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Random coincidence points of subcompatible
multivalued maps with applications

A. R. KHAN, F. AKBAR and N. SULTANA

ABSTRACT.
The notion of subcompatible multivalued mapping is introduced. We present some random coin-
cidence point and invariant approximation results for subcompatible random operators. Our work
extends most of the important known results in the current literature to a new class of noncommut-
ing multivalued mappings. We also develop random coincidence results for maps satisfying a more
general contractive condition introduced by Ćirić, Ume and Jesic [5].

1. INTRODUCTION AND PRELIMINARIES

Let M be a nonempty subset of a normed space (X, ‖ · ‖). We denote by 2M ,
C(M), CB(M) and K(M), the families of all nonempty, nonempty closed, non-
empty closed bounded and nonempty compact subsets of M , respectively. On
CB(M), we define the Hausdorff metric H , by setting for A, B ∈ CB(M),

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)},

where d(a,B) = inf{‖a− x‖ : x ∈ B}.
We define PM (x) = {y ∈ M : ‖y − x‖ = d(x,M)} as the set of best ap-

proximants to x ∈ X out of M. Let f : M → M be a mapping. A mapping
T : M → CB(M) is called f -Lipschitz if, for any x, y ∈M , there exists k ≥ 0 such
that H(Tx, Ty) ≤ kd(fx, fy). If k < 1 (resp. k = 1), then T is called f -contraction
(resp. f -nonexpansive). A point x ∈ M is a coincidence point (common fixed
point) of f and T if fx ∈ Tx (x = fx ∈ Tx). F (T ) denotes the set of fixed points
of T . The pair {f, T} is called:

(1) commuting if Tfx = fTx for all x ∈M ;
(2) R-weakly commuting if for all x ∈ M , fTx ∈ CB(M) and there exists

R > 0 such that H(fTx, Tfx) ≤ Rd(fx, Tx);
(3) compatible (cf. [1], p. 319) if fTx ∈ CB(M) for all x ∈ M and

limnH(fTxn, Tfxn) = 0 whenever {xn} is a sequence inM such that limn fxn =
t ∈ limn Txn = A ∈ CB(M);

(4) weakly compatible if f and T commute at their coincidence points.
The set M is called starshaped with respect to q ∈ M if for all x ∈ M , the

segment [q, x] = {(1− k)q + kx : 0 ≤ k ≤ 1} joining q to x, is contained in M .
Suppose that M is q-starshaped with q ∈ F (f), the set of fixed points of f .

Then the pair {f, T} is called:
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(5) R-subcommuting on M (see [20]) if for all x ∈ M, fTx ∈ CB(M) and
there exists a real number R > 0 such that H(fTx, Tfx) ≤ R

k ‖yk − fx‖ for each
k ∈ (0, 1] and yk ∈ Tkx, where Tkx = (1− k)q + kTx;

(6)R-subweakly commuting onM (see [10, 24]) if for all x ∈M, fTx ∈ CB(M)
and there exists a real number R > 0 such that H(fTx, Tfx) ≤ Rd(fx, Tkx) for
each k ∈ [0, 1].

A map T : M → CB(X) is said to be demiclosed at y if for every sequence {xn}
inM and yn ∈ T (xn), n = 1, 2, . . . , such that {xn} converges weakly to x and {yn}
converges to y ∈ X , then we have y ∈ T (x). We say T : M → CB(X) is upper
(lower) semicontinuous if for any closed (open) subset B of X, T−1(B) = {x ∈
M : T (x)∩B 6= ∅} is closed (open); if T is both upper and lower semicontinuous,
then T is continuous. In case Tx ∈ K(X) for all x ∈ M , then T is continuous
if and only if T is continuous from M into the metric space (K(X), H), where
H is the Hausdorff metric induced by the metric d. A mapping f : X → X
is called weakly continuous if {xn} converges weakly to x implies that {f(xn)}
converges weakly to f(x). A mapping f on a q-starshaped set M is called affine
if f(tx + (1 − t)q) = tf(x) + (1 − t)f(q) for all x ∈ M and 0 ≤ t ≤ 1. If M is
convex, then the mapping T : M → CB(M) is said to be semiconvex if for any
x, y ∈M , z = tx+ (1− t)y, where 0 ≤ t ≤ 1, and any x1 ∈ T (x), y1 ∈ T (y), there
exists z1 ∈ T (z) such that ‖z1‖ ≤ max{‖x1‖, ‖y1‖}. A Banach space X satisfies
Opial’s condition if for every sequence {xn} in X weakly convergent to x ∈ X,
the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for all y 6= x.
A mapping T : Ω → CB(X) is called measurable if for any open subset C of

