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A new type of approximating sequence for the
solution of the Cauchy problem consisting of
piecewise linear functions

CRISTINEL MORTICI and EMIL LUNGU

ABSTRACT.

This paper continues the study of a new successive approximation method for solving the Cauchy
problem. The motivation for considering such a method consists in the fact that in practice real dif-
ficulties arise in the problem of computing integrals from the respective recurrence relations. We
give below an original method to avoid these difficulties by defining a similar recurrence for solving
the Cauchy problem, so that the obtaining approximating sequence consists in functions which are
piecewise linear. We prove the (uniform) convergence and finally, a numerical example is given.

1. INTRODUCTION

The Picard theorem (e.g. [1], [5], [9]) is one of the most known result in the
theory of existence and uniqueness of the solution of the Cauchy problem. More-
over, the Picard theorem gives us a method for finding approximations of the
solution, also called the successive approximations method. Other two new type
of successive approximations method were given in [7]. Theoretically, the solu-
tion of the Cauchy problem is the (uniform) limit of the approximating sequence,
but in practice real difficulties arise in the problem of computing integrals from
the recurrence relation. It is not suitable for finding the solution since computing
the integrals in each iteration step is not possible in general. Even for numerical
computations it is of no great help, since evaluating the integrals is too time con-
suming. Here we give an original method to avoid these difficulties and the idea
is to use a similar recurrence to construct an approximating sequence consisting
in functions which are linear on subintervals. Remark that this new type of re-
currence and other ideas we introduce here can also be applied to a large class
of ordinary differential equations. In this way, the problem of numerical calcu-
lations of the integrals is solved, because the integrated functions are piecewise
linear. One of the approximating sequence given in [7] is

yn+1(x) = f

(

x, y0 +

∫ x

x0

yn(t) d t

)

and we will consider here the new form

wn+1(zk) = f

(

zk, y0 +

∫ zk

x0

wn(t) d t

)
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where wn+1 is linear on each interval [zk, zk+1] , −m ≤ k ≤ m − 1. The advan-
tage is that the integrated function is piecewise linear and the integral can be
easily calculated in concrete cases. We can see here once again the powerful of
the method developed in [7], because this linearization we present here does not
work in case of the classical Picard iteration.

2. THE RESULTS

In practise arise real difficulties in the problem of computing the integrals from
the recurrence and we will give here an original method to avoid these difficul-
ties. This method is to consider the approximating sequence (wn)n∈N consisting
of functions which are linear on some subintervals. Let us consider again the
Cauchy problem

(2.1)

{

y′ = f(x, y)
y(x0) = y0,

with global continuity and lipschizianity properties with respect to the second
argument, |f(x, y1) − f(x, y2)| ≤ L |y1 − y2|. Then we have local solvability for
the Cauchy problem (2.1), where the solution is defined at least on the interval

y : [x0 − δ, x0 + δ] → R with 0 < δ < min

{

a,
b

‖f‖

}

and ||f || = max
(x,y)∈D

|f(x, y)|.

Let 0 < r < min
{

δ, L−1
}

, m ∈ N be given and let

∆ = (x0 − r = z−m < z−m+1 < ... < z0 = x0 < ... < zm = x0 + r)

be an arbitrary division of the interval [x0 − r, x0 + r] with the norm denoted by
‖∆‖. Let us define the functions sequence wn : [x0 − r, x0 + r] → R,

(2.2) wn+1(zk) = f

(

zk, y0 +

∫ zk

x0

wn(t) d t

)

, −m ≤ k ≤ m, (w0 = 0)

where wn+1 is linear on each interval [zk, zk+1], −m ≤ k ≤ m − 1,

wn+1(x) = (1 − λ)wn+1(zk) + λwn+1(zk+1), ∀x = (1 − λ)zk + λzk+1, λ ∈ [0, 1] .

Theorem 2.1. The functions sequence (wn)n∈N defined by the recurrence (2.2) con-
verges uniformly on each interval [x0−r, x0+r]⊆ [x0−δ, x0+δ], with 0<r<L−1.

