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Positive solutions for nonlinear integral equations of
Hammerstein type

ANDREI HORVAT-MARC

ABSTRACT.
We apply a variant of Krasnoselskii’s compression-expansion theorem for nonlinear operators which
satisfy a compact condition of Mönch type. Our approach makes possible to establish conditions
which ensure the existence of positive solutions of abstract integral equations of Hammerstein type.

1. INTRODUCTION

Let X be a real Banach space, R+ = [0,∞) be the set of positive real numbers
and h > 0.

The goal of this paper is to establish sufficient conditions for the existence of
nonnegative solutions to the nonlinear integral equation of Hammerstein type

(1.1) u (t) =

h∫
0

k (t, s)F (u (s)) ds, t ∈ [0, h] ,

where k : [0, h]× [0, h]→ R+ and F : U ⊂ X → X is Bochner integrable on [0, h].
Let X be endowed with the norm |·| and K ⊂ X be a cone of X which induces

a partial order on X , i.e., “x ≤ y” if and only if y − x ∈ K. We say that the
norm |·| is increasing with respect to K if |x| ≤ |y| whenever 0 ≤ x ≤ y. For
0 < r < R we use the notation Ωr = {x ∈ X : |x| < r}, Kr = {x ∈ K : |x| < r},
Sr = {x ∈ K : |u| = r}, Kr,R = {x ∈ K : r ≤ |x| ≤ R}. We observe that Kr =
K ∩ Ωr and Kr,R = K ∩

(
ΩR\Ωr

)
.

In this paper, we introduce the new notion of µ2-bounded map. If we want
to localize a positive solution of (1.1) in a positive cone K, then we must be sure

that
h∫
0

k (·, s)F (u (s)) ds is an element of K. This condition is implied by the

hypothesis that k is µ2-bounded. In fact, the maps which are µ2-bounded ensure
that the values of some integral operators are situated in a positive cone of a
Banach space.

To localize o positive solution of (1.1) we use the compression-expansion fixed
point theorem of Krasnoselskii’s type. This technique has been applied in the
literature to scalar equations, when X = R, see [10, 12, 13], and recently to non-
linear equations in Banach spaces, see [3, 16, 4]. In all this works, the nonlinear
integral equations were studied assuming that the associated operator is compact

Received: 13.05.2008; In revised form: 23.08.2008; Accepted: 30.09.2008
2000 Mathematics Subject Classification. 45D05, 47J05.
Key words and phrases. Nonlinear integral equations in abstract spaces, Krasnoselskii’s fixed point the-

orem, Mönch’s fixed point theorem.

54



Positive solutions for nonlinear integral equations of Hammerstein type 55

or completely continuous. Our existence result do not require completely conti-
nuity of T and is based upon the continuation theorem of Mönch [14] and the
corresponding compression theorem, stated in the following:

Theorem 1.1 (A. Horvat-Marc [9]). Let X be a real Banach space, endowed with the
norm |·|,K be a cone inX , 0<r<R and the continuous operator T : K∩

(
ΩR\Ωr

)
→K.

Assume that
MK1) the norm |·| is increasing with respect to K,
MK2) there exist x0 ∈ K ∩

(
ΩR\Ωr

)
and C ⊂ K ∩

(
ΩR\Ωr

)
such that

(1.2) C ⊂ co ({x0} ∪ T (C)) implies C compact.

MK3) T is such that
|T (u)| ≤ |u| on K ∩ ΩR and |T (u)| ≥ |u| on K ∩ Ωr.

Then T has at least one fixed point in K ∩
(
ΩR\Ωr

)
.

The proof of this result may be found in [9] and some examples of operators
which satisfy MK2) are presented in [5, 6]. In fact, if an operator T satisfies MK2),
we say that T is operator of Mönch type.

2. PRELIMINARY RESULTS

In what follows we introduce the notion of µ2-bounded map.

