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On the global attractivity of difference equation of
higher order

E. M. ELABBASY and E. M. ELSAYED

ABSTRACT.
In this paper we investigate the global convergence result and boundedness of solutions of the recur-
sive sequence

xn+1 =

axp
n + b

p∏
r=1

xn−r

cxp
n + d

p∏
r=1

xn−r

, n = 0, 1, ...

where the parameters a, b, c and d are positive real numbers and the initial values x−p, x−p+1,

. . . , x−1 and x0 are arbitrary positive numbers.

1. INTRODUCTION

Our goal in this paper is to investigate the global stability character and bound-
edness of solutions of the recursive sequence

(1.1) xn+1 =
axp

n + b
p∏

r=1
xn−r

cxp
n + d

p∏
r=1

xn−r

,

where a, b, c and d ∈ (0,∞) with the initial values x−p, x−p+1, ..., x−1 and x0 ∈
(0,∞), where p is a positive integer.

Here, we recall some notations and results which will be useful in our investi-
gation.

Let I be some interval of real numbers and let

F : Ik+1 → I

be a continuously differentiable function. Then for every set of initial values
x−k, x−k+1, ..., x0 ∈ I, the difference equation

(1.2) xn+1 = F (xn, xn−1, . . . , xn−k), n = 0, 1, . . . ,

has a unique solution {xn}∞n=−k [11].
A point x ∈ I is called an equilibrium point of (1.2) if

x = F (x, x, ..., x).

That is, xn = x for n ≥ 0, is a solution of (1.2), or equivalently, x is a fixed point
of F .
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Definition 1.1. The difference equation (1.2) is said to be persistent if there exist
numbers m and M with 0 < m ≤ M < ∞ such that for any initial conditions
x−k, x−k+1, ..., x−1, x0 ∈ (0,∞) there exists a positive integer N which depends
on the initial conditions such that

m ≤ xn ≤M for all n ≥ N.

Definition 1.2. (Stability) Let I be some interval of real numbers.
(i) The equilibrium point x of (1.2) is locally stable if for every ε > 0, there exists

δ > 0 such that for all x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < δ,

we have
|xn − x| < ε for all n ≥ −k.

(ii) The equilibrium point x of (1.2) is locally asymptotically stable if x is locally
stable solution of (1.2) and there exists γ > 0, such that for all x−k, x−k+1, ..., x−1,
x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ · · ·+ |x0 − x| < γ,

we have
lim

n→∞
xn = x.

(iii) The equilibrium point x of (1.2) is a global attractor if for all x−k, x−k+1, ..., x−1,
x0 ∈ I , we have

lim
n→∞

xn = x.

(iv) The equilibrium point x of (1.2) is globally asymptotically stable if x is locally
stable, and x is also a global attractor of (1.2).

(v) The equilibrium point x of (1.2) is unstable if x is not locally stable.
The linearized equation of (1.2) about the equilibrium x is the linear difference

equation

(1.3) yn+1 =
k∑

i=0

∂F (x, x, . . . , x)
∂xn−i

yn−i.

Theorem A. [10] Assume that p, q ∈ R and k ∈ {0, 1, 2, ...}. Then

|p|+ |q| < 1

is a sufficient condition for the asymptotic stability of the difference equation

xn+1 + pxn + qxn−k = 0, n = 0, 1, ... .

Remark 1.1. Theorem A can be easily extended to a general linear equation of
the form

(1.4) xn+k + p1xn+k−1 + ...+ pkxn = 0, n = 0, 1, ...

where p1, p2, . . . , pk ∈ R and k ∈ {1, 2, ...}. Then (1.4) is asymptotically stable
provided that

k∑
i=1

|pi| < 1.
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Recently there has been a lot of interest in studying the global attractivity,
boundedness character and the periodic nature of nonlinear difference equations.
For some results in this area, see for example [10–15].

