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Simple paths of maximum length in star graphs

IOANA ZELINA and IOANA TAŞCU

ABSTRACT.

The star graph has been known as an attractive model for interconnection networks due to its topolog-
ical properties, capacity to simulate other basic network topologies and possibility to design efficient
communication algorithms. In this paper we study the possibility to embed an array between any
two nodes of a star graph and then we show that between any two nodes of a n-star graph there is a
simple path that contains at least n! − 2 nodes.

1. INTRODUCTION

An important aspect of designing a distributed system regards the design
of the communication subsystem that means the design of its interconnection
network. The design of the interconnection network suppose a compromise to
achieve some objectives as: high transfer rate, small communication delay, sim-
plicity, scalability, optimal rapport cost/performance.

An interconnection network can be modeled by a finite graph G = (V, E), with
V the set of vertices and E the set of edges. The vertices of the graph represent
the nodes of the network, that is processing elements, and the edges correspond
to the communication links. If the communication between processors is unidi-
rectional then the graph is a directed graph, otherwise the graph is undirected.
Two processors connected by a link in the network are called neighbours. The
interconnection graph of the network is referred as the network topology.

In this paper we use the terms vertex and node, edge and link respectively
array and path interchangeably.

A good model for interconnection networks must have some properties as:
small degree (limit due to technical reasons), small diameter and average dis-
tance between nodes (small communication delay), maximum connectivity (op-
timal fault tolerance), embedding properties (efficient simulation of other net-
works) and modular structure (recursive scalability). A set of topologies that al-
low implementation of good communication algorithms and efficient simulation
of other networks is the set of Cayley graphs. The properties of Cayley graphs
are studied in [1], [2], [4]. The well known hypercubes, torus, butterfly, star and
pancake graphs are members of the class of Cayley graphs and together with
Fibonacci and extended Fibonacci cubes are called hypercube-like topologies.

The star graph topology was introduced by Akers in [2] together with the pan-
cake graph, as interconnection topologies using as mathematical model the Cay-
ley graph and possess the properties of Cayley graphs. In [2], [3], [4] topological
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properties of the star graph are studied, and optimal communication algorithms
are given. Embeddings of paths, trees and hypercubes in star graphs are given in
[2], [3], [5].

2. PRELIMINARIES

Let Sn =
{

(s1 . . . sn)|si ∈ {1, 2, . . . , n}, si 6= sj for i 6= j, i, j = 1, n
}

be the set

of permutations of {1, 2, . . . , n} and S = {(i2 . . . (i − 1)1(i + 1) . . . n)|i = 2, n} =
{gi, i = 2, n} be the set of n − 1 transpositions of the first and any other element
in the permutation, gi = 〈1, i〉, i = 2, n. The set S is a generating set on the
permutations group (Sn, ·) and its elements gi, i = 2, n are called generators.
The n-star graph STn is defined as the Cayley graph on (Sn, ·) with the generating
set S as:

Definition 2.1. The n-star graph STn = (V, E), n ≥ 2 is the graph with the ver-
tices set V = Sn, the set of permutations of elements {1, 2, . . . , n} and the edges
set E = {(u, v)|u, v ∈ V, ∃ i ∈ {2, 3, . . . , n} such that v = u · gi}.

The n-star graph STn has n! vertices labelled with the n! permutations of el-
ements {1, 2, . . . , n} and there is an edge between two vertices u and v ∈ Sn if
their labels differ in only two positions i and j, where i = 1 and j ∈ {2, . . . , n}.
In this case u = v · gj , v = u · gj and we say that vertices u and v are connected
along dimension j. The star graph is an undirected graph because if v = u · gj

then u = v · gj , j = 2, n.
The star graph of order 2, ST2, 3, ST3 and 4, ST4 are represented in fig. 1.
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Fig. 1. Star graph of order 2, ST2, 3, ST3 and 4, ST4

The n-star graph STn is symmetric, regular with degree n−1 and has
(n − 1)n!

2

edges. Its diameter is

⌊

3(n − 1)

2

⌋

subalgorithmic in the number of its vertices.