Definition 2.1. Let µ ∈ (0, 1), κ : [a, b] → R+ and [a′, b′] ⊂ [a, b]. We say that the
map k : [a, b]× [a, b]→ R+ is µ2-bonded on [a, b] with respect to κ and [a′, b′] if

i) for every t ∈ [a, b] we have

(2.3) k (t, s) ≤ κ (s) for all s ∈ [a, b] ,

ii) for every t′ ∈ [a′, b′] the inequality

(2.4) µκ (s) ≤ k (t′, s) for all s ∈ [a, b] .

holds.

The next lemmas give some examples of µ2-bounded maps.

Lemma 2.1. Let k : [a, b]× [a, b]→ R+ be a map and [c, d] ⊂ [a, b]. Assume that:
Li) for all s ∈ [a, b] the map k (·, s) : [a, b] → R+ is concave on [c, d], i.e. for any

s ∈ [a, b] and t1, t2 ∈ [c, d] we have

k ((1− λ) t1 + λt2, s) ≥ (1− λ) k (t1, s) + λk (t2, s) , λ ∈ [0, 1] ;

Lii) for all s ∈ [a, b] the map k (·, s) : [a, b] → R+ is increasing on [a, b], i.e. for any
t1, t2 ∈ [a, b] with t1 < t2 and s ∈ [a, b] we have

k (t1, s) ≤ k (t2, s) .

Then k is µ2-bounded on [a, b] with respect to κ and [c, d], where µ = c−a
b and

κ (s) = k (b, s) for all s ∈ [a, b].
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Proof. From Lii) we have

(2.5) k (t, s) ≤ k (b, s) = κ (s) for all t, s ∈ [a, b] .

So, (2.3) holds.

Let t∗ ∈ [c, d]. We can consider t∗ = c−a
b ·b+

(
1−

c− a
b

)
t∗ − (c− a)
b− (c− a)

·b, where

c− a
b
∈ (0, 1) and

t∗ − (c− a)
b− (c− a)

· b ∈ [a, b]. Now, from Li) we obtain that

k (t∗, s) = k

(
c− a
b
· b+

(
1− c− a

b

)
t∗ − (c− a)
b− (c− a)

· b, s
)

≥ c− a
b

k (b, s) +
(

1− c− a
b

)
k

(
t∗ − (c− a)
b− (c− a)

· b, s
)
,

for all s ∈ [a, b]. Then for every t∗ ∈ [c, d] we have

(2.6) k (t∗, s) ≥ c− a
b

k (b, s) for all s ∈ [a, b] .

Hence, Li) guarantees ii). �

Lemma 2.2. Let G : [0, 1]× [0, 1]→ R+ defined by

(2.7) G (t, s) =


(C +D − Ct) (B +As)

CB +AC +AD
, 0 ≤ s ≤ t ≤ 1

(C +D − Cs) (B +At)
CB +AC +AD

, 0 ≤ t ≤ s ≤ 1.

Then G is µ2-bounded with respect to κ and I , where κ ∈ C [0, 1] with κ (s) = G (s, s)

for s ∈ [0, 1], I =

[
1
2
− ε,

1
2

+ ε

]
for every ε ∈

(
0,

1
2

)
and

(2.8) µ = min
{
C (1− 2ε) + 2D

2 (C +D)
,
A (1− 2ε) + 2B

2 (A+B)

}
.

Proof. Let ε ∈

(
0,

1
2

)
. We prove that (2.3) and (2.4) are satisfied for [a, b] = [0, 1],

[a′, b′] =

[
1
2
− ε,

1
2

+ ε

]
, k = G, κ (s) = G (s, s) with s ∈ [0, 1] and µ ∈ (0, 1) given

by (2.8).
If 0 ≤ s ≤ t ≤ 1, then C +D − Cs ≥ C +D − Ct, so

(2.9) G (s, s) =
(C +D − Cs) (B +As)

CB +AC +AD
≥ (C +D − Ct) (B +As)

CB +AC +AD
= G (t, s) .

