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On the asymptotic behaviour of finite Markov chains

ABSTRACT.

We give two sufficient conditions for weak and strong ergodicity of a nonhomogeneous finite Markov
chain in terms of similar properties of a certain chain of smaller size.

1. PRELIMINARIES

Consider a finite Markov chain with state space S = {1, ...,r} and transition
matrices (P,),>1. We shall refer to it as the finite Markov chain (P,),>1. For all
integers m > 0, n > m, define

Pm,n = m+1Pm+2~-Pn = ((Pm,n)ij)i,jes'
Assume that the limit

(1.1) lim P, =P

n—oo

exists and that the limit matrix P has p > 1 irreducible aperiodic closed classes
and, perhaps transient states, so that it has the form

S 0 .. 0 0
0 S .. 0 0
(1.2) p=| . . . . |
0 0 .. 8 0
Ly Ly .. L, T

where S;, for i = 1,p, are r; x r; transition matrices associated with the p irre-
ducible aperiodic closed classes, T concerns the transitions of the chain as long as
it stays in the r — Zle r; transient states and the L; concern transitions from the
transient states into the ergodic sets corresponding to S;, i = 1, p.

Markov chains of this type occur in simulated annealing, a stochastic algo-
rithm for global optimization. We refer to van Laarhoven and Aarts [6] for a
general exposition and historical background.

Definition 1.1. We say that a probability distribution ¢ = (1, ..., pr) is invariant
with respect to an r x r stochastic matrix P if we have pP = p.

We shall need the following result
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Theorem 1.1. Consider a finite homogeneous Markov chain with state space S having
the transition matrix P of the form (1.2). Then

rn o .. 0 O
0 I's .. 0 0
(1.3) lim PP = | ... .. .. . ],
e 0 0 r, 0
Q9 Q, 0
where
WO )
I =
ORI

is a strictly positive r; x r; matrix, Vi = 1, p; each row of the matrix T'; is the invariant

probability vector 1) == (u{” ..., u{)) with respect to the matrix S;, Vi = T, p, and

(#) (4)
M1 Zritroto Arp+ld oo B Bridrot4rp+1,6
(#) (4)
My Zri Hri Zri

p -
isan (r — Y ) X r; matrix, Vi = 1, p, where z;;= probability that the chain will enter
=1

P

and thus, will be absorbed in S; given that the initial state is j,Vj = > ry,r,Vi=1,p
=0

(with convention ro = 1).

Proof. For the form of I';, i = 1, p, see, e.g., [3, p. 123] and for Q;,i = 1, p, see, e.g.,
[5, p. 91. 0

Remark 1.1. Clearly,

P

(14) Zji 2 07 v] = Zrt7r7 Vi = Ha
t=0

and

p P
(1.5) Zz” =1,Vj= Zrt,r.
i=1 t=0

A vector z € C™ will be understood as a row vector and z’ is its transpose. Set
e=e(n)=(,1,..,1) € R"and 0 = 0(n) = (0,0,...,0) € R". Let (e;),_1; be the
canonical basis of the linear space R".

Theorem 1.2. ([1] and [7]). Let A = —1I, + P with P of the form (1.2). Then there
exists a nonsingular r x r complex matrix ) such that

(1.6) A=QJQ™,
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where J is an r X r Jordan matrix. Q) reads as

1 0 0
1 0 0
0 1 0
0 1 0
0 0 0
Q = e )
0 0 0
0 0 1
0 0 1
Zritrat.o . 4rp+1,1 Zridroto4rp+1,2 o0 2ridrat.trp+1,p
Zr,1 Zr,2 Zrp

where the first column contains 1 in the 1,y rows, the i-th column contains 1 in the
ri—1 + 1,7 rows, Vi = 2, p, and the last r — p columns comprise complex numbers. For

P _
zji, j = Y. e, i = 1, p, we have the meaning given in Theorem 1.1. The inverse Q"
=0
has the form

g s 0 0 0 .. 0 0 .. 0
o = 0 .. 0 0 .. 0 47 4P 0 . o0
dp+1,1 dp+1,r

where 1) is the invariant probability vector with respect to S;, Vi = 1,p, and the last
T — p rows comprise complex numbers.

