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On the asymptotic behaviour of finite Markov chains

ALINA NICOLAIE

ABSTRACT.
We give two sufficient conditions for weak and strong ergodicity of a nonhomogeneous finite Markov
chain in terms of similar properties of a certain chain of smaller size.

1. PRELIMINARIES

Consider a finite Markov chain with state space S = {1, ..., r} and transition
matrices (Pn)n≥1. We shall refer to it as the finite Markov chain (Pn)n≥1. For all
integers m ≥ 0, n > m, define

Pm,n = Pm+1Pm+2...Pn = ((Pm,n)ij)i,j∈S .

Assume that the limit

(1.1) lim
n→∞

Pn = P

exists and that the limit matrix P has p ≥ 1 irreducible aperiodic closed classes
and, perhaps transient states, so that it has the form

(1.2) P =


S1 0 ... 0 0
0 S2 ... 0 0
... ... ... ... ...
0 0 ... Sp 0
L1 L2 ... Lp T

,
where Si, for i = 1, p, are ri × ri transition matrices associated with the p irre-
ducible aperiodic closed classes, T concerns the transitions of the chain as long as
it stays in the r −

∑p
t=1 rt transient states and the Li concern transitions from the

transient states into the ergodic sets corresponding to Si, i = 1, p.
Markov chains of this type occur in simulated annealing, a stochastic algo-

rithm for global optimization. We refer to van Laarhoven and Aarts [6] for a
general exposition and historical background.

Definition 1.1. We say that a probability distribution µ = (µ1, ..., µr) is invariant
with respect to an r × r stochastic matrix P if we have µP = µ.

We shall need the following result
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Theorem 1.1. Consider a finite homogeneous Markov chain with state space S having
the transition matrix P of the form (1.2). Then

(1.3) lim
n→∞

Pn =


Γ1 0 ... 0 0
0 Γ2 ... 0 0
... ... ... ... ...
0 0 ... Γp 0

Ω1 Ω2 ... Ωp 0

 ,

where

Γi =

 µ
(i)
1 ... µ

(i)
ri

... ... ...

µ
(i)
1 ... µ

(i)
ri


is a strictly positive ri × ri matrix, ∀ i = 1, p; each row of the matrix Γi is the invariant
probability vector µ(i) := (µ(i)

1 , ..., µ
(i)
ri ) with respect to the matrix Si, ∀ i = 1, p, and

Ωi =

 µ
(i)
1 zr1+r2+...+rp+1,i ... µ

(i)
ri zr1+r2+...+rp+1,i

... ... ...

µ
(i)
1 zr,i ... µ

(i)
ri zr,i


is an (r −

p∑
t=1

rt)× ri matrix, ∀ i = 1, p, where zji= probability that the chain will enter

and thus, will be absorbed in Si given that the initial state is j, ∀ j =
p∑

t=0
rt, r, ∀ i = 1, p

(with convention r0 = 1).

Proof. For the form of Γi, i = 1, p, see, e.g., [3, p. 123] and for Ωi, i = 1, p, see, e.g.,
[5, p. 91]. �

Remark 1.1. Clearly,

(1.4) zji ≥ 0, ∀ j =
p∑

t=0

rt, r, ∀i = 1, p,

and

(1.5)
p∑

i=1

zji = 1,∀ j =
p∑

t=0

rt, r.

A vector x ∈ Cn will be understood as a row vector and x′ is its transpose. Set
e = e(n) = (1, 1, ..., 1) ∈ Rn and 0 = 0(n) = (0, 0, ..., 0) ∈ Rn. Let (ei)i=1,n be the
canonical basis of the linear space Rn.

Theorem 1.2. ([1] and [7]). Let A = −Ir + P with P of the form (1.2). Then there
exists a nonsingular r × r complex matrix Q such that

(1.6) A = QJQ−1,
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where J is an r × r Jordan matrix. Q reads as

Q =



1 0 ... 0 ...
... ... ... ... ...
1 0 ... 0 ...
0 1 ... 0 ...
... ... ... ... ...
0 1 ... 0 ...
0 0 ... 0 ...
... ... ... ... ...
0 0 ... 0 ...
0 0 ... 1 ...
... ... ... ... ...
0 0 ... 1 ...

zr1+r2+...+rp+1,1 zr1+r2+...+rp+1,2 ... zr1+r2+...+rp+1,p ...
... ... ... ... ...
zr,1 zr,2 ... zrp ...