Proof. First, for −m ≤ k ≤ m, we have

|wn+2(zk) − wn+1(zk)|

=

∣

∣

∣

∣

f

(

zk, y0 +

∫ zk

x0

wn+1(t) d t

)

− f

(

zk, y0 +

∫ zk

x0

wn(t) d t

)
∣

∣

∣

∣

≤ L

∣

∣

∣

∣

(

y0 +

∫ zk

x0

wn+1(t) d t

)

−

(

y0 +

∫ zk

x0

wn(t) d t

)∣

∣

∣

∣

= L

∣

∣

∣

∣

∫ zk

x0

(wn+1(t) − wn(t)) d t

∣

∣

∣

∣

≤ L |zk − x0| · ‖wn+1 − wn‖ ≤ Lr ‖wn+1 − wn‖ .

Now let x ∈ [x0 − r, x0 + r] be arbitrary, say x ∈ [zk, zk+1], for some integer
−m ≤ k ≤ m − 1. Then there exists λ ∈ [0, 1] so that x = (1 − λ)zk + λzk+1 and
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using also the linearity of wn+2 and wn+1 on [zk, zk+1], we derive

|wn+2(x) − wn+1(x)| = |wn+2((1 − λ)zk + λzk+1) − wn+1((1 − λ)zk + λzk+1)|

= |(1 − λ)wn+2(zk) + λwn+2(zk+1) − (1 − λ)wn+1(zk) − λwn+1(zk+1)|

≤ (1 − λ) |wn+2(zk) − wn+1(zk)| + λ |wn+2(zk+1) − wn+1(zk+1)|

≤ (1 − λ)Lr ‖wn+1 − wn‖ + λLr ‖wn+1 − wn‖ = Lr ‖wn+1 − wn‖ .

By taking the supremum with respect to x ∈ [x0 − r, x0 + r] in the inequality

(2.3) |wn+2(x) − wn+1(x)| ≤ Lr ‖wn+1 − wn‖

we obtain

(2.4) ‖wn+2 − wn+1‖ ≤ Lr ‖wn+1 − wn‖ ,

for all integers n ∈ N. By induction,

(2.5) ‖wn+s+1 − wn+s‖ ≤ (Lr)s ‖wn+1 − wn‖ .

Now, for n, p ∈ N, we have

‖wn+p − wn‖ = ‖(wn+p − wn+p−1) + (wn+p−1 − wn+p−2) + ... + (wn+1 − wn)‖

≤ ‖wn+p − wn+p−1‖ + ‖wn+p−1 − wn+p−2‖ + ... + ‖wn+1 − wn‖

≤
(

(Lr)p−1 + (Lr)p−2 + ... + Lr + 1
)

· ‖wn+1 − wn‖

=
1 − (Lr)p

1 − Lr
· ‖wn+1 − wn‖ ≤

1 − (Lr)p

1 − Lr
· (Lr)n · ‖w1 − w0‖ ≤

(Lr)n

1 − Lr
· ‖w1‖ .

It results that (wn)n∈N is a Cauchy sequence in the B-space C([x0 − r, x0 + r]) en-
dowed with the supremum norm, thus it converges uniformly to a limit denoted
w ∈ C([x0 − r, x0 + r]). �

By taking p → ∞ in the inequality

(2.6) ‖wn+p − wn‖ ≤
(Lr)n

1 − Lr
· ‖w1‖ ,

we obtain the error estimate

(2.7) ‖w − wn‖ ≤
(Lr)n

1 − Lr
· ‖w1‖ =

(Lr)n

1 − Lr
· ||f || .

Definition 2.1. For each real number ε > 0, we say that a derivable function
ω : [x0 − r, x0 + r] → R with continuous derivative is ε− fixed point for the
Cauchy problem (2.1) if ω(x0) = y0 and

|ω′(x) − f(x, ω(x))| ≤ ε, ∀ x ∈ [x0 − r, x0 + r] .