Proof. See [7]. O

Remark 1.2. (a) We shall need some spectral properties of A. We have
(1.7) A1=0

is an eigenvalue of A whose algebraic multiplicity is equal to its geometric multi-
plicity and equal to p. All other distinct eigenvalues As, ..., Aj+s of A satisfy

[AMi+1] <1 and Re()\;) <0,Vi=2/1+s.
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(b) From it follows (see, e.g., [2, pp. 129-131])

J0 e e e 0
0 Jo e e e 0
J=| o o .. o .. . |,
0 0 .. 0 Ji
0 0 . 0 0 . Js

where J; = 0,x,, Ji; is a diagonal my, x my, matrix with entries the eigenvalue Ay
whose algebraic and geometric multiplicities are identical, V£ = 2,1, and

>‘l+i Egi) 0 0

0 Ny e .0 0
Jyi=| . ,

0 0 o e N e

0 0 o w0 0 ANy

fori =1, s, are my4; X my4; matrices corresponding to eigenvalues whose geome-
tric multiplicities are smaller than their algebraic multiplicities and sﬁ’) € {0,1},
Vi=1,m; —1,Vi=1,s. Clearly, p+mo+ ...+ myqs =r.

If A = (4;;) is an m x n matrix, then for M C {1,..,m}, N C {1,...n},
M, N # (), we define

Aprxn = (Aij) 6, 5)eMx N
and
Ai,N = Z Aij,Vi S {1, ,m}
JEN

Definition 1.2. (see, e.g., [3]). A sequence of stochastic matrices (P,,),>1 is said
to be weakly ergodic if Vm > 0,V4,j,k € S

lim [(Pm,n)ik - (Pm,n)jk] =0.

n—oo

A stochastic matrix whose rows are identical is said to be stable.

Theorem 1.3. (see, e.g., [3]). A sequence of stochastic matrices (P,)n>1 is weakly
ergodic if and only if there exist stable stochastic matrices 11,5, ,,, 0 < m < n, such that

Hm (P — ) =0, Vm > 0.

n—oo

Proof. See, e.g., [3, p. 218]. O

Definition 1.3. (see, e.g., [3]). A sequence of stochastic matrices (P,),>1 is said
to be strongly ergodic if Vm > 0, V4, j € S the limit

lim (Pm,n)ij = (Wm)jy

n—0o0

exists and does not depend on .
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Remark 1.3. (see, e.g., [3, p. 223]) It is easy to prove that if a Markov chain is
strongly ergodic, then (m,,); is also independent of m, Vm > 0. Therefore, a
sequence of stochastic matrices (P,),>1 is strongly ergodic if and only if there
exists a stable stochastic matrix II such that

lim P, =1, Ym > 0.

n—oo

Definition 1.4. (see, e.g., [4, p. 144]) Let P be an r x r stochastic matrix. The
ergodic coefficient of P, denoted by 6(P), is defined by

s

6(P)=1- 1<nznkn<r 1 min(P;;, Py;).
j=

Theorem 1.4. (see, e.g., [4]) If P is a stochastic n x p matrix and R = (R;;) is a real
m x n matrix with Re’ = 0, then |||RP|||oo < ||| R]|||ccd(P).

Proof. See, e.g., [4, p. 147]. O

Theorem 1.5. (see, e.g., [4]) A sequence of stochastic matrices (P,,)n>1 is weakly er-
godic ifand only if lim §(P,, ) =0,Ym > 0.
n—oo

Proof. See, e.g., [4, p. 149]. O

Proposition 1.1. (see, e.g., [4]) Let (ank)n.k>1 be a doubly indexed sequence of real
numbers such that lim a,, = ay exists, Vk > 1. If there exists a sequence of non-

n—oo

negative numbers (by)r>1 such that |ang| < by, Vn > 1, Vk > 1, and 3" by < oo,
k=1
then

lim Zank = Zak.
e k=1
Proof. See, e.g., [4, p. 29]. O

2. A RESULT ON RECURRENCE RELATIONS

In this section we shall give a result related to sequences defined by recurrence
relations.

Proposition 2.2. Let (X,,)n>0 = ((Xn)1, s (Xn)p)n>0 be a sequence of real vectors,
each vector having p > 1 components, which satisfy the recurrence relation

(28) Xn+1 = chn-‘rl + Rna Vn > 0,
where (Ry)n>0 = ((R )15 -, (Rn)p)n>0 is a sequence of real vectors such that R,e’ =
0, Vn > 0, and Z 1Rnlllooe < o0 and (Cp)n>1 is a sequence of p X p stochastic

matrices. Then the followmg statements hold.
(i) If Xpe' =0,Yn >0, and (Cy,)n>1 is weakly ergodic, then

lim X,, =0.

n—oo
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(1) If X,,e' =1,Vn > 0, and (Cy,)n>1 is strongly ergodic, with lim C,,, =II =
e'n,Ym >0, then

lim X,, = .