X ,

T−1(C) = {ω ∈ Ω : T (ω) ∩ C 6= φ} ∈
∑

.

A mapping ξ : Ω → X is said to be a measurable selector of a measur-
able mapping T : Ω → CB(X) if ξ is measurable and for any ω ∈ Ω, ξ(ω) ∈
T (ω). A mapping T : Ω × X → CB(X)( resp. f : Ω × X → X) is called a
random operator if for any x ∈ X,T (., x)( resp. f(., x)) is measurable. A mea-
surable mapping ξ : Ω → X is called a random fixed point of a random op-
erator T : Ω × X → CB(X)( resp. f : Ω × X → X) if for every ω ∈ Ω,
ξ(ω) ∈ T (ω, ξ(ω))( resp. f(ω, ξ(ω)) = ξ(ω)). A measurable mapping ξ : Ω → X
is a random coincidence point of random operators T : Ω × X → CB(X) and
f : Ω × X → X if for every ω ∈ Ω, f(ω, ξ(ω)) ∈ T (ω, ξ(ω)). A random opera-
tor T : Ω ×M → 2X (resp. f : Ω × X → X) is said to be continuous (weakly
continuous, etc.) if for each ω ∈ Ω, T (ω, .) (resp. f(ω, .)) is continuous (weakly
continuous, etc.). The pair {f, T} of random operators is called commuting (R-
subcommuting, etc.) if for each ω ∈ Ω, the pair {f(ω, .), T (ω, .)} is so.

Probabilistic functional analysis is an important mathematical discipline be-
cause of its applications to probabilistic models in applied problems. The interest
in this subject enhanced after publication of the survey paper by Bharucha-Reid
[3]. Since then various types of random fixed point theorems have been obtained
by numerous mathematicians; see, for example, [5, 12, 16, 21, 23, 25, 27].
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Recently, Shahzad and Hussain [25] and Khan and Hussain [17] established
random versions of the results of Latif and Tweddle [19] in the setting of Banach
spaces and Frêchet spaces, respectively. In [20], Rhoades has generalized some
results of Latif and Tweddle [19] by replacing commutativity condition of maps
with R-subcommuting condition whereas, Shahzad [24] has studied their results
for the class of R-subweakly commuting maps. In this paper, we introduce the
notion of subcompatible multivalued maps and prove some random coincidence
point results for this general class of maps. As applications, common random
fixed point and random invariant approximation results are derived. Our results
unify and extend many known results existing in the literature including those of
Dotson [6], Hussain and Khan [9], Hussain and Jungck [10], Itoh [12], Jungck and
Sessa [14], Khan and Hussain [17], Latif and Bano [18], Latif and Tweddle [19],
Rhoades [20], Shahzad [24], Shahzad and Hussain [25] and Xu [27].

We shall need the following known results.

Lemma 1.1. [19] Let M be a nonempty weakly compact subset of a Banach space X
satisfying Opial’s condition. Let f:M→X be a weakly continuous map and T:M→K(X)
an f -nonexpansive multivalued map. Then f − T is demiclosed.