Many researchers have investigated the behavior of the solution of difference
equations for example: Camouzis et al. [1] investigated the behavior of solutions
of the rational recursive sequence

xn+1 =
βx2

n

1 + x2
n−1

.

In [2] Elabbasy et al. investigated the global stability character, boundedness
and the periodicity of solutions of the difference equation

xn+1 =
αxn + βxn−1 + γxn−2

Axn +Bxn−1 + Cxn−2
.

Elabbasy et al. [4] investigated the global stability, boundedness, periodicity
character and gave the solution of some special cases of the difference equation

xn+1 =
αxn−k

β + γ
∏k

i=0 xn−i

.

Elabbasy et al. [5] investigated the global stability, periodicity character and
gave the solution of some special cases of the difference equation

xn+1 =
dxn−lxn−k

cxn−s − b
+ a.

Grove, Kulenovic and Ladas [8] presented a summary of a recent work and
a large of open problems and conjectures on the third order rational recursive
sequence of the form

xn+1 =
α+ βxn + γxn−1 + δxn−2

A+Bxn + Cxn−1 +Dxn−2
.

Kalabusic and Kulenovic [9] investigated the global character of solutions of
the nonlinear, third order, rational difference equation

xn+1 =
γxn−1 + δxn−2

Cxn−1 +Dxn−2
.

In [14] Kulenovic, G. Ladas and W. Sizer studied the global stability character
and the periodic nature of the recursive sequence

xn+1 =
αxn + βxn−1

γxn + δxn−1
.

Kulenovic and Ladas [15] studied the second-order rational difference equation

xn+1 =
α+ βxn + γxn−1

A+Bxn + Cxn−1
.

Other related results on rational difference equations can be found in refs. [3],
[6-7].
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2. LOCAL STABILITY OF THE EQUILIBRIUM POINT

In this section we study the local stability character of the solutions of (1.1).
Equation (1.1) has a unique positive equilibrium point and is given by

x =
a+ b

c+ d
.

Let f : (0,∞)p+1 −→ (0,∞) be a continuous function defined by

(2.5) f(u0, u1, u2, ..., up) =
aup

0 + bu1u2...up

cup
0 + du1u2...up

.

We have

∂f(u0, u1, u2, . . . , up)
∂u0

=
pup−1

0 (u1u2 . . . up) (ad− bc)
(cup

0 + du1u2 . . . up)
2

∂f(u0, u1, u2, . . . , up)
∂u1

=
up

0(u2u3 . . . up)(bc− ad)
(cup

0 + du1u2 . . . up)
2

∂f(u0, u1, u2, ..., up)
∂u2

=
up

0(u1u3...up)(bc− ad)
(cup

0 + du1u2...up)
2

. . .

. . .

. . .

∂f(u0, u1, u2, ..., up)
∂up

=
up

0(u1u2...up−1)(bc− ad)
(cup

0 + du1u2...up)
2 .

Then we see that
∂f(x, x, x, ..., x)

∂u0
=
pxp−1xp (ad− bc)

(cxp + dxp)2
=
p (ad− bc)
(c+ d)2 x

=
p (ad− bc)

(c+ d) (a+ b)

∂f(x, x, x, ..., x)
∂u1

=
xpxp−1(bc− ad)

(c+ d)2 x2p
=

(bc− ad)
(c+ d) (a+ b)

∂f(x, x, x, ..., x)
∂u2

=
xpxp−1(bc− ad)

(c+ d)2 x2p
=

(bc− ad)
(c+ d) (a+ b)

,

. . .

. . .

. . .

∂f(x, x, x, ..., x)
∂up

=
xpxp−1(bc− ad)

(c+ d)2 x2p
=

(bc− ad)
(c+ d) (a+ b)

,

and therefore the linearized equation of (1.1) about x is

(2.6) yn+1 +
p∑

i=0

diyn−i = 0,
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where di = −fui
(x, x, . . . , x) for i = 0, 1, . . . , p, whose characteristic equation is

(2.7) λp+1 +
p∑

i=0

diλ
i = 0.