By fixing each different symbol i ∈ {1, 2, . . . , n} in one particular position p,
p ∈ {2, . . . , n}, n graphs denoted by STn,p(j), j = 1, n are obtained. Each of
these graphs is isomorphic to STn−1, so we can say that one n-star graph STn can
be recursively decomposed in n substars of order (n − 1), STn,p(j), j = 1, n.
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If the fixed position is the last of the permutation, p = n, then we denote the
(n − 1)-substars by STn(j), j = 1, n.

In fig. 1, the decomposition of the 4-star ST4 in 4 substars ST4(1), ST4(2),
ST4(3) and ST4(4) is given.

3. MAIN RESULTS

One of the most important properties studied for the hypercube-like topolo-
gies is the property to contain hamiltonian cycles. According to Lovasz con-
jecture, all the Cayley graphs are hamiltonian. The extended Fibonacci cubes
are hamiltonian [10] and the Fibonacci cubes with an even number of nodes are
hamiltonian [9]. Methods and algorithms for construction of hamiltonian cycles
in star graphs are given in [5]. We use this property of the star graph to show that
any two nodes of a star graph can be connected using a path that contains at least
n! − 2 nodes.

A basic result asserts that if there is a hamiltonian cycle in a star graph, this
cycle is not unique.

Let STn = (Vn, En) be a n-star graph and u and v two vertices of the graph.

Lemma 3.1. [Jwo] If H is a hamiltonian cycle in STn and (u, v) ∈ En is an edge of the
star graph, then there is a hamiltonian cycle H1 that contains the edge (u, v).

Consequently, there is a hamiltonian path between any two neighbours in a
star graph.

We give first a method to connect the n substars of a n-star graph. For simpli-
city we consider the n-star graph STn decomposed in n substars STn(i), i = 1, n.

Theorem 3.1. For any permutation (k1k2 . . . kn) ∈ Sn, the (n − 1)-substars STn(k1),
STn(k2), . . . , STn(kn) of a star graph STn can be successively connected using the edges
(uki , vki+1) ∈ En, uki ∈ STn(ki), vki+1 ∈ STn(ki+1), 1 ≤ i ≤ n − 1 such that vki

and uki are connected through a hamiltonian path Hki
in STn(ki), 2 ≤ i ≤ n − 1, and

uk1 ∈ STn(k1), vkn ∈ STn(kn).

Proof. The substar STn(k1) contains (n − 2)! vertices with symbol k2 on the first
position of their label and we choose u1 = (k2u

1
2 . . . u1

n−1k1) ∈ STn(k1).
We consider then in STn(k2) the node

vk2 = uk1 · gn = (k1u
k1

2 . . . uk1

n−1k2) = (vk2

1 vk2

2 . . . vk2

n ) ∈ STn(k2)

and the edge (uk1 , vk2) ∈ En connects the substars STn(k1) and STn(k2). From
the n − 2 neighbours of vk2 in STn(k2) we choose uk2 that has k3 on its first po-

sition, uk2 = (k3v
k2

2 . . . vk2

n−1k2). According to Lemma 3.1 there is a hamiltonian

path Hk2
between vk2 and uk2 in STn(k2), Hk2

= {vk2 , . . . , uk2}.
Using this method, we suppose the vertex vki ∈ STn(ki), i ≤ n − 2 choosen

as the neighbour along dimension n of the node uki−1 ∈ STn(ki−1). From the
n − 2 neighbours of vki ∈ STn(ki) we choose uki to be the neighbour with ki+1

on its first position, uki = (ki+1v
ki

2 . . . vki

n−1ki). Between vki and uki there is an
edge in STn(ki) and according to Lemma 3.1 there is a hamiltonian path Hki

=
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{vki , . . . , uki} in STn(ki). The node vki+1 is the neighbour of uki along dimension
n, vki+1 = uki · gn ∈ STn(ki+1).