Proof. Applying the recurrence relation (2.8) successively we obtain

n—1

(29) Xnt1=XoCopnt1 + [Rn + Z RiCii1nt1], Vn > 1.
k=0

First, assuming that (C,, ), >1 is weakly ergodic we shall prove that

n—1
(2.10) lim > " RpChi1ns1 = 0.
We have
n—1 n—1
1Y RiCrrangllloo < D NRCrianialllo
k=0 k=0
n—1
<D R0 (Cra,ns1)
k=0
(using Theorem 1.4).

Next, we choose ani, = ||| Ril||ood (Cht1nt1), YV, k > 0 (take an,, = 0if k > n).
Then, by Theorem 1.5, it follows that lim a,; = 0 := ai, Y& > 0. Further,

n—oo

lank| < bk == |||Rk||lce, Y > 0, since 6(Crpn) < 1, Vn,k, n > k > 0. The

conditions of Proposition 1.1 are fulfilled, so lim > anx = > ar = 0, which

k=0 k=0
means (2.10).
Now, we shall prove (i). By Theorem 1.3, it follows that there exists a sequence
of stable stochastic matrices II,, », 0 < m < n, such that

lim (Cpyp — ) =0, ¥ > 0.

n—oo

Next, letting n — oo in , using (2.10), >" |||Rnlllcc < o0, and the hypothesis

n=0

of (i), it follows
lim X,, = Xy lim (Cy,, —Ilp,) = 0.

(because X1l , =0,Vm,n,0<m<n,Vk>0).

Now, we shall prove (ii). Letting n— oo in (2.9), using (2.10), > [||Rn||cc < 00,

n=0

and the hypothesis of (ii), it follows

lim Xn = XO lim CO,n == X()H = T.

n—oo n—oo
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3. WEAK AND STRONG ERGODICITY RESULTS

In this section an earlier study of the author from [7] is continued. We shall
give sufficient conditions for weak and strong ergodicity of a nonhomogeneous
Markov chain in terms of similar behaviour of a certain nonhomogeneous Markov
chain of smaller size. Our main result is given in Theorem 3.6.

In the sequel, we shall consider (P, ),>1 be a nonhomogeneous Markov chain
with state space S = {1,2,...,7} such that P, — P asn — oo. Suppose that P
has exactly p > 1 irreducible aperiodic closed classes S;, i = 1, p, and, possibly,
transient states, i.e., P is of the form (1.2). Let (¥ be the invariant probability

_ p _
vector with respect to S;, Vi = 1,p, and zj;, j = > 74,7, % = 1,p, as in Theorem
t=0
1.1. LetV,, = P, — P,¥n > 1, where lim V,, = 0,4,. Let @ and Q! as in

Theorem 1.2. Set e

(3.11) V,=Q W,Q, Vn>1,

and

(3.12) Cn = I, + (Vi)axa,Vn > 1, where M = {1, ..., p}.

Proposition 3.3. C,, is a stochastic matrix,Vn > 1.
Proof. Let g; be the ith row of the matrix Q' and g; the jth column of the matrix
. We can write
(Va)ij = aiVaGj, Vi,j =1,p, Yn > 1.
Then

hS]

<.
Il

P P
(V)i =D aiValy = @iV »_ G5 = @iVne' =
1 =1 =1

(because (V;,)i.s =0,Vi € 5)
=¢-0 =0 Vi=1p.

Further
=~ ~ i i e/ Ti .. _—
(313)  (Va)ij = @iVl = (u&%...,ux))(vn)siijun( i,?) )mm =T1,p,
J

(in this context by S; and T we mean the set corresponding to the jth recurrent
class and the set of transient states, respectively), where

Z5 = (27'1+7'2+“~+7‘p+17j7 ceey 2’7.,]‘), V] = 1,p.

Since (Vn)l,S =0,Vl € S, and (Vn)l,S\Si = (Pn — P)Z,S\Si € [0, ].], Vi e S,
Vi = 1,p, Vn > 1, it follows (V) s,yr € [-1,0], VI € S; Vi = 1,p and
(V’n)l,SjUT € [0, 1],Vl S S,L,VZ = 1,]9, V] = l,p,i 7&]

Using 0 < zj;, < 1,Vj = Z?:o r¢,7, Vi = 1, p and the observation above, we
recognize in a convex combination, namely, for i # j,i,j € M, n > 1,

(3.14) (V)ig =Y uaf? € 10,1),
t=1
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since an) €[0,1],Vt=1,r;,andfori =j,i€ M,n > 1,
(3.15) (Vi = 3 m0f" € [=1,0],
t=1

since b\ € [~1,0],Vt =T, 7.
Finally, from (V;,); » = 0,Vi = 1,p, (3.14), and 1! the conclusion follows. [

The following theorem is the main result of this paper.

