
CARPATHIAN J. MATH.
25 (2009), No. 1, 01 - 12

Online version available at http://carpathian.ubm.ro
Print Edition: ISSN 1584 - 2851 Online Edition: ISSN 1843 - 4401

Fixed points for weakly compatible mappings satisfying an implicit relation
in partially ordered metric spaces

I. BEG and A. R. BUTT

ABSTRACT.
Let (X, d,�) be a partially ordered metric space. Let F,G be two set valued mappings and f , g two single valued mappings on X . We obtained
sufficient conditions for existence of common fixed point of F , G, f and g satisfying an implicit relation in X .

1. INTRODUCTION AND PRELIMINARIES

Let (X, d) be a metric space and B(X) be the class of all non-empty bounded subsets of X . For A,B ∈ B(X), let

δ(A,B) := sup{d(a, b) : a ∈ A, b ∈ B},
and

dist(a,B) := inf{d(a, b) : a ∈ A, b ∈ B}.
If A = {a}, then we write δ(A,B) = δ(a,B) and δ(A,B) = 0 if and only if A = B = {x}. Also note that

dist(A,B) ≤ δ(A,B).
Let F : X → X be a set valued mapping i.e., X 3 x 7→ F (x) is a subset of X .

A point x ∈ X is said to be a fixed point of the set valued mapping F if x ∈ F (x).
Jungck [15] introduced the concept of compatible mappings which is a generalization of commuting mappings.

Afterward Jungck and Rhoades [16] defined weakly compatible mappings and showed that compatible mappings
are weakly compatible but converse need not be true. Many fixed point results have been obtained for compatible
and weakly compatible mappings, see for instance [5, 9, 15, 7, 16] and reference cited therein.

Definition 1.1. [16] Two mappings f : X → X and F : X → B(X) are weakly compatible if they commute at their
coincident points, that is if f(x) ∈ F (x) then we have Ff(x) = fF (x).

Definition 1.2. A partial ordered set consists of a set X and a binary relation � on X which satisfies the following
conditions:

i) x � x (reflexivity);
ii) if x � y and y � x then x = y (antisymmetry);

iii) if x � y and y � z then x � z (transitivity);
for all x, y and z in X .

A set with a partial order � is called a partially ordered set.

Let (X,�) be a partially ordered set and x, y ∈ X . Elements x and y are said to be comparable elements of X if either
x � y or x � y.

Implicit relations in metric spaces have been considered by several authors in connection with solving nonlinear
functional equations (see for instance [2, 3, 4, 28] and reference cited therein).

Let R+ be the set of nonnegative real numbers and T be the set of continuous real valued functions T : R5
+ → R

satisfying the following conditions:
T1 : T (t1, t2, ..., t5) is non-decreasing in t1 and non-increasing in t2, ..., t5.
T2: there exists h ∈ (0, 1) such that

T (u, v, v, u, v + u) ≤ 0,

or
T (u, v, u, v, u+ v) ≤ 0,

implies
u ≤ hv.

T3 : T (u, 0, 0, u, u) > 0, T (u, 0, u, 0, u) > 0 and T (u, u, 0, 0, 2u) > 0, for all u > 0.
Sedghi and Altun in [28], obtained the following useful fixed point theorem for mappings satisfying an implicit

relation.

Theorem 1.1. [28] Let (X, d) be a complete metric space. Let f, g : X → X and F,G : X → B(X) be such that the following
conditions are satisfied:
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(1) F (x) ⊆ g(X), G(x) ⊆ f(X), for each x ∈ X .
(2) The pair (F, f) and (G, g) are weakly compatible.
(3) g(X) or f(X) is closed.
(4) T (δ(F (x), G(y)), d(f(x), g(y)), dist(f(x), F (x)), dist(g(y), G(y)),

dist(f(x), G(y)) + dist(g(y), F (x))) ≤ 0,
for all x, y in X and for some T ∈ T .

Then there exists a unique p ∈ X with {p} = F (p) = {f(p)} = {g(p)} = G(p).