From now assume that there exist α, L > 0 so that

(2.8) |f(x1, y1) − f(x2, y2)| ≤ α |x1 − x2| + L |y1 − y2| ,

condition which assures on f the lipschitzianity in the second argument.
We establish some estimations we will use later.

Lemma 2.1. If f satisfies (2.8), then the following relations hold true:
a) ||w|| ≤ ||f ||; b) |wn(zk+1) − wn(zk)| ≤ (α + L ||f ||) ||∆||.



86 C. Mortici and E. Lungu

Proof. a) From (2.2), |wn+1(zk)| ≤ ||f || and wn+1 is linear on subintervals, so for
x ∈ [x0 − r, x0 + r] , we have |wn+1(x)| ≤ max

−m≤k≤m
|wn+1(zk)| ≤ ||f || . By taking

the supremum with respect to x ∈ [x0 − r, x0 + r] , it results that ||wn+1|| ≤ ||f || ,
then by n → ∞, ||w|| ≤ ||f || .

b) We have

|wn(zk+1) − wn(zk)|

=

∣

∣

∣

∣

f

(

zk+1, y0 +

∫ zk+1

x0

wn−1(t)dt

)

− f

(

zk, y0 +

∫ zk

x0

wn−1(t)d t

)∣

∣

∣

∣

≤ α |zk+1 − zk| + L

∣

∣

∣

∣

y0 +

∫ zk+1

x0

wn−1(t)d t − y0 −

∫ zk

x0

wn−1(t)d t

∣

∣

∣

∣

= α |zk+1 − zk| + L

∣

∣

∣

∣

∫ zk+1

zk

wn−1(t)d t

∣

∣

∣

∣

≤ α |zk+1 − zk| + L |zk+1 − zk| · ||wn−1||

≤ (α + L ||f ||) ||∆|| .

�

Theorem 2.2. Assume that f satisfies (2.8) and the division ∆ is chosen with

||∆|| ≤
ε

2(α + L ||f ||)
. Then the function ω : [x0 − r, x0 + r] → R given by ω(x) =

y0 +

∫ x

x0

w(t)d t is ε− fixed point for the Cauchy problem (2.1).

Proof. We have ω′(x) = w(x). By taking the limit as n → ∞ in the recurrence
relation (2.2), we obtain

(2.9) w(zk) = f

(

zk, y0 +

∫ zk

x0

w(t)d t

)

,

or ω′(zk) = f(zk, ω(zk)), −m ≤ k ≤ m. Further, let x ∈ [x0 − r, x0 + r], say that
x ∈ [zk, zk+1], for some integer −m ≤ k ≤ m − 1. Then

|ω′(x) − f(x, ω(x))| = |ω′(x) − f(x, ω(x)) − (ω′(zk) − f(zk, ω(zk))|(2.10)

= |ω′(x) − ω′(zk) + f(zk, ω(zk)) − f(x, ω(x))|

≤ |f(zk, ω(zk)) − f(x, ω(x))| + |ω′(x) − ω′(zk)|

and we intend to make these expressions as small as possible. First

|f(zk, ω(zk)) − f(x, ω(x))| ≤ α |zk − x| + L |ω(zk) − ω(x)|(2.11)

≤ α ||∆||+L

∣

∣

∣

∣

∫ x

zk

w(t)d t

∣

∣

∣

∣

≤α ||∆||+L ||∆||·||f ||

= (α + L ||f ||) ||∆|| ,

where we used the inequality ||w|| ≤ ||f ||. Then with Lemma 2.1, b), we have

|ω′(x) − ω′(zk)| = |w(x) − w(zk)| = lim
n→∞

|wn(x) − wn(zk)|(2.12)

≤ lim
n→∞

|wn(zk+1) − wn(zk)| ≤ (α + L ||f ||) ||∆|| .