,

where the first column contains 1 in the 1, r1 rows, the i-th column contains 1 in the
ri−1 + 1, ri rows, ∀ i = 2, p, and the last r− p columns comprise complex numbers. For

zji, j =
p∑

t=0
rt, r, i = 1, p, we have the meaning given in Theorem 1.1. The inverse Q−1

has the form

Q−1 =


µ

(1)
1 ... µ

(1)
r1 0 ... 0 0 ... 0 0 ... 0

... ... ... ... ... ... ... ... ... ... ... ...

0 ... 0 0 ... 0 µ
(p)
1 ... µ

(p)
rp 0 ... 0

qp+1,1 ... ... ... ... ... ... ... ... ... ... qp+1,r

... ... ... ... ... ... ... ... ... ... ... ...
qr,1 ... ... ... ... ... ... ... ... ... ... qrr

 ,

where µ(i) is the invariant probability vector with respect to Si, ∀ i = 1, p, and the last
r − p rows comprise complex numbers.

Proof. See [7]. �

Remark 1.2. (a) We shall need some spectral properties of A. We have

(1.7) λ1 = 0

is an eigenvalue of A whose algebraic multiplicity is equal to its geometric multi-
plicity and equal to p. All other distinct eigenvalues λ2, ..., λl+s of A satisfy

|λi + 1| < 1 and Re(λi) < 0,∀ i = 2, l + s.
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(b) From (1.7) it follows (see, e.g., [2, pp. 129-131])

J =



J1 0 ... ... ... ... 0
0 J2 ... ... ... ... 0
... ... ... ... ... ... ...
0 0 ... Jl 0 ... ...
0 0 ... 0 Jl+1 ... ...
... ... ... ... ... ... ...
0 0 ... 0 0 ... Jl+s


,

where J1 = 0p×p, Jk is a diagonal mk ×mk matrix with entries the eigenvalue λk

whose algebraic and geometric multiplicities are identical, ∀ k = 2, l, and

Jl+i =


λl+i ε

(i)
1 0 ... ... 0

0 λl+i ε
(i)
2 ... 0 0

... ... ... ... ... ...

0 0 ... ... λl+i ε
(i)
ml+i−1

0 0 ... ... 0 λl+i

,

for i = 1, s, areml+i×ml+i matrices corresponding to eigenvalues whose geome-
tric multiplicities are smaller than their algebraic multiplicities and ε

(i)
t ∈ {0, 1},

∀ t = 1,ml+i − 1, ∀ i = 1, s. Clearly, p+m2 + ...+ml+s = r.
If A = (Aij) is an m × n matrix, then for M ⊆ {1, ...,m}, N ⊆ {1, ..., n},

M,N 6= ∅, we define
AM×N = (Aij)(i,j)∈M×N ,

and
Ai,N =

∑
j∈N

Aij ,∀ i ∈ {1, ...,m}.

Definition 1.2. (see, e.g., [3]). A sequence of stochastic matrices (Pn)n≥1 is said
to be weakly ergodic if ∀m ≥ 0, ∀ i, j, k ∈ S

lim
n→∞

[(Pm,n)ik − (Pm,n)jk] = 0.

A stochastic matrix whose rows are identical is said to be stable.

Theorem 1.3. (see, e.g., [3]). A sequence of stochastic matrices (Pn)n≥1 is weakly
ergodic if and only if there exist stable stochastic matrices Πm,n, 0 ≤ m < n, such that

lim
n→∞

(Pm,n −Πm,n) = 0, ∀m ≥ 0.

Proof. See, e.g., [3, p. 218]. �

Definition 1.3. (see, e.g., [3]). A sequence of stochastic matrices (Pn)n≥1 is said
to be strongly ergodic if ∀m ≥ 0, ∀ i, j ∈ S the limit

lim
n→∞

(Pm,n)ij := (πm)j ,

exists and does not depend on i.
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Remark 1.3. (see, e.g., [3, p. 223]) It is easy to prove that if a Markov chain is
strongly ergodic, then (πm)j is also independent of m, ∀m ≥ 0. Therefore, a
sequence of stochastic matrices (Pn)n≥1 is strongly ergodic if and only if there
exists a stable stochastic matrix Π such that

lim
n→∞

Pm,n = Π, ∀m ≥ 0.

Definition 1.4. (see, e.g., [4, p. 144]) Let P be an r × r stochastic matrix. The
ergodic coefficient of P , denoted by δ(P ), is defined by

δ(P ) = 1− min
1≤i,k≤r

r∑
j=1

min(Pij , Pkj).