Existence of fixed point in partially ordered metric spaces has been recently considered in [22, 23, 20, 27, 24, 10, 25,
26, 1, 8, 19, 21, 18, 14, 6]. It is of interest to determine the existence of a fixed point in such a setting. This trend was
initiated by Ran and Reurings in [27] where they extended the Banach contraction principle [17], in partially ordered
sets with some application to linear and nonlinear matrix equations. Ran and Reurings [27] proved the following
result.

Theorem 1.2. [27] Let (X,�) be a partially ordered set such that for every pair x, y ∈ X has an upper and lower bound. Let d
be a metric on X such that (X, d) is a complete metric space. Let f : X → X be a continuous monotone (either order preserving
or order reversing) mapping. Suppose that the following conditions hold:

(1) there exists κ ∈ (0, 1) with
d(f(x), f(y)) ≤ κd(x, y) for all x � y.

(2) there exists x0 ∈ X with x0 � f(x0) or f(x0) � x0.
Then f is a Picard Operator (PO), that is f has a unique fixed point x∗ ∈ X and for each x ∈ X,

lim
n→∞

fn(x) = x∗.

Theorem 1.2 was further extended and refined in [22, 23, 20, 24, 25, 19, 21, 14, 6, 18, 19, 21, 8, 18]. These results
are hybrid of the two fundamental classical theorems; Banach’s fixed point theorem [17] and Tarski’s fixed point
theorem [29, 11, 13]. Our aim in this paper is to obtain sufficient conditions for existence of common fixed point in a
partially ordered metric space for two pairs of weakly compatible mapping satisfying an implicit relation. Our result
generalized several known results.

2. MAIN RESULTS

Let (X,�) be a partially ordered set and d be a metric on X such that (X, d) is a complete metric space.
We begin this section with the following theorem that gives the existence of a fixed point (not necessarily unique)

in partially ordered metric space X for the set valued mappings and single valued mapping satisfying an implicit
relation.

Theorem 2.3. Let f, g : X → X and F,G : X → B(X) be such that the following conditions are satisfied:
(1) F (x) ⊆ g(X), G(x) ⊆ f(X), for each x ∈ X .
(2) If g(u) ∈ F (x) then u � x, if f(w) ∈ G(x) then w � x.
(3) The pair (F, f) and (G, g) are weakly compatible.
(4) g(X) is closed and if yn ∈ F (xn) be such that yn → y = g(v) ∈ g(X) then xn � v also xn � y for all n.

or
f(X) is closed and if yn ∈ G(xn) be such that yn → y = f(v) ∈ f(X) then xn � v also xn � y for all n.

(5) T (δ(F (x), G(y)), d(f(x), g(y)), dist(f(x), F (x)), dist(g(y), G(y)),
dist(f(x), G(y)) + dist(g(y), F (x))) ≤ 0,

for all comparable elements x, y of X and for some T ∈ T .
Then there exists p ∈ X (not necessarily unique) with {p} = F (p) = {f(p)} = {g(p)} = G(p).

Proof. Let x0 ∈ X , then from assumptions 1 and 2, there exists x1 ∈ X such that

y0 = g(x1) ∈ F (x0) with x0 � x1.
Again from assumptions 1 and 2, for this x1 there exists x2 ∈ X such that

y1 = f(x2) ∈ G(x1) with x1 � x2.
Since x0 � x1, therefore by using assumption 5, we have,

T (δ(F (x0), G(x1)), d(f(x0), g(x1)), dist(f(x0), F (x0)), dist(g(x1), G(x1)),
dist(f(x0), G(x1)) + dist(g(x1), F (x0))) ≤ 0.

Using the facts, d(y0, y1) ≤ δ(F (x0), G(x1)), dist(f(x0), F (x0)) ≤ d(f(x0), y0),
dist(g(x1), G(x1))≤d(y0, y1), dist(f(x0), G(x1)) + dist(g(x1), F (x0))≤d(f(x0), y1) + d(y0, y0) and by T1 we have,

T (d(y0, y1), d(fx0, y0), d(fx0, y0), d(y0, y1), d(fx0, y0) + d(y0, y1)) ≤ 0,

that is,
T (u, v, v, u, u+ v) ≤ 0,
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where u = d(y0, y1), v = d(f(x0), y0).
Next by using T2, we have (u ≤ hv),

(2.1) d(y0, y1) ≤ hd(f(x0), y0).