Theorem 2.1. Assume that

2p |ad− bc| < (c+ d) (a+ b).

Then the positive equilibrium point of (1.1) is locally asymptotically stable.

Proof. It follows from Remark 1.1 that (1.4) is asymptotically stable if all roots of
(2.7) lie in the open disc |λ| < 1 that is if∣∣∣∣ p (ad− bc)
(c+ d) (a+ b)

∣∣∣∣+ ∣∣∣∣ (bc− ad)
(c+ d) (a+ b)

∣∣∣∣+ ∣∣∣∣ (bc− ad)
(c+ d) (a+ b)

∣∣∣∣+ · · ·+ ∣∣∣∣ (bc− ad)
(c+ d) (a+ b)

∣∣∣∣ < 1

p |ad− bc|
(c+ d) (a+ b)

+
p |bc− ad|

(c+ d) (a+ b)
< 1,

or
2p |ad− bc|

(c+ d) (a+ b)
< 1.

This completes the proof. �

3. BOUNDEDNESS OF SOLUTIONS

Here we study the permanence of (1.1).

Theorem 3.2. Every solution of (1.1) is bounded and persists.

Proof. Let {xn}∞n=−p be a solution of (1.1). It follows from (1.1) that

xn+1 =
axp

n + b
p∏

r=1
xn−r

cxp
n + d

p∏
r=1

xn−r

=
axp

n

cxp
n + d

p∏
r=1

xn−r

+
b

p∏
r=1

xn−r

cxp
n + d

p∏
r=1

xn−r

≤ axp
n

cxp
n

+
b

p∏
r=1

xn−r

d
p∏

r=1
xn−r

.

Then

(3.8) xn ≤
a

c
+
b

d
= M for all n ≥ 1.

Now we wish to show that there exists m > 0 such that

xn ≥ m for all n ≥ 1.

The transformation

xn =
1
yn
,
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will reduce equation (1.1) to the equivalent form

1
yn+1

=

a

yp
n

+
b

p∏
r=1

yn−r

c

yp
n

+
d

p∏
r=1

yn−r

=
a

p∏
r=1

yn−r + byp
n

c
p∏

r=1
yn−r + dyp

n

,

or

yn+1 =
dyp

n + c
p∏

r=1
yn−r

byp
n + a

p∏
r=1

yn−r

=
dyp

n

byp
n + a

p∏
r=1

yn−r

+
c

p∏
r=1

yn−r

byp
n + a

p∏
r=1

yn−r

.

It follows that

yn+1 ≤
d

b
+
c

a
=
bc+ ad

ab
= H for all n ≥ 1.

Thus we get

(3.9) xn =
1
yn
≥ 1
H

=
ab

bc+ ad
= m for all n ≥ 1.

From (3.8) and (3.9) we see that

m ≤ xn ≤M for all n ≥ 1.

Therefore every solution of (1.1) is bounded and persists. �

4. GLOBAL STABILITY

In this section we investigate the global asymptotic stability of (1.1).

Lemma 4.1. (a) If
a

c
>

b

d
then the function f(u0, u1, u2, ..., up) is non-decreasing in

the first variable u0 and non-increasing in all others variables.

(b) If
a

c
<

b

d
then the function f(u0, u1, u2, ..., up) is non-increasing in the first

variable u0 and non-decreasing in all others variables.

Proof. The proof follows from the calculations after formula (2.5). �

Theorem 4.3. The equilibrium point x is a global attractor of (1.1) if one of the following
statements holds

(4.10) (1) ad ≥ bc and 2pc+ d ≥ (2p− 1)c
[
ad

bc

]2p−1

.

(4.11) (2) ad ≤ bc and 2pd+ c ≥ (2p− 1)d
[
bc

ad

]2p−1

.
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Proof. Let {xn}∞n=−p be a solution of (1.1) and again let f be a function defined by
(2.5).

We will prove the theorem when Case (1) is true and since the proof of Case
(2) is similar it is left to the reader.

