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Positive solutions for nonlinear integral equations of
Hammerstein type

ABSTRACT.

We apply a variant of Krasnoselskii’s compression-expansion theorem for nonlinear operators which
satisfy a compact condition of Monch type. Our approach makes possible to establish conditions
which ensure the existence of positive solutions of abstract integral equations of Hammerstein type.

1. INTRODUCTION

Let X be a real Banach space, Ry = [0, c0) be the set of positive real numbers
and h > 0.

The goal of this paper is to establish sufficient conditions for the existence of
nonnegative solutions to the nonlinear integral equation of Hammerstein type

h

(1.1) w(t) = /k (t,5) F (u(s))ds, te0,h],
0

where k : [0,h] X [0,h] = Ry and F : U C X — X is Bochner integrable on [0, k).

Let X be endowed with the norm |-| and K C X be a cone of X which induces
a partial order on X, ie, “z < y” if and only if y — v € K. We say that the
norm || is increasing with respect to K if |z| < |y| whenever 0 < z < y. For
0 < r < Rweuse thenotation 2, = {z e X :|z|<r}, K, = {zx € K :|z| <71},
Sy ={rxeK:|lu=r}, K,gp = {z€ K:r<|z|]<R}. We observe that K, =
KNQand K, g = KN (Qr\Q,).

In this paper, we introduce the new notion of p2-bounded map. If we want
to localize a positive solution of in a positive cone K, then we must be sure

h
that [k (-,s) F (u(s))ds is an element of K. This condition is implied by the

0
hypothesis that k is ;2-bounded. In fact, the maps which are p2-bounded ensure
that the values of some integral operators are situated in a positive cone of a
Banach space.

To localize o positive solution of we use the compression-expansion fixed
point theorem of Krasnoselskii’s type. This technique has been applied in the
literature to scalar equations, when X = R, see [10} 12, [13], and recently to non-
linear equations in Banach spaces, see [3} (16, 4]. In all this works, the nonlinear
integral equations were studied assuming that the associated operator is compact
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or completely continuous. Our existence result do not require completely conti-
nuity of 7" and is based upon the continuation theorem of Mdénch [14] and the
corresponding compression theorem, stated in the following;:

Theorem 1.1 (A. Horvat-Marc [9]). Let X be a real Banach space, endowed with the
norm ||, K be a cone in X, 0<r < R and the continuous operator T : KN(Q\Q,) — K.
Assume that

MK1) the norm || is increasing with respect to I,
MK?2) there exist g € K N (Q\Q,) and C C K N (Qg\Q,) such that
(1.2) C ceo({zo}UT(C)) implies C compact.
MKR3) T is such that
IT (u)| < |ujon KN Qrand |T (u)| > |u| on K NQ,.
Then T has at least one fixed point in K N (Qg\Q,).
The proof of this result may be found in [9] and some examples of operators

which satisfy MK2) are presented in [5}[6]. In fact, if an operator 7" satisfies MK2),
we say that T is operator of Monch type.

2. PRELIMINARY RESULTS

In what follows we introduce the notion of p2-bounded map.
Definition 2.1. Let u € (0,1), s : [a,b] — Ry and [a/, V'] C [a,b]. We say that the
map k : [a,b] X [a,b] — Ry is u2-bonded on [a, b] with respect to x and [d, b'] if

i) for every t € [a, b] we have

(2.3) k(t,s) <k(s) forall s € [a,b],
ii) for every t’ € [d/, V'] the inequality
(2.4) pk (s) < k(t',s) forall s € [a,b].
holds.

The next lemmas give some examples of pi2-bounded maps.