Theorem 1.1. ([2], Theorem 5.1). Let (X, d) be a separable complete metric space,
T : Ω×X → CB(X) a multivalued random operator, and f : Ω×X → X a continuous
random operator such that T (ω,X) ⊆ f(ω,X) for each ω ∈ Ω. If f and T are compatible
and for all x, y ∈ X and all ω ∈ Ω, we have

H(T (ω, x), T (ω, y)) ≤ kd(f(w, x), f(ω, y)),

k ∈ (0, 1), then T and f have a random coincidence point.

2. MAIN RESULTS

We begin with the definition of subcompatible multivalued mappings.

Definition 2.1. Let M be a q-starshaped subset of a normed space X .
Let f : M → M and T : M → CB(M) be maps with q ∈ F (f). We define
Sq(f, T ) := ∪{S(f, Tk) : 0 ≤ k ≤ 1}, where Tkx = (1− k)q + kTx and S(f, Tk) =
{{xn} ⊂ M : limn fxn = t ∈ limn Tkxn = A ⊂ M ⇒ limnH(fTkxn, Tkfxn) = 0}.
The maps f and T are called subcompatible if fTx ∈ CB(M) for all x ∈ M and
limnH(fTxn, T fxn) = 0 for all sequences {xn} ∈ Sq(f, T ).

For selfmaps T and f of M with q ∈ F (f), we define Sq(f, T ) := ∪{S(f, Tk) :
0 ≤ k ≤ 1} where Tkx = (1− k)q + kTx and S(f, Tk) = {{xn} ⊂ M : limn fxn =
limn Tkxn = t ∈M ⇒ limn ‖fTkxn − Tkfxn‖ = 0}. Now f and T are subcompat-
ible if limn ‖fTxn − Tfxn‖ = 0 for all sequences {xn} ∈ Sq(f, T ).

Clearly, subcompatible maps are compatible but the converse does not hold,
in general, as the following example shows.

Example 2.1. Let X = R with usual norm and M = [1,∞). Let f(x) = 2x− 1 and
T (x) = x2, for all x ∈ M . Let q = 1. Then M is q-starshaped with fq = q. Note
that f and T are compatible. For any sequence {xn} in M with limn xn = 2, we
have limn fxn = limn T 2

3
xn = 3 ∈ M ⇒ limn ‖fT 2

3
xn − T 2

3
fxn‖ = 0. However,

limn ‖fTxn − Tfxn‖ 6= 0 and thus f and T are not subcompatible maps.
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Note that R-subweakly commuting and R-subcommuting maps are subcom-
patible. The following simple example reveals that the converse is not true, in
general.

Example 2.2. Let X = R with usual norm and M = [0,∞). Let f(x) = x
2 if

0 ≤ x < 1 and fx = x if x ≥ 1, and T (x) = 1
2 if 0 ≤ x < 1 and Tx = x2 if x ≥ 1.

Then M is 1-starshaped with f1 = 1 and Sq(f, T ) = {{xn} : 1 ≤ xn < ∞}. Note
that f and T are subcompatible but not R-weakly commuting for all R > 0. Thus
f and T are neither R-subweakly commuting nor R-subcommuting maps.

The following result is our main theorem.

Theorem 2.2. Let M be a nonempty subset of a Banach space X which is starshaped
with respect to q ∈M, and let f : Ω×M →M be a continuous affine random operator
with f(ω, q) = q for each ω ∈ Ω. Let T : Ω × M → K(M) be an f -nonexpansive
random operator such that T (ω,M) ⊆ f(ω,M) for each ω ∈ Ω. Suppose that the pair
{f(ω, .), T (ω, .)} is subcompatible and that one of the following conditions is satisfied:

(a) M is compact;
(b) M is separable weakly compact, (f − T )(ω, .) is demiclosed at 0 for each ω ∈ Ω;
(c) M is separable weakly compact and X satisfies Opial’s condition.

Then f and T have a random coincidence point.