By adding (2.11) and (2.12), |ω′(x) − f(x, ω(x))| ≤ 2(α + L ||f ||) ||∆|| ≤ ε, so ω is
ε−fixed point of the Cauchy problem (2.1). �
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Now we are preoccupied about the error estimates. For sake of simplicity, we
will work now only on the interval [x0, x0 + r]. We give the following

Theorem 2.3. Assume that ω : [x0, x0 + r] → R is a ε− fixed point of the Cauchy
problem (2.1) and y : [x0, x0 + r] → R is the (unique) solution of the Cauchy problem
(2.1). Then:

a) |ω′(x) − y′(x)| ≤ ε + L

∫ x

x0

|ω′(t) − y′(t)| d t, for all x ∈ [x0, x0 + r];

b) ||ω − y|| ≤
exp(Lr) − 1

L
ε, where this norm is considered on [x0, x0 + r].

Proof. a) We have

|ω′(x) − y′(x)| = |(ω′(x) − f(x, ω(x))) + (f(x, ω(x)) − f(x, y(x)))|

≤ |ω′(x) − f(x, ω(x))| + |f(x, ω(x)) − f(x, y(x))|

≤ ε + L |ω(x) − y(x)| = ε + L

∣

∣

∣

∣

∫ x

x0

(ω′(t) − y′(t)) d t

∣

∣

∣

∣

≤ ε + L

∫ x

x0

|(ω′(t) − y′(t))| d t.

b) Follows from Gronwall’s inequality. If 0 < A ∈ R, u ≥ 0 and

u(x) ≤ A +

∫ x

x0

B(t)u(t)d t,

for all x ∈ [x0, x0 + r], then u(x) ≤ A exp
(

∫ x

x0
B(t)d t

)

, for all x ∈ [x0, x0 + r].

In our case, with u(x) = |ω′(x) − y′(x)|, from a), we have

|ω′(x) − y′(x)| ≤ ε + L

∫ x

x0

|ω′(t) − y′(t)| d t,

so

|ω′(x) − y′(x)| ≤ ε exp

(
∫ x

x0

L′d t

)

= ε exp (L(x − x0)) ≤ ε exp(Lr).

Thus for all x ∈ [x0, x0 + r], we have

|ω(x) − y(x)| =

∣

∣

∣

∣

∫ x

x0

(ω′(t) − y′(t))d t

∣

∣

∣

∣

≤

∫ x

x0

|(ω′(t) − y′(t))| d t

≤ ε

∫ x

x0

exp(L(t − x0))d t = ε
exp(L(t − x0))

L

∣

∣

∣

∣

t=x

t=x0

≤
exp(Lr) − 1

L
ε

and the conclusion follows by taking the supremum on [x0, x0 + r]. �

The classical way in iteration theory is that the approximating sequence con-
verges (uniform) to the solution. We have here an interesting situation; the ap-
proximating sequence converges to a ε−fixed point, which is as close as we want
from the exact solution. Hence it is necessary a result which give the error esti-
mates when we approximate the exact solution by ωn, where

ωn(x) = y0 +

∫ x

x0

wn(t)d t, n ∈ N.

Thus we give the following
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Theorem 2.4. Assume that the Cauchy problem (2.1) is defined by the continuous func-
tion f : {(x, y)‖ |x − x0| ≤ a, |y − y0| ≤ b} → R for which there exist α, L > 0 such
that|f(x1, y1) − f(x2, y2)| ≤ α |x1 − x2|+L |y1 − y2| and the sequence (wn)n∈N

, with

w0 = 0 is defined by the recurrence (2.2) on [x0, x0 + r], with r < min

{

a,
b

||f ||
, L−1

}

and ||∆|| ≤
εL

4(exp(Lr) − 1)(α + L ||f ||)
.

Then for every positive integer n ≥ logLr

ε(1 − Lr)

2 ||f ||
, we have ||ωn − y|| ≤ ε, where

y : [x0, x0 + r] → R be the unique solution of the Cauchy problem (2.1).