Assume that (3.9) is true, then using Lemma 4.1, part (a); we obtain

xn+1 =
axp

n + b
p∏

r=1
xn−r

cxp
n + d

p∏
r=1

xn−r

≤ axp
n + b(0)

cxp
n + d(0)

=
a

c
.

Then

(4.12) xn ≤
a

c
= H for all n ≥ 1.

(4.13) xn+1 =
axp

n + b
p∏

r=1
xn−r

cxp
n + d

p∏
r=1

xn−r

≥
a(0) + b

p∏
r=1

xn−r

c(0) + d
p∏

r=1
xn−r

=
b

d
= h for all n ≥ 1.

Then from (4.12) and (4.13), we see that

0 < h =
b

d
≤ xn ≤

a

c
= H for all n ≥ 1.

Let {xn}∞n=0 solution of (1.1) with

I := lim
n→∞

inf xn and S := lim
n→∞

supxn.

It suffices to show that I = S.
Now it follows from (1.1) that

I ≥ f(I, S, S, .., S),

or

I ≥ aIp + bSp

cIp + dSp
,

and so
aIp + bSp − cIp+1 ≤ dSpI,

or

(4.14) aI2p−1 + bSpIp−1 − cI2p ≤ dSpIp.

Similarly, we see from Eq.(1) that

S ≤ f(S, I, I, ..., I),

or,

S ≤ aSp + bIp

cSp + dIp
,

and so
aSp + bIp − cSp+1 ≥ dSIp,

or

(4.15) aS2p−1 + bIpSp−1 − cS2p ≥ dSpIp.
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Therefore it follows from (4.14) and (4.15) that

aS2p−1 + bIpSp−1 − cS2p ≥ dSpIp ≥ aI2p−1 + bSpIp−1 − cI2p

c(I2p − S2p) + bSp−1Ip−1(I − S)− a(I2p−1 − S2p−1) ≥ 0,

which is equivalent to

c(I−S)(I2p−1 + I2p−2S+I2p−3S2 + ...+ S2p−2I+S2p−1)+bSp−1Ip−1(I−S)

−a(I − S)(I2p−2 + I2p−3S + ...+ S2p−3I + S2p−2) ≥ 0,

which holds if and only if

(I − S)

[
c(I2p−1 + I2p−2S + ...+ S2p−2I + S2p−1)

+bSp−1Ip−1 − a(I2p−2 + I2p−3S + ...+ S2p−3I + S2p−2)

]
≥ 0,

and so

I ≥ S if

[
c(I2p−1 + I2p−2S + ...+ S2p−2I + S2p−1)

+bSp−1Ip−1 − a(I2p−2 + I2p−3S + ...+ S2p−3I + S2p−2)

]
≥0.

Now, we know by (4.10) that

2pc+ d ≥ (2p− 1)c
[
ad

bc

]2p−1

2pc
[
b

d

]2p−1

+ d

[
b

d

]2p−1

≥ (2p− 1)c
[a
c

]2p−1

2pc
[
b

d

]2p−1

+ b

[
b

d

]2p−2

≥ (2p− 1)a
[a
c

]2p−2

c(I2p−1+I2p−2S + ...+ S2p−2I+S2p−1)+bSp−1Ip−1 ≥ 2pc
[
b

d

]2p−1

+b
[
b

d

]2p−2

≥ (2p− 1)a
[a
c

]2p−2

≥ a(I2p−2 + I2p−3S + ...+ S2p−3I + S2p−2)

c(I2p−1 + I2p−2S + ...+ S2p−2I + S2p−1) + bSp−1Ip−1

− a(I2p−2 + I2p−3S + ...+ S2p−3I + S2p−2) ≥ 0,

and so it follows that
I ≥ S.

Therefore
I = S.

This completes the proof. �

Remark 4.2. It follows from (1.1), when
a

c
=
b

d
that xn+1 = λ for all n ≥ −p and

for some constant λ.
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