Proof. Choose a sequence {kn} of real numbers with 0 < kn < 1 and kn → 1 as
n→∞. For each n, consider the random operator Tn : Ω×M → CB(M) defined
by

Tn(ω, x) = (1− kn) q + knT (ω, x).
Then,

H (Tn(ω, x), Tn(ω, y)) = knH(T (ω, x), T (ω, y))

≤ knd(f(ω, x), f(ω, y))

for each x, y ∈ M and each ω ∈ Ω. Since T (ω,M) ⊂ f(ω,M) and f is affine with
f(ω, q) = q for each ω ∈ Ω, we have Tn(ω,M) ⊂ f(ω,M) for each ω ∈ Ω. Further,
since the pair {f, T} is subcompatible and f is affine with f(ω, q) = q, for any
{xm} ⊂M and ω ∈ Ω, with limm f(ω, xm) ∈ limm Tn(ω, xm), we have

lim
m
H(Tn(ω, f(ω, xm)), f(ω, Tn(ω, xm)) = kn lim

m
H(T (ω, f(ω, xm), f(ω, T (ω, xm)

= 0.

Thus each pair {f, Tn} is compatible.
(a) By Theorem 1.1, there is a measurable map ξn : Ω→M such that

f (ω, ξn(ω)) ∈ Tn (ω, ξn(ω)) , for each ω ∈ Ω.

For each n, define Gn : Ω → CB(M) by Gn(ω) = cl {ξi(ω) : i ≥ n} and G : Ω →
CB(M) byG(ω) =

⋂∞
n=1Gn(ω).As in [12],G is measurable and has a measurable

selector ξ : Ω → M. Fix ω ∈ Ω arbitrarily. Then some subsequence {ξm(ω)}
of {ξn(ω)} converges to ξ(ω). As f and T are continuous, so Tm(ω, ξm(ω)) →
T (ω, ξ(ω)) and f(ω, ξm(ω))→ f(ω, ξ(ω)). Consequently,

d(f(ω, ξ(ω)), T (ω, ξ(ω))) = lim
m
d(f(ω, ξm(ω)), Tm(ω, ξm(ω)) = 0.

Hence f(ω, ξ(ω)) ∈ T (ω, ξ(ω)).
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(b) Since M is separable and weakly compact, the weak topology on M is a
metric topology (see e.g.[17], p. 161). It follows that M is a complete metric
space. Thus, by Theorem 1.1, there is a measurable map ξn : Ω→M such that

f (ω, ξn(ω)) ∈ Tn (ω, ξn(ω)) , for each ω ∈ Ω.

For each n, define Fn : Ω→WK(M) by

Fn(ω) = w − cl {ξi(ω) : i ≥ n} ,
where WK(M) is the family of all nonempty weakly compact subsets of M and
w−cl denotes the weak closure. Define F : Ω→WK(M) by F (ω) =

⋂∞
n=1 Fn(ω).

As before, the weak topology on M is a metric topology. Then as in ([12], proof
of Theorem 2.5) (see also [17]), F is w-measurable and has a measurable selector
ξ. This ξ is the desired random coincidence point of f and T. Indeed, fix ω ∈ Ω
arbitrarily. Then some subsequence {ξm(ω)} of {ξn(ω)} converges weakly to ξ(ω).
Also, there is some um ∈ T (ω, ξm(ω)) such that

f(ω, ξm(ω))− um = (1− km) {q − um} .
The set M is bounded and km → 1, it follows that f(ω, ξm(ω)) − um → 0. Now
ym = f(ω, ξm(ω)) − um ∈ (f − T )(ω, ξm(ω)) and ym → 0. As (f − T )(ω, .) is
demiclosed at 0, it follows that f(ω, ξ(ω)) ∈ T (ω, ξ(ω)).

(c) An affine and continuous map is weakly continuous [6], so by Lemma 1.1,
(f −T )(ω, .) is demiclosed at 0. Hence, f and T have a random coincidence point
ξ by part (b). �

R-subweakly commuting maps are subcompatible, so we obtain the following
recent result as immediate corollary to our main theorem.