Theorem 3.6. Suppose that

(3.16) S V) svanxarllloo < 00,
n=1

where M = {1, ..., p}. Then the following statements hold.
(2) If (C)n>1 is weakly ergodic, then (P, ),>1 is weakly ergodic.
(44) If (Cn)n>1 is strongly ergodic, then (Py,)n>1 is strongly ergodic.

Proof. Let m > 0. By the Chapman-Kolmogorov equation we have
Pm,n+1 = Pm,npn+1a Vn >m.

By subtracting P, , from both sides, we obtain

(3.17) Ppnt1 — P = Poon|—L + Poial], V> m.
Set
(3.18) t) = ((Prmn)its - (Pmn)in), Vi € S,¥n > m.

Then equations (3.17) read as
1) = t8 =D L+ Py], Vi€ S, ¥ > m.

We remark that t%),n defined in 1i are solutions of equations of the type

(3.19) Tmntl — Tmon = Tmon|—Ir + Pos], Y0 > m,
under the conditions

(3.20) (®m.n)i €[0,1], Vi € S, i(mmn)l =1, Vn>m,
or -

(3.21) (®mon)i € [-1,1], Vi€ S, i(:ﬂmn)Z =0, Vn>m.

i=1
We are interested in the asymptotic behaviour of the proposed solutions of (3.19)
under conditions (3.20) or (3.21).

Setting A = —I,. + P, we can benefit of the result given in Theorem 1.2. Further,
setting

(322) Ymmn = CL‘me, Vn >m,
equations (3.19) amount to
(323) Ymn+l = Ymmn = ym,nJ + ym,ni}n+1a Vn >m.
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Using the same arguments as in [7], we have

(3.24) lim (ymp)i =0, Vi=p+1,r.

n—0o0

From (3.23), following the same steps as in [7], we obtain
Ym,n+1 = Ym,ncn+1 + Rm,n; Vn > m,
where Y., = (Ym.n)1, s Umon)p) and Ry p = (Rmn)1, -y (Rmon)p) With

r

(Rm,n)z = Z (ym,n)j(‘,}nJrl)jh Vi= ma Vn > m.

Jj=p+1

By (3.16), using the fact that IM > 0 such that |y, »| < M,¥m,n, 0 < m < n, it
follows that Y07 ||| Ri.nll|cc < 00, Vm > 0.
In order to prove (i), leti,j € S. Let

Tmn = zm,n(%]) = t%)m - t%?n? Vn > m,

where t%),n was defined in l) Vi € S. Then, using , we have (for y, , 1=
T, Q)
P P

P
(325) Z(ym,n)k = Z$m,nak = Tm,n Zak = xm,ne/ = 07 VYn>m
k=1 k=1 k=1

(gr was defined in the proof of Proposition 3.3).
By Proposition 2.2 (i), it follows

lim Y,,, =0.
This, (3.24), and xp, , = Yim.nQ ", give us
(3.26) lim [(Pr.n)ik — (Pmn)jk] =0, Vk € S.

Therefore (P,,),>1 is weakly ergodic.
Now, we shall prove (ii). Let ¢ € S. Let

Tmn = Tmn(l) = t9  \n > m,

m,n’

where tﬁfb)n was defined in 1} Vie S.
Then, using (1.5), we have (for Yy, » = Tm nQ)
p

P p
(3.27) Z(ym,n)k = me,n?fk =Tmn Zak =z, =1, ¥n>m.

k=1 k=1 k=1
By Proposition 2.2 (ii) it follows

lim Y,,, = .
n—oo ’

This and z,, », = Ym n Q! give

lim ((Pm,n)imoerJthfu ey (Pm,n)i,rﬁruﬁrn) = (/J'gt)ﬂ—tv "'7M$’?7rt)7 Vt=1,p.

n—oo

Therefore, using (3.24), (Py,)»>1 is strongly ergodic. O
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Example 3.1. Consider the chain (P,,),>1 given by

2 1 1 2 1
1 - n+1 + 3 2n 0 nt+l  n
1 2 1 2 1
2n L- n+1 + 3 0 nt+l  n
P, = Vn>1.
n n
1_ _ 1 1 _ 1 0 _1
2 2(n+1) 2 2(n+1) n+1

(Py,)n>1 is weakly (even strongly) ergodic because are fulfilled the conditions of
Theorem 3.6. These are left to the reader.
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