Theorem 1.4. (see, e.g., [4]) If P is a stochastic n× p matrix and R = (Rij) is a real
m× n matrix with Re′ = 0, then |||RP |||∞ ≤ |||R|||∞δ(P ).

Proof. See, e.g., [4, p. 147]. �

Theorem 1.5. (see, e.g., [4]) A sequence of stochastic matrices (Pn)n≥1 is weakly er-
godic if and only if lim

n→∞
δ(Pm,n) = 0, ∀m ≥ 0.

Proof. See, e.g., [4, p. 149]. �

Proposition 1.1. (see, e.g., [4]) Let (ank)n,k≥1 be a doubly indexed sequence of real
numbers such that lim

n→∞
ank = ak exists, ∀ k ≥ 1. If there exists a sequence of non-

negative numbers (bk)k≥1 such that |ank| ≤ bk, ∀n ≥ 1, ∀ k ≥ 1, and
∞∑

k=1

bk < ∞,

then

lim
n→∞

∞∑
k=1

ank =
∞∑

k=1

ak.

Proof. See, e.g., [4, p. 29]. �

2. A RESULT ON RECURRENCE RELATIONS

In this section we shall give a result related to sequences defined by recurrence
relations.

Proposition 2.2. Let (Xn)n≥0 = ((Xn)1, ..., (Xn)p)n≥0 be a sequence of real vectors,
each vector having p > 1 components, which satisfy the recurrence relation

(2.8) Xn+1 = XnCn+1 +Rn, ∀n ≥ 0,

where (Rn)n≥0 = ((Rn)1, ..., (Rn)p)n≥0 is a sequence of real vectors such that Rne′ =

0, ∀n ≥ 0, and
∞∑

n=0
|||Rn|||∞ < ∞ and (Cn)n≥1 is a sequence of p × p stochastic

matrices. Then the following statements hold.
(i) If Xne′ = 0, ∀n ≥ 0, and (Cn)n≥1 is weakly ergodic, then

lim
n→∞

Xn = 0.
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(ii) If Xne′ = 1, ∀n ≥ 0, and (Cn)n≥1 is strongly ergodic, with lim
n→∞

Cm,n = Π =

e′π, ∀m ≥ 0, then

lim
n→∞

Xn = π.

Proof. Applying the recurrence relation (2.8) successively we obtain

(2.9) Xn+1 = X0C0,n+1 +
[
Rn +

n−1∑
k=0

RkCk+1,n+1

]
, ∀n ≥ 1.

First, assuming that (Cn)n≥1 is weakly ergodic we shall prove that

(2.10) lim
n→∞

n−1∑
k=0

RkCk+1,n+1 = 0.

We have

|||
n−1∑
k=0

RkCk+1,n+1|||∞ ≤
n−1∑
k=0

|||RkCk+1,n+1|||∞

≤
n−1∑
k=0

|||Rk|||∞δ(Ck+1,n+1)

(using Theorem 1.4).
Next, we choose ank = |||Rk|||∞δ(Ck+1,n+1), ∀n, k ≥ 0 (take ank = 0 if k > n).

Then, by Theorem 1.5, it follows that lim
n→∞

ank = 0 := ak, ∀ k ≥ 0. Further,

|ank| ≤ bk := |||Rk|||∞, ∀n ≥ 0, since δ(Ck,n) ≤ 1, ∀n, k, n > k ≥ 0. The

conditions of Proposition 1.1 are fulfilled, so lim
n→∞

n∑
k=0

ank =
∞∑

k=0

ak = 0, which

means (2.10).
Now, we shall prove (i). By Theorem 1.3, it follows that there exists a sequence

of stable stochastic matrices Πm,n, 0 ≤ m < n, such that

lim
n→∞

(Cm,n −Πm,n) = 0, ∀m ≥ 0.

Next, letting n → ∞ in (2.9), using (2.10),
∞∑

n=0
|||Rn|||∞ < ∞, and the hypothesis

of (i), it follows

lim
n→∞

Xn = X0 lim
n→∞

(C0,n −Π0,n) = 0.

(because XkΠm,n = 0, ∀m,n, 0 ≤ m < n, ∀ k ≥ 0).

Now, we shall prove (ii). Letting n→∞ in (2.9), using (2.10),
∞∑

n=0
|||Rn|||∞ <∞,

and the hypothesis of (ii), it follows

lim
n→∞

Xn = X0 lim
n→∞

C0,n = X0Π = π.