Corollary 2.1. ([24], Theorem 3.1). Let M be a nonempty separable weakly compact
subset of a Banach space X, which is q-starshaped, and let f : Ω × M → M be a
continuous affine random operator such that f(ω, q) = q for each ω ∈ Ω.

Let T : Ω×M → K(M) be an f -nonexpansive random operator such that T (ω,M) ⊂
f(ω,M). Suppose that the pair {f, T} is R-subweakly commuting and that one of the
following two conditions is satisfied:

(a) (f − T )(ω, .) is demiclosed at 0 for each ω ∈ Ω;
(b) X satisfies Opial’s condition.

Then f and T have a random coincidence point.

Recall that a Banach space X is almost smooth [15] if SM(B) is dense in X∗,
where SM(B) is the set of all functionals of X∗ which attain their norm at a
smooth point of the unit ball B = {x ∈ X : ‖x‖ ≤ 1}. A subset M of X is called
Chebyshev if for each point x ∈ X , PM (x) is a singleton.

Every weakly compact Chebyshev subset of an almost smooth Banach space is
convex [15], so we obtain the following result which properly contains Corollary
3.2 [24].

Corollary 2.2. Let M be a nonempty Chebyshev subset of an almost smooth Banach
space X , and let f : Ω×M →M be a continuous affine random operator.

Let T : Ω×M → K(M) be an f -nonexpansive random operator such that T (ω,M) ⊂
f(ω,M) for each ω ∈ Ω. Suppose that the pair {f(ω, .), T (ω, .)} is subcompatible and
that one of the following conditions is satisfied:
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(a) M is compact;
(b) M is separable weakly compact, (f − T )(ω, .) is demiclosed at 0 for each ω ∈ Ω;
(c) M is separable weakly compact and X satisfies Opial’s condition.

Then f and T have a random coincidence point.

From Theorem 2.2 we obtain the following common fixed point result.

Theorem 2.3. Suppose that M,f, T, and q satisfy all the hypotheses of Theorem 2.2.
If for any x ∈ M and ω ∈ Ω, f(ω, x) ∈ T (ω, x) implies the existence of limn f

n(ω, x),
then f and T have a common random fixed point.

Proof. By Theorem 2.2, T and f have a random coincidence point ξ0 : Ω → M
i.e. for each ω ∈ Ω, f(ω, ξ0(ω)) ∈ T (ω, ξ0(ω)). Fix ω ∈ Ω. Since the pair
{f, T} is compatible so they commute at their coincidence points. Thus, we have
fn(ω, ξ0(ω))=fn−1(ω, f(ω, ξ0(ω))) ∈ fn−1(ω, T (ω, ξ0(ω)))=T (ω, fn−1(ω, ξ0(ω))).

Let ξ(ω) = limn f
n(ω, ξ0(ω)). The mapping ξ being the pointwise limit of

measurable mappings is measurable. Taking limit as n → ∞, we get ξ(ω) =
f(ω, ξ(ω) ∈ T (ω, ξ(ω)). Hence ξ is a common random fixed point of f and T. �

Theorem 2.4. LetM be a nonempty separable weakly compact convex subset of a Banach
space X , and let f : Ω×M →M be a continuous affine random operator.
Let T : Ω×M → K(M) be an f -nonexpansive random operator such that T (ω,M) ⊂
f(ω,M) for each ω ∈ Ω. Suppose that the pair {f(ω, .), T (ω, .)} is subcompatible and
that (f−T )(ω, .) is semiconvex for each ω ∈ Ω. Then f and T have a random coincidence
point.