If 0 ≤ t ≤ s ≤ 1, then B +As ≥ B +At, so

(2.10) G (s, s) =
(C +D − Cs) (B +As)

CB +AC +AD
≥ (C +D − Cs) (B +At)

CB +AC +AD
= G (t, s) .

From (2.9) and (2.10) we obtain

(2.11) G (t, s) ≤ G (s, s) = κ (s) for every t, s ∈ [0, 1] .
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If t ∈

[
0, ε+

1
2

]
, then

C +D − Ct ≥ C +D − C

(
ε+

1
2

)
=
C (1− 2ε) + 2D

2
.

Hence for s ≥ 0 we have

C +D − Ct ≥ C (1− 2ε) + 2D
2

· C +D − Cs
C +D

≥ µ (C +D − Cs) .

It results that

(2.12) G (t, s) ≥ µG (s, s) , 0 ≤ s ≤ t ≤ ε+
1
2
.

If t ∈

[
1
2
− ε, 1

]
then

B +At ≥ B +A

(
1
2
− ε

)
=
A (1− 2ε) + 2B

2
.

Hence for s ≤ 1 we have

B +At ≥ A (1− 2ε) + 2B
2

· B +As

B +A
≥ µ (B +As) .

It results that

(2.13) G (t, s) ≥ µG (s, s) ,
1
2
− ε ≤ t ≤ s ≤ 1.

From (2.12) and (2.13) we obtain

(2.14) µG (s, s) ≤ G (t, s) for every t ∈
[

1
2
− ε, 1

2
+ ε

]
, s ∈ [0, 1] .

Now, (2.11) and (2.14) guarantee that G is µ2-bounded. �

The function G considered in Lemma 2.2 is the Green function associated to
the boundary values problem

(2.15)


y′′ = 0
Ay (0)−By′ (0) = 0
Cy (1) +Dy′ (1) = 0,

with AC +BD +AD > 0.
The next example of µ2-bounded map is a Green function associated to a

boundary values problem arising in chemical reactor theory, see [1, 2, 7].

Lemma 2.3. Let G : [0, 1]× [0, 1]→ [0, 1] be the map defined by

(2.16) G (t, s) =

{
1 if 0 ≤ s ≤ t ≤ 1,

e
t−s
ξ if 0 ≤ t ≤ s ≤ 1.

If µ = e
a−2
ξ and κ : [0, 1]→ (0,∞) is such that

κ (s) = e
s
ξ , s ∈ [0, 1] ,
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then G is µ2-bounded on [0, 1] with respect to κ and every [a, b] ⊂ [0, 1].

Proof. We have G (t, s) ≤ 1 ≤ κ (s) for all t, s ∈ [0, 1]. So, (2.3) from i) holds. Now,
let [a, b] ⊂ [0, 1] and t∗ ∈ [a, b]. If s ∈ [0, t∗], then

(2.17) G (t∗, s) = 1 ≥ e
a+s−2
ξ = µκ (s) .

If s ∈ [t∗, 1] ⊂ [a, 1], then t∗ − s ≥ a+ s− 2 and

(2.18) G (t∗, s) = e
t−s
ξ ≥ e

a+s−2
ξ = µκ (s) .

From (2.17) and (2.18) we obtain that for any t∗ ∈ [a, b]

G (t∗, s) ≥ µκ (s) , for any s ∈ [0, 1] .

holds So, Lii) is satisfied and this complete the proof. �

In what follows, we show how the maps which are µ2-bounded ensure that
the values of some integral operators are situated in a positive cone of a Banach
space.

We denote by C (a, b;K) the set of all continuous maps from [a, b] to K.

Lemma 2.4. Let X be a Banach space, K ⊂ X be a cone in X and let ≤ be the or-
der relation on X induced by the cone K. Let µ ∈ (0, 1), [c, d] ⊂ [a, b], t′ ∈ [c, d],
k : [a, b]× [a, b]→ R and the cone

K ′µ = {u ∈ C (a, b;K) ; µu (t) ≤ u (t′) , t ∈ [a, b]} .