�



On the asymptotic behaviour of finite Markov chain 97

3. WEAK AND STRONG ERGODICITY RESULTS

In this section an earlier study of the author from [7] is continued. We shall
give sufficient conditions for weak and strong ergodicity of a nonhomogeneous
Markov chain in terms of similar behaviour of a certain nonhomogeneous Markov
chain of smaller size. Our main result is given in Theorem 3.6.

In the sequel, we shall consider (Pn)n≥1 be a nonhomogeneous Markov chain
with state space S = {1, 2, ..., r} such that Pn → P as n → ∞. Suppose that P
has exactly p ≥ 1 irreducible aperiodic closed classes Si, i = 1, p, and, possibly,
transient states, i.e., P is of the form (1.2). Let µ(i) be the invariant probability

vector with respect to Si, ∀ i = 1, p, and zji, j =
p∑

t=0
rt, r, i = 1, p, as in Theorem

1.1. Let Vn = Pn − P , ∀n ≥ 1, where lim
n→∞

Vn = 0r×r. Let Q and Q−1 as in
Theorem 1.2. Set

(3.11) Ṽn = Q−1VnQ, ∀n ≥ 1,

and

(3.12) Cn = Ip + (Ṽn)M×M ,∀n ≥ 1, where M = {1, ..., p}.

Proposition 3.3. Cn is a stochastic matrix, ∀n ≥ 1.

Proof. Let qi be the ith row of the matrix Q−1 and q̃j the jth column of the matrix
Q. We can write

(Ṽn)ij = qiVnq̃j , ∀ i, j = 1, p, ∀n ≥ 1.

Then
p∑

j=1

(Ṽn)ij =
p∑

j=1

qiVnq̃j = qiVn

p∑
j=1

q̃j = qiVne′ =

(because (Vn)i,S = 0, ∀ i ∈ S)

= qi · 0′ = 0, ∀ i = 1, p.

Further

(3.13) (Ṽn)ij = qiVnq̃j = (µ(i)
1 , ..., µ(i)

ri
)(Vn)Si×(Sj∪T )

(
e′(rj)
z′j

)
, ∀ i, j = 1, p,

(in this context by Sj and T we mean the set corresponding to the jth recurrent
class and the set of transient states, respectively), where

zj := (zr1+r2+···+rp+1,j , . . . , zr,j), ∀ j = 1, p.

Since (Vn)l,S = 0, ∀l ∈ S, and (Vn)l,S\Si
= (Pn − P )l,S\Si

∈ [0, 1], ∀ l ∈ Si,
∀ i = 1, p, ∀n ≥ 1, it follows (Vn)l,Si

⋃
T ∈ [−1, 0], ∀ l ∈ Si, ∀ i = 1, p and

(Vn)l,Sj

⋃
T ∈ [0, 1], ∀ l ∈ Si, ∀ i = 1, p, ∀ j = 1, p, i 6= j.

Using 0 ≤ zji ≤ 1, ∀ j =
∑p

t=0 rt, r, ∀ i = 1, p and the observation above, we
recognize in (3.13) a convex combination, namely, for i 6= j, i, j ∈M , n ≥ 1,

(3.14) (Ṽn)ij =
ri∑

t=1

µ
(i)
t a

(j)
t ∈ [0, 1],
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since a(j)
t ∈ [0, 1], ∀ t = 1, ri, and for i = j, i ∈M , n ≥ 1,

(3.15) (Ṽn)ii =
ri∑

t=1

µ
(i)
t b

(i)
t ∈ [−1, 0],

since b(i)t ∈ [−1, 0], ∀ t = 1, ri.
Finally, from (Ṽn)i,M = 0, ∀ i = 1, p, (3.14), and (3.15) the conclusion follows. �

The following theorem is the main result of this paper.

Theorem 3.6. Suppose that

(3.16)
∞∑

n=1

|||(Ṽn)(S\M)×M |||∞ <∞,

where M = {1, ..., p}. Then the following statements hold.
(i) If (Cn)n≥1 is weakly ergodic, then (Pn)n≥1 is weakly ergodic.
(ii) If (Cn)n≥1 is strongly ergodic, then (Pn)n≥1 is strongly ergodic.

Proof. Let m ≥ 0. By the Chapman-Kolmogorov equation we have

Pm,n+1 = Pm,nPn+1, ∀n > m.

By subtracting Pm,n from both sides, we obtain

(3.17) Pm,n+1 − Pm,n = Pm,n[−Ir + Pn+1], ∀n > m.