Lemma 2.1. Let k : [a,b] X [a,b] — Ry be a map and [c,d] C [a, b]. Assume that:

Li) for all s € [a,b] the map k(-,s) : [a,b] — Ry is concave on [c,d], i.e. for any
s € [a,b] and ty,ts € [c, d] we have

k((l—/\)t1+)\t2,8) > (1—)\)k(t1,8)+)\k(t2,8), A€ [0,1];

Lii) forall s € [a,b] the map k (-, s) : [a,b] — Ry is increasing on [a, b], i.e. for any
t1,t2 € [a,b] with t, < to and s € [a, b] we have

k(tl,s) S k(tz,s) .

Then k is p2-bounded on [a,b] with respect to  and [c,d], where p = <% and
k(s) =k (b, s) forall s € [a,b].
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Proof. From Lii) we have

(2.5) k(t,s) <k(bs)=r(s) forallt,s € [a,b].
So, holds.
. _ c—a\ t*—(c—a)
Lett* € [c,d]. We can consider t* = <32 -b+4 | 1 — -b, where
b b—(c—a)
c—a t* — (c—a) . .
€ (0,1) and ———- b € [a, b]. Now, from Li) we obtain that
b b—(c—a)
c—a c—a\ t*—(c—a)
k(t*,s) =k -b 1— b
R G G = =)
S S sy 4 (12 S0 (e
=Ty TS b b—(c—a) 7))
for all s € [a, b]. Then for every t* € [c, d] we have
2.6) k(t*,s) > %k (b,s) forall s € [a,b].
Hence, Li) guarantees ii). O

Lemma 2.2. Let G : [0,1] x [0,1] — R defined by
(C+ D —Ct) (B + As)

CBiAC+Ap o V=sstsd
2.7) G(t,s) = tAC T
(C+ D —Cs) (B + At)
L, 0<t<s<l.
CB+ AC + AD

Then G is p2-bounded with respect to r and I, where k € C'[0,1] with k (s) = G (s, s)
1 1 1
forse[0,1], 1= [— €, =+¢| foreverye € (O, 2) and

2 2
C(1—-2¢)+2D A(1-2¢)+2B
2(C+D) ° 2(A+B) }

(2.8) 4 = min {
1
Proof. Lete € <0, 2) . We prove that and are satisfied for [a, b] = [0, 1],

1 1
@ V]=|z—¢,z+¢e|, k=G, k(s) =G (s,s) withs € [0,1] and p € (0,1) given

2 2

by 2.8).
fo<s<t<1l,thenC+D—-Cs>C+ D —Cft,so

(C+D—Cs)(B+As) _ (C+D—Ct)(B+ As)
. = > = .
29) G(s:9) CB+AC+AD — CB+YAC+ AD Gts)
Ifo<t<s<1,then B+ As > B + At, so

D—Cs)(B+A D — Cs) (B + At

210) G(s5) = CHD=C)(B+As) (C+D=Cs)(B+AY _ oy

CB+ AC+ AD - CB+ AC+ AD
From and (2.10) we obtain
(2.11) G(t,s) <G (s,s) =k (s) foreveryt,s € [0,1].
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1
Ift e O,€—|—§ , then

C(1—2¢)+2D

1
C+D—Ct20+D—C<5+2>: .

Hence for s > 0 we have
C(1-2)+2D C+D-Cs
2 C+D

C+D—-Ct> >u(C+D—-Cs).

It results that
1
(2.12) G (t,s) > uG(s,s), O§5§t§€+§.

1
Ift l2 — &, 1] then

A(l—-2¢)+2B

1
> _— =
B+AtB+A<2 5) 5

Hence for s < 1 we have

A(1—-2e)+2B B+ As <

> .
B+At> 5 B+A =

w(B+ As).
It results that

(2.13) G (t,s) > uG (s, s), %—agtgsgl.
From and we obtain

1 1
(2.14) uG (s,s) <G (t,s) forevery t € {2 —&5 + 5} ,$ €10,1].
Now, (2.11) and (2.14) guarantee that G is 2-bounded. O

The function G considered in Lemma 2.2 is the Green function associated to
the boundary values problem

=0

y//
(2.15) Ay (0) — By (0) =0
Cy(1) + Dy’ (1) =0,

with AC' + BD + AD > 0.
The next example of u2-bounded map is a Green function associated to a
boundary values problem arising in chemical reactor theory, see [1} 2, [7].

