > N0
Thus y € B and hence Y is separable. O

Definition 3.10. Let X be any nonempty set and (Y, M, 7) be an L-fuzzy metric
space. Then a sequence {f,} of functions from X to Y is said to be converge
uniformly to a function f from X to Y if for given r € L\{0z,1.} and ¢t > 0,
there exists ng € N such that M(f,,(z), f(z),t) >r N(r) for all n > ng and for all
zc X.

Theorem 3.7. (Uniform Limit Theorem) Let f,, : X — Y be a sequence of continu-
ous functions from a topological space X to an L-fuzzy metric space Y. If { f,, } converges
uniformly to f then f is continuous.

Proof. Let X be a given topological space and (Y, M, 7) be the given L-fuzzy
metric space. For any openset VinY, let g € f~(V) and let yo € f(z0). Since
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V is open, we can find € L\{0., 1.} and ¢ > 0 such that B(yo,r,t) C V. Since
r € L\{0z, 1.}, we can find s <y, 7 such that 72(N(s), N (s),N(s)) > N(r).
Since {f,} converges uniformly to f, given s € L\{0¢z,1.} and ¢ > 0, there
exists ng € N such that M(f,,(z), f(z),t/3) >1 N(s) for all n > ny. Since, for all
n € N, f, is continuous we can find a neighborhood U of x, for a fixed n > ny,
such that f,,(U) C B(fn(z0),s,t/3). Hence M(f, (), fn(z0),t/3) >1 N (s) for all

z € U. Now
M), Jxo). 1) = m( e r (fn()xo) (<J;Zf)§,’)fn k) )
> TN (s), N (), N(s)) > N (r).

Thus, f(z) € B(f(xzo),r,t) C V forall z € U. Hence f( ) C V and then f is
continuous. (]
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