Proof. We have n ≥ logLr

ε(1 − Lr)

2r ||f ||
⇔

r(Lr)n

1 − Lr
‖f‖ ≤

ε

2
, so

||ωn − y|| = ||(ωn − ω) + (ω − y)|| ≤ ||ωn − ω|| + ||ω − y|| ≤
ε

2
+

ε

2
= ε,

where the inequalities ||ωn − ω|| ≤
ε

2
and ||ω − y|| ≤

ε

2
will be demonstrated

next. First, using (2.7),

|ωn(x) − ω(x)| =

∣

∣

∣

∣

∫ x

x0

(wn(t) − w(t))d t

∣

∣

∣

∣

≤ r ||wn − w|| ≤
r(Lr)n

1 − Lr
||f || ≤

ε

2
,

so ||ωn − ω|| ≤
ε

2
. On the other hand, from ||∆|| ≤

εL

4(exp(Lr) − 1)(α + L ||f ||)
, it

results using Theorem 2.2, that ω is
εL

2(exp(Lr) − 1)
, fixed point for the equation

(2.1). Further, with Theorem 2.3, b) it results that |ω − y| ≤
ε

2
. �

3. A NUMERICAL EXAMPLE

Let us consider the Cauchy problem for the second order differential equation

(3.13)
d2u

dx2
−

2x

1 − x2

du

dx
+

20

1 − x2
u = 0

with the initial conditions

(3.14)

{

u(0) = 3/2

u′(0) = 0.

The exact solution of this problem is the Legendre polynomial of the fourth
degree L4(x) = 35

8 x4− 15
4 x2 + 3

8 . Usual techniques applied to equation (3.13) may
reduce our problem to the following first order system of differential equations

(3.15)







y′
1 = y2

y′
2 =

2x

1 − x2
y2 −

20

1 − x2
y1

with the initial condition

(3.16)

{

y1(0) = 3/2

y2(0) = 0.
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The relationships which transform equation (3.13) into the equivalent system
(3.15) are y1 = u, y2 = u′. Using the vectorial notations y = (y1, y2)

T and

f(x, y) =
(

y2,
2x

1−x2 y2 −
20

1−x2 + y1

)T

the problem (3.15), (3.16) may be written

in the general form y′ = f(x, y). Following the theory presented in the previous
section we construct the sequence {wn}n∈N

(3.17) wk
n+1 =















f
(

zk,
∑k−1

j=0 (wj
n + wj+1

n ) · (zj+1 − zj)/2
)

for k > 0

0 for k = 0

f
(

zk,−
∑1

j=k(wj
n + wj+1

n ) · (zj+1 − zj)/2
)

for k < 0

where wk
n = wn(zk) n ≥ 0, −m1 ≤ k ≤ m2 and w0 is the initial approximation

(eventually w0 = 0). Each wn is a vectorial function having each component a
piecewise linear continuous function uniquely determined by its values in the
points of the considered mesh. For our purpose we considered an uniform mesh
(zk = x0 + k · h, −m1 ≤ k ≤ m2) and stopped the iteration process (3.17) when
the difference between two successive iterations is sufficiently small. To each wn

we associate a vectorial function y(n)(x) = y0 +
∫ x

x0
wn(t)d t.

Figure 1 shows the the exact solution together with several iterations (y(n))
when m1 = m2 = 20 and h = 0.0475.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

 8th iteration
10th iteration
13th iteration
exact solution

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

h =   0.0950
h =   0.0095
exact solution

Figure 1 Figure 2

For n = 22 the difference between the last two iteration y(22), y(21) is less than

10−3 while the error in the mesh points is maxk |u(zk) − y
(22)
1 (zk)| = 0.00626.

Figure 2 presents the exact solution and the 10-th iteration for two different choices
of the mesh step size h = 0.095 (m1 = m2 = 10) and h = 0.0095 (m1 = m2 = 100).
The second row in Table 1 gives the values of the iteration counts such that the
difference between the last two iteration to be less than 10−3. The values in the
third row represent the exact error in the mesh points.

h 0.0950 0.0475 0.0190 0.0136 0.0095 0.0063
n 33 22 21 21 21 21

maxk |u(zk) − y
(n)
1 (zk)| 0.0243 0.0063 0.0010 0.0005 0.0003 0.0001

Table 1
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