Proof. Choose a sequence {kn} of real numbers with 0 < kn < 1 and kn → 1 as
n→∞. For each n, define the random operator Tn : Ω×M → CB(M) by

Tn(ω, x) = (1− kn) q + knT (ω, x),

where q = f(ω, q) for each ω ∈ Ω. Then, as in the proof of Theorem 2.2, we have

f (ω, ξn(ω)) ∈ Tn (ω, ξn(ω))

for each ω ∈ Ω. Fix ω ∈ Ω arbitrarily. For each n, there is some un ∈ T (ω, ξn(ω))
such that

f(ω, ξn(ω))− un = (1− kn) {q − un} .
The set M is bounded and kn → 1, it follows that f(ω, ξn(ω))−un → 0 and hence
d(f(ω, ξn(ω)), T (ω, ξn(ω)))→0 as n→∞. Thus inf{d(f(ω, x), T (ω, x)) : x ∈M} =
0. Define a mapping hn : Ω×M → R as hn(ω, x) = d(f(ω, x), T (ω, x))− 1

n , n ≥ 1.
Then by Rybinski ([21], Lemmas 1 and 2), each hn is a Caratheodory function
(that is, continuous in x and measurable in ω).
For each n, define Gn(ω) = {x ∈ M : hn(ω, x) < 0} and Ln(ω) = cl(Gn(ω)).

Then as in ([24], proof of Theorem 3.2), L(ω) =
∞⋂

n=1
Ln(ω) is measurable and has

a measurable selector ξ. This ξ is the desired random coincidence point of f and
T. �

As applications of Theorem 2.2 and Theorem 2.4, we obtain the following ran-
dom approximation theorem which extends Theorem 7 of Jungck and Sessa [14],
and the main results of Latif and Bano [18], Sahab et al. [22] and Singh [26] to the
wider class of subcompatible maps.
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Theorem 2.5. Let X be a Banach space, u ∈ X, and M ⊆ X .
f : Ω × X −→ X and T : Ω × X −→ K(X) be two random operators. Suppose that
PM (u) is nonempty, q− starshaped, f is affine and continuous mapping, f(ω, q) = q
for each ω ∈ Ω, T is f -nonexpansive and for every ω ∈ Ω, T (ω, ∂M ∩ M) ⊆ M,
f(ω, PM (u)) = PM (u), supy∈T (ω,x) ‖y − u‖ ≤ ‖f(ω, x)− u‖ for all x ∈ PM (u). Sup-
pose that the pair {f(ω, .), T (ω, .)} is subcompatible on PM (u) and one of the following
conditions is satisfied:

(a) PM (u) is compact;
(b) PM (u) is separable weakly compact, and (f − T )(ω, .) is demiclosed at 0 for each

ω ∈ Ω;
(c) PM (u)is separable weakly compact, and X satisfies Opial’s condition;
(d) PM (u) is separable weakly compact and convex instead of q− starshaped and

(f − T )(ω, .) is semiconvex for each ω ∈ Ω.
Then T and f have a random coincidence point ψ : Ω→ PM (u). If, in addition, for any
v ∈ M and ω ∈ Ω, f(ω, f(ω, v)) = f(ω, v) whenever f(ω, v) ∈ T (ω, v), then there
exists a common random fixed point ξ : Ω→ PM (u) of f and T .

Proof. Fix ω ∈ Ω. Let x ∈ PM (u). Then ‖(1− λ)x+ λu− u‖ < ‖x− u‖ = d(u,M)
for all λ ∈ (0, 1). Thus, {(1− λ)x+ λu : λ ∈ (0, 1)} ∩M = ∅ and so x ∈ M ∩ ∂M.
Since, T (ω,M ∩ ∂M) ⊆M, it follows that T (ω, x) ⊆M. Now let z ∈ T (ω, x).
As f(ω, x) ∈ PM (u),

‖z − u‖ ≤ sup
y∈T (ω,x)

‖y − u‖ ≤ ‖f(ω, x)− u‖ = d(u,M).