Set

(3.18) t(i)m,n = ((Pm,n)i,1, ..., (Pm,n)i,r), ∀ i ∈ S, ∀n > m.

Then equations (3.17) read as

t
(i)
m,n+1 − t(i)m,n = t(i)m,n[−Ir + Pn+1], ∀ i ∈ S, ∀n > m.

We remark that t(i)m,n defined in (3.18) are solutions of equations of the type

(3.19) xm,n+1 − xm,n = xm,n[−Ir + Pn+1], ∀n > m,

under the conditions

(3.20) (xm,n)i ∈ [0, 1], ∀ i ∈ S,
r∑

i=1

(xm,n)i = 1, ∀n > m,

or

(3.21) (xm,n)i ∈ [−1, 1], ∀ i ∈ S,
r∑

i=1

(xm,n)i = 0, ∀n > m.

We are interested in the asymptotic behaviour of the proposed solutions of (3.19)
under conditions (3.20) or (3.21).

SettingA = −Ir +P , we can benefit of the result given in Theorem 1.2. Further,
setting

(3.22) ym,n = xm,nQ, ∀n > m,

equations (3.19) amount to

(3.23) ym,n+1 − ym,n = ym,nJ + ym,nṼn+1, ∀n > m.
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Using the same arguments as in [7], we have

(3.24) lim
n→∞

(ym,n)i = 0, ∀ i = p+ 1, r.

From (3.23), following the same steps as in [7], we obtain

Ym,n+1 = Ym,nCn+1 +Rm,n, ∀n > m,

where Ym,n = ((ym,n)1, ..., (ym,n)p) and Rm,n = ((Rm,n)1, ..., (Rm,n)p) with

(Rm,n)i =
r∑

j=p+1

(ym,n)j(Ṽn+1)ji, ∀ i = 1, p, ∀n > m.

By (3.16), using the fact that ∃M ≥ 0 such that |ym,n| ≤ M , ∀m,n, 0 ≤ m < n, it
follows that

∑∞
n=m |||Rm,n|||∞ <∞, ∀m ≥ 0.

In order to prove (i), let i, j ∈ S. Let

xm,n = xm,n(i, j) = t(i)m,n − t(j)m,n, ∀n > m,

where t(i)m,n was defined in (3.18), ∀ i ∈ S. Then, using (1.5), we have (for ym,n :=
xm,nQ)

(3.25)
p∑

k=1

(ym,n)k =
p∑

k=1

xm,nq̃k = xm,n

p∑
k=1

q̃k = xm,ne′ = 0, ∀n > m

(q̃k was defined in the proof of Proposition 3.3).
By Proposition 2.2 (i), it follows

lim
n→∞

Ym,n = 0.

This, (3.24), and xm,n = ym,nQ
−1, give us

(3.26) lim
n→∞

[(Pm,n)ik − (Pm,n)jk] = 0, ∀ k ∈ S.

Therefore (Pn)n≥1 is weakly ergodic.
Now, we shall prove (ii). Let i ∈ S. Let

xm,n = xm,n(i) = t(i)m,n,∀n > m,

where t(i)m,n was defined in (3.18), ∀i ∈ S.
Then, using (1.5), we have (for ym,n := xm,nQ)

(3.27)
p∑

k=1

(ym,n)k =
p∑

k=1

xm,nq̃k = xm,n

p∑
k=1

q̃k = xm,ne′ = 1, ∀n > m.

By Proposition 2.2 (ii) it follows

lim
n→∞

Ym,n = π.

This and xm,n = ym,nQ
−1 give

lim
n→∞

((Pm,n)i,r0+...+rt−1 , ..., (Pm,n)i,r1+...+rt
) = (µ(t)

1 πt, ..., µ
(t)
rt
πt), ∀ t = 1, p.

Therefore, using (3.24), (Pn)n≥1 is strongly ergodic. �
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Example 3.1. Consider the chain (Pn)n≥1 given by

Pn =



1− 2
n+1 + 1

2n
1
2n 0 2

n+1 −
1
n

1
2n 1− 2

n+1 + 1
2n 0 2

n+1 −
1
n

0 0 1− 1
n

1
n

1
2 −

1
2(n+1)

1
2 −

1
2(n+1) 0 1

n+1

 , ∀n ≥ 1.

(Pn)n≥1 is weakly (even strongly) ergodic because are fulfilled the conditions of
Theorem 3.6. These are left to the reader.
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