If the map k is µ2-bounded with respect to κ and [c, d], then for all v ∈ C (a, b;K) we
have

(2.19)

b∫
a

k (·, s) v (s) ds ∈ K ′µ.

Proof. Let v ∈ C (a, b;K) and u (t) =
b∫
a

k (t, s) v (s) ds, for t ∈ [a, b]. It is obvious

that u ∈ C(a, b;K). Since, the map k is uppermajorated by κ on [a, b], we have

µu (t) = µ

b∫
a

k (t, s) v (s) ds ≤
b∫
a

µκ (s) v (s) ds, t ∈ [a, b] .

Now, because µκ (s) ≤ k (t′, s) for all s ∈ [a, b] and t′ ∈ [a′, b′], we obtain

µu (t) ≤
b∫
a

k (t′, s) v (s) ds = u (t′) , t ∈ [a, b] .

So, µu (t) ≤ u (t′) for all t ∈ [a, b] and this ensure that u ∈ K ′µ. �

Lemma 2.5. Let X be a Banach space, K ⊂ X be a cone in X , which induces on X
the order relation ≤, and let 1 ≤ p ≤ ∞. Let µ ∈ (0, 1), [c, d] ⊂ [a, b], t′ ∈ [c, d],
k : [a, b]× [a, b]→ R and the cone

K ′p,µ = {u ∈ Lp (a, b;K) ; µu (t) ≤ u (t′) a.e. on t ∈ [a, b]} .
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If the map k is µ2-bounded with respect to κ and [c, d], then for all v ∈ C (a, b;K) we
have

(2.20)

b∫
a

k (·, s) v (s) ds ∈ K ′p,µ.

Proof. Let v ∈ Lp (a, b;K) and u (t) =
b∫
a

k (t, s) v (s) ds a.e. on [a, b]. It is obvious

that u ∈ Lp(a, b;K). Since, the map k is a.e. uppermajorated by κ on [a, b], we
have

µu (t) = µ

b∫
a

k (t, s) v (s) ds ≤
b∫
a

µκ (s) v (s) ds, a.e. on [a, b] .

Now, because µκ (s) ≤ k (t′, s) a.e. s ∈ [a, b] and t′ ∈ [a′, b′], we obtain

µu (t) ≤
b∫
a

k (t′, s) v (s) ds = u (t′) , a.e. on [a, b] .

So, µu (t) ≤ u (t′) a.e. on [a, b] and this ensure that u ∈ K ′p,µ. �

3. MAIN RESULT

In this section we establish conditions which guarantee the localization of
positive solution of (1.1) in Kr,R. We say that u is a positive solution to (1.1) if
u ∈ C (0, h;K) and satisfies (1.1).

The Banach space C (0, h;K) is endowed with the norm

|u|∞ = max
t∈[0,h]

|u (t) |, u ∈ C (0, h;K) .

We remind that u ≤ y in C (0, h;K) if and only if for any t ∈ [0, h] we have
u (t) ≤ y (t) inK. ForM ⊂ X a bounded set we denote by α (M) the Kuratowskii
measure of noncompactness on X , i.e.,

α (M) = inf {ε > 0;M admits a finite cover by sets of diameter ≤ ε} .
To attain our goal we introduce the following hypotheses:

H1) the map F : K → K is L1-Carathéodory, q ≥ 1 and

F (x) ≤ F (y) for every x, y ∈ K with x ≤ y;

H2) for any t ∈ [0, h], we have k (t, ·) ∈ Lp [0, h], where
1
p

+
1
q

= 1;

H3) the map t 7−→ k (t, ·) is continuous from [0, h] to Lp [0, h];
H4) there exists ω : [0, 2R]→ R+ a Lp-Carathéodory map such that

(a) α (F (M)) ≤ ω (α (M)) for any bounded set M ⊂ C (a, b;K);
(b) the unique solution of

φ (t) ≤ 2

h∫
0

k (t, s)ω (φ (s)) ds, t ∈ [0, h]

is φ ≡ 0.
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H5) there exist µ ∈ (0, 1), κ ∈ Lp (0, h; R+) and [a, b] ⊂ [0, 1] such that k is
µ2-bounded a.e. on [0, h] with respect to κ and [a, b];

H6) there exist mk,Mk > 0 with mk ≤ κ (s) a.e. s ∈ [a, b] and κ (s) ≤ Mk a.e.
s ∈ [0, h].