Thus z ∈ PM (u) and hence T (ω, x) ⊆ PM (u). Moreover, T (ω, PM (u)) ⊆ PM (u) =
f(ω, PM (u)). Thus in each case, f and T have a random coincidence pointψ : Ω→
PM (u), i.e., f(ω, ψ(ω)) ∈ T (ω, ψ(ω)) for each ω ∈ Ω (for (a)-(c), we apply Theorem
2.2, and for (d), we use Theorem 2.4). Let ξ(ω) = f(ω, ψ(ω)) for ω ∈ Ω. Then
ξ : Ω→ PM (u) is measurable. Fix ω ∈ Ω arbitrarily. Since T and f are compatible,
we have ξ(ω) = f(ω, ψ(ω)) = f(ω, ξ(ω)) = f(ω, f(ω, ψ(ω)) ∈ f(ω, T (ω, ψ(ω)) =
T (ω, f(ω, ψ(ω)) = T (ω, ξ(ω)). Thus ξ is a common random fixed point of f and
T. �

Corollary 2.3. Let M be a subset of a Banach space X , f : Ω ×X → X and T : Ω ×
X → K(X). Assume that PM (u) is nonempty q-starshaped, f is affine and continuous
mapping, T is f -nonexpansive on PM (u), and T (ω, PM (u)) ⊂ f(ω, PM (u)) ⊂ PM (u)
and f(ω, q) = q for each ω ∈ Ω. Suppose that the pair {f(ω, .), T (ω, .)} is subcompatible
on PM (u) and one of the conditions ((a)− (d)) in Theorem 2.5 is satisfied. Then T and
f have a random coincidence point ψ : Ω → PM (u). If, in addition, for any v ∈ M
and ω ∈ Ω, f(ω, f(ω, v)) = f(ω, v) whenever f(ω, v) ∈ T (ω, v), then there exists a
common random fixed point ξ : Ω→ PM (u) of f and T .

3. CONCLUDING REMARKS

(1) Theorem 2.2, Theorem 2.3 and Theorem 2.5 (a-c) remain valid if starshaped-
ness of the set M is replaced by the following property (N) considered for single-
valued case in [8, 11] and for multivalued case in [7, 25]:
A set M is said to have property (N) with respect to (w.r.t) T if,

(i) T : M → C(M),
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(ii) (1 − kn)q + knTx ⊂ M , for some q ∈ M and a fixed sequence of real
numbers kn(0 < kn < 1) converging to 1 and for each x ∈M.
Consequently, we obtain the stochastic generalizations of recent results due to
Hussain [7] and Hussain and Berinde [8].

(2) Theorem 2.2-Corollary 2.1 and Theorems 2.4-Corollary 2.3 remain valid in
the setup of a Frêchet space (X, d). Consequently, recent results due to Khan and
Hussain [17] and ([24], Theorem 3.4 and Corollary 3.5) are extended to the class of
subcompatible maps. Moreover, these results provide stochastic versions of the
corresponding results in [9] and [11].

(3) Theorem 2.2 extends Theorem 3.4 in [12], Theorem 6 [14], Theorem 2.2 and
Theorem 2.3 in [19] and Theorem 1 (ii) by Xu [27].

(4) Theorem 2.3 extends the common random fixed point result in [24].

(5) Theorem 2.4 contains properly Theorem 3.2 and Corollary 3.4 [24].

(6) Following the above arguments and those in [10], we may extend Theorem
2.2-Theorem 2.12 and Theorem 2.14-Corollary 2.16 of Hussain and Jungck [10]
from R-subweakly commuting maps to subcompatible maps by using Theorem
3.1 of Jungck [13].

(7) In Theorem 2.1, Ćirić et al. [5] (see also [4]) employed a very general con-
tractive condition given in (1.2). Utilizing this result of Ćirić et al. [5], we can sim-
ilarly prove the coincidence point results without any commutativity condition
on maps. These results in turn will generalize the corresponding results obtained
in section 3 by Shahzad and Hussain [25]. We leave details to the reader.
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