Lemma 2.3. Let G : [0,1] x [0,1] — [0, 1] be the map defined by

1 if 0<s<t<l,
(2.16) G (t,s) = t—s
e if 0<t<s<l.

Ifpu= e and i : [0,1] — (0, o) is such that
rk(s)=et, s€[0,1],
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then G is p2-bounded on [0, 1] with respect to  and every [a,b] C [0, 1].

Proof. We have G (t,s) <1 < k(s) forallt,s € [0,1]. So, from i) holds. Now,
let [a,b] C [0,1] and t* € [a,b]. If s € [0,¢*], then

ats—2

(2.17) Gt',s)=1>e € =puk(s).
If s € [t*,1] C [a,1], then t* —s > a+ s — 2 and
(2.18) G(t,s) = T >t = pk ().

From and we obtain that for any t* € [a, ]
G (t*,s) > uk (s), forany s € [0,1].
holds So, Lii) is satisfied and this complete the proof. O
In what follows, we show how the maps which are p2-bounded ensure that
the values of some integral operators are situated in a positive cone of a Banach

space.
We denote by C (a, b; K) the set of all continuous maps from [a, b] to K.

Lemma 2.4. Let X be a Banach space, K C X be a cone in X and let < be the or-
der relation on X induced by the cone K. Let u € (0,1), [c,d] C [a,b], t' € [c,d],
k: [a,b] X [a,b] — R and the cone

K, ={uecC(a,b;K); pu(t) <u(t'),tcla,b]}.
If the map k is p2-bounded with respect to k and [c, d], then for all v € C (a, b; K') we
have

b
(2.19) /k(~,s)v (s)ds € K.

b
Proof. Letv € C (a,b; K) and u (t) = [k (t,s)v (s)ds, for t € [a,b]. It is obvious
that v € C(a, b; K). Since, the map k isauppermajorated by  on [a, b], we have
b b
pu (t) :u/k(t,s)v(s)ds < /;m(s)v(s)ds, t € la,b].
Now, because ik (s) < k (t',s) forall s € [a,b] and ¢’ € [da/, V'], we obtain
b
i (1) < /k(t’,s)v(s)ds —u(t), telab].

a

So, pu (t) < wu (t') for all t € [a,b] and this ensure that u € K. O

Lemma 2.5. Let X be a Banach space, K C X be a cone in X, which induces on X
the order relation <, and let 1 < p < oo. Let p € (0,1), [e,d] C [a,b], t' € [c,d],
k: [a,b] X [a,b] — R and the cone

K, ,={ueLP(a,b;K); pu(t) <u(t') ae ontcla,b]}.
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If the map k is p2-bounded with respect to k and [c,d), then for all v € C (a, b; K) we
have

(2.20) / k(- s)ds € K,

Proof. Letv € LP (a,b; K) and u ( fk; (t,s)v(s)ds a.e. on [a,b]. It is obvious

that u € LP(a,b; K). Since, the map kis ae. uppermajorated by ~ on [a,b], we
have

b
—,u/kts ds</u (s)v(s)ds, a.e.on [a,b].

Now, because px (s) § k(t',s)ae. s € [a,b and t' € [a/,V'], we obtain

b
pu (t) < /k (t',s)v(s)ds=wu(t'), ae onla,b].

So, pu (t) < u(t') a.e. on [a,b] and this ensure that u € K, . O

3. MAIN RESULT

In this section we establish conditions which guarantee the localization of
positive solution of in K, r. We say that u is a positive solution to if
u € C (0, h; K) and satisfies (L.I).

The Banach space C (0, h; K) is endowed with the norm

|t]oo = H%u}i lu()], ueC(0,hK).