Theorem 3.2. Assume that H1)-H6) are satisfied and
(h1) there exist r > 0 such that

(3.21) inf {|F (x)| ;x ∈ K, |x| = µr} > r

µmk (b− a)
;

(h2) there exist R > 0 such that

(3.22) sup {|F (x)| ;x ∈ K, |x| = R} ≤ R

hMk
.

Then the integral equation of Hammerstein type (1.1) has at least one positive solution
u ∈ C (0, h;K) for which we have{

0 < r ≤ |u|∞ ≤ R,
µu (t) ≤ u (t′) for any t ∈ [0, h] and t′ ∈ [a, b] .

Proof. Let be the cone

Kµ = {u ∈ C (0, h;K) ; µu (t) ≤ u (t′) , t ∈ [0, h] , t′ ∈ [a, b]}
and the radial shell

Kr,R = {u ∈ Kµ; r ≤ |u|∞ ≤ R} .
If we consider the operator T : Kr,R → Kµ defined by

T (u) (t) =

h∫
0

k (t, s)F (u (s)) ds, t ∈ [0, h] ,

then by Lemma 2.4, from H5) we have T (u) ∈ Kµ.
The existence of a positive solution to (1.1) is equivalent to the existence of a

fixed point to T . We will apply Theorem 1.1, so we will prove that MK2) and
MK3) hold. Hypotheses H1)-H4) guarantee that T is an opertor of Mönch type,
see [15]. So, MK2) holds.

Let u ∈ Kµ with |u|∞ = R. By H6), for any t ∈ [0, h] we have

|T (u) (t) | =

∣∣∣∣∣∣
h∫

0

k (t, s)F (u (s)) ds

∣∣∣∣∣∣ ≤
h∫

0

k (t, s) |F (u (s))| ds

≤
h∫

0

κ (s) |F (u (s))| ds ≤Mκ

h∫
0

|F (u (s))| ds.

Results
|T (u) |∞ ≤ hMκ · sup {|F (x)| ; x ∈ K, |x| ≤ R} .

From (h2) we obtain

(3.23) |T (u) |∞ ≤ |u|∞ .
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Let u ∈ Kµ with |u|∞ = r and t∗ ∈ [0, h], |u (t∗) | = r. Hence u ∈ Kµ, we can
assume that µu (t∗) ≤ u (s) for any s ∈ [a, b]. From H1), we have

(3.24) F (µu (t∗)) ≤ F (u) (t) for any t ∈ [a, b] .

Now, for t ∈ [0, h] by H6) holds

T (u) (t) =

h∫
0

k (t, s)F (u (s)) ds ≥
b∫
a

µκ (s)F (u (s)) ds(3.25)

≥ µF (µu (t∗))

b∫
a

κ (s) ds ≥ µmκ (b− a) · F (µu (t∗)) .

Since the norm | · |∞ is increasing with respect to cone C (0, h;K), we have

|T (u)|∞ ≥ µmκ (b− a) · inf {|F (x)| ; x ∈ K, |x| = µr} .

From (h1) we obtain

(3.26) |T (u)|∞ > |u|∞.

Now (3.23) and (3.26) guarantee that the inequalities from MK3) are satisfied and
this complete the proof. �

Theorem 3.2 is an useful tool to study the various problems from the theory of
abstract ordinary differential equations or abstract nonlinear integral equations.
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