Repeating this method, we choose vkn−1 ∈ STn(kn−1)) the neighbour along
dimension n of the node ukn−2 ∈ STn(kn−2). From the n − 2 neighbours of vkn−1

in STn(kn−1) we choose ukn−1 the neighbour with kn on its first position, and
there is a hamiltonian path Hkn−1

= {vkn−1 , . . . , ukn−1} in STn(kn−1) between

nodes vkn−1 and ukn−1 . The node vkn is the neighbour of ukn−1 along dimension
n, vkn = ukn−1 · gn ∈ STn(kn) and

L =
{

uk1 , vk2 , . . . , uk2 , vk3 , . . . , uk3 , . . . , vkn−1 , . . . , ukn−1 , vkn

}

connects the node uk1 ∈ STn(k1) to vkn ∈ STn(kn) through a path that contains
all nodes in STn(ki), i = 2, n − 1. The path is represented in fig. 2. �
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Fig. 2. Connection path between two substars in a star graph STn

According to Theorem 3.1, for two given (n − 1)-substars STn(i) and STn(j),
i 6= j ∈ {1, 2, . . . , n}, there are several paths that connect them and contain all
the nodes in the other n − 2 substars. There are (n − 2)! ways to choose node
u1 in STn(i) and there are (n − 2)! ways to choose the order of the order n − 2
substars, so there are [(n − 2)!]2 different paths with the property in Theorem 3.1
that connect the (n − 1) substars STn(i) and STn(j).

Using Theorem 3.1 we give the main result of this paper.

Theorem 3.2. For any two nodes of a n-star graph STn there is a simple path with at
least n! − 2 nodes that connects them.

Proof. We use the induction to prove this lemma.
For n = 2, u = (12), v = (21) and the path is L = {(12), (21)} and contains

2! = 2 nodes.
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For n = 3, the paths between the identity node and any other nodes are are
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Due to the symmetry of the star graph the other paths can be written in the
same way.

We suppose that any two nodes in a (n − 1)-star can be connected through a
simple path that contains at least (n − 1)! − 2 nodes.

Let u, v be two nodes of the n-star graph. Due to the symmetry of the
n-star graph we can consider u ∈ STn(i) and v ∈ STn(j), i 6= j ∈ {1, 2, . . . , n},
u = (u1u2 . . . un−1un) = (u1u2 . . . un−1i), v = (v1v2 . . . vn−1vn) = (v1 . . . vn−1j).

We construct a path that will connect the nodes u and v using all nodes in
STn(k2), STn(k3), . . . , STn(kn−1), k2, . . . , kn−1∈{1, 2, . . . , n}\{i, j} and kn−1 6=v1,
k2 6= u1. We choose uk1 as the neighbour of u in STn(i) with k2 on its first position.
There is a hamiltonian path between u and uk1 , Hk1

= {u, . . . , uk1}. Starting from
uk1 , according to Lemma 3.1 there is a simple path that contains all nodes in
STn(k2), . . . , STn(kn−1),

L =
{

uk1 , vk2 , . . . , uk2 , vk3 , . . . , uk3 , . . . , vkn−1 , . . . , ukn−1
}

,

ukn−1 =
(

knu
kn−1

2 . . . u
kn−1

n−1 kn−1

)

∈ STn(kn−1).

The neighbour along dimension n of ukn−1 is vkn = ukn−1 · gn ∈ STn(kn) and
vkn 6= v. According to induction hypothesis, between vkn and v there is a simple
path Lkn

that contains at least (n−1)!−2 nodes in STn(kn). The path obtained by
concatenation of Hk1

, L and Lkn
contains (n−1)!+(n−2) ·(n−1)!+(n−1)!−2 =

n! − 2 nodes and connects u and v in STn. The path is illustrated in fig. 3. �
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Fig. 3. Construction of a simple path with at least n! − 2 nodes
between 2 nodes of a STn
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There are several ways to choose the order of the substars STn(k2), ...,STn(kn−1),
so there are several simple paths with at least n! − 2 nodes that connect any two
given nodes in the n-star graph STn. This property shows that in case of the ex-
istence of faulty links in the interconnection network, there is still the possibility
to connect almost all nodes using a simple path.
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