We remind that v < y in C (0, h; K) if and only if for any ¢ € [0, k] we have
u(t) <y(t)in K. For M C X abounded set we denote by o (M) the Kuratowskii
measure of noncompactness on X, i.e.,

a (M) =inf {e > 0; M admits a finite cover by sets of diameter <¢e}.

To attain our goal we introduce the following hypotheses:
H1) the map F : K — K is L'-Carathéodory, ¢ > 1 and

F(z) < F(y) forevery z,y € K withx < y;

1 1
H2) foranyt € [0, ], we have k (¢,-) € L? [0, h|, where —+ — =1,

H3) the map ¢t — k (¢, -) is continuous from [0, h] to L”ZEO, hC]];

H4) there exists w : [0,2R] — R, a LP-Carathéodory map such that
(@ a(F(M)) <w(a(M)) for any bounded set M C C (a, b; K);
(b) the unique solution of

<2/kts (s))ds, © € [0,h]

is ¢ = 0.
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H5) there exist p € (0,1), K € LP(0,h;Ry) and [a,b] C [0,1] such that % is
p2-bounded a.e. on [0, k] with respect to « and [a, b];

H6) there exist my, My, > 0 with my, < k(s) a.e. s € [a,b] and k() < M, a.e.
s €[0,h].

Theorem 3.2. Assume that H1)-H6) are satisfied and

(h1) there exist r > 0 such that

r
3.21 inf{|F (z)|;z € K,|x| =ur} > ——;
(3:21) {F (@) ol = pr} > s
(h2) there exist R > 0 such that

R
22 F ; K
(:22) sup {|F (a0 € K[| = R} < o

Then the integral equation of Hammerstein type (1.1) has at least one positive solution
u € C (0, h; K) for which we have

{O<r§|u|OOSR,
pu (t) <wu(t') foranyt € [0,h] andt’ € [a,b].
Proof. Let be the cone
K,={ueC0,kK); pu(t) <u(t'),te€[0,h],t € [a,b]}
and the radial shell
K,p={ue K,; r<|ul, <R}.

If we consider the operator T': K, g — K, defined by

h

T (u) (t) = /k (t,s) F(u(s))ds, t€][0,h],
0

then by Lemma from H5) we have T' (u) € K,,.

The existence of a positive solution to (1.1) is equivalent to the existence of a
fixed point to T. We will apply Theorem so we will prove that MK2) and
MKS3) hold. Hypotheses H1)-H4) guarantee that T" is an opertor of Monch type,
see [15]. So, MK2) holds.

Let v € K, with |u| = R. By H6), for any ¢ € [0, 2] we have

h h
T (u) (£) | = /k;(t,s) ds /kts P (u(s))|ds
0

0

h
g/n()|F(()|ds<M/|F )| ds.

0

Results
IT (4) |oo <M, -sup{|F (z)]; z € K,|z| < R}.
From (h2) we obtain

(3.23) IT (u) |oo < Jul,
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Let u € K, with |u| = r and t* € [0,A], |u(t*)| = r. Hence u € K,,, we can
assume that pu (t*) < u(s) for any s € [a, b]. From H1), we have

(3.24) F(pu(t*)) < F(u)(t) foranyt € [a,b].
Now, for t € [0, h] by H6) holds
b

h
325  T(u)(t) = / k(t,8) F (u(s)) ds > / i () F (u (s)) ds
0

a
b

> uF () [ 1 (5)ds = e (b= @) F (uu (),

Since the norm | - | is increasing with respect to cone C (0, h; K'), we have
T (). > g, (b—a) - it {|F (2)]5 @ € K,|a| = pr}.

From (h1) we obtain

(3.26) IT ()] > .
Now (3.23) and (3.26) guarantee that the inequalities from MK3) are satisfied and
this complete the proof. O

Theorem 3.2]is an useful tool to study the various problems from the theory of
abstract ordinary differential equations or abstract nonlinear integral equations.
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