Now for this x2, we have the existence of x3 in X such that

y2 = g(x3) ∈ F (x2) with x2 � x3.

Again since x1 � x2, therefore by assumption 5, we have,

T (δ(F (x2), G(x1)), d(f(x2), g(x1)), dist(f(x2), F (x2)), dist(g(x1), G(x1)),
dist(f(x2), G(x1)) + dist(g(x1), F (x2))) ≤ 0.

By using T1 we have,
T (d(y2, y1), d(y1, y0), d(y1, y2), d(y0, y1), d(y0, y1) + d(y1, y2)) ≤ 0,

that is
T (u, v, u, v, u+ v) ≤ 0,

where u = d(y1, y2), v = d(y0, y1) .
Next, by using T2 we have

(2.2) d(y1, y2) ≤ hd(y0, y1).

Continuing in this manner we can define a sequence {xn}with xn � xn+1 such that

y2n = g(x2n+1) ∈ F (x2n),

y2n+1 = f(x2n+2) ∈ G(x2n+1),

for n = 0, 1, 2... .
From assumption 5, we have

T (δ(F (x2n), G(x2n+1)), d(f(x2n), g(x2n+1)), dist(f(x2n), F (x2n)),

dist(g(x2n+1), G(x2n+1)), dist(f(x2n), G(x2n+1)) + dist(g(x2n+1), F (x2n))) ≤ 0,

and by T1,

T (d(y2n, y2n+1), d(y2n−1, y2n), d(y2n−1, y2n), d(y2n, y2n+1),

d(y2n−1, y2n) + d(y2n, y2n+1)) ≤ 0.

That is
T (u, v, v, u, u+ v) ≤ 0,

where u = d(y2n, y2n+1), v = d(y2n−1, y2n).
Next, by using T2, there exists h ∈ (0, 1) such that

(2.3) d(y2n, y2n+1) ≤ hd(y2n−1, y2n).

Therefore, we have
d(yn, yn+1) ≤ hd(yn−1, yn) ≤ h2d(yn−2, yn−1) ≤ ... ≤ hnd(y0, y1).

Next we will show that (yn) is a Cauchy sequence in X. Let m > n. Then

d(yn, ym) ≤ d(yn, yn+1) + d(yn+1, yn+2) + d(yn+2, yn+3) + ....+ d(ym−1, ym)

≤ [hn + hn+1 + hn+2 + ....+ hm−1]d(y0, y1)

= hn[1 + h+ h2....+ hm−n−1]d(y0, y1)

= hn
1− hm−n

1− h
d(y0, y1)

<
hn

1− h
d(y0, y1),

because h ∈ (0, 1), 1− hm−n < 1.
Therefore d(yn, ym)→ 0 as n→∞ implies that {yn} is a Cauchy sequence and hence there exists some point (say)

p in the complete metric space X such that

lim
n→∞

yn = lim
n→∞

y2n = lim
n→∞

g(x2n+1) = p ∈ lim
n→∞

F (x2n),

and
lim
n→∞

yn = lim
n→∞

y2n+1 = lim
n→∞

f(x2n+2) = p ∈ lim
n→∞

G(x2n+1).

Suppose that 4 holds, then there exists v ∈ X such that p = g(v) ∈ g(X) with x2n � p and x2n � v.
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Now by assumption 5, we have

T (δ(F (x2n), G(v)), d(f(x2n), g(v)), dist(f(x2n), F (x2n)), dist(g(v), G(v)),

dist(f(x2n), G(v)) + dist(g(v), F (x2n))) ≤ 0,

letting n→∞we get

T (δ(p,G(v)), d(p, p), d(p, p), dist(p,G(v)), dist(p,G(v)) + d(p, p)) ≤ 0.

From T1,
T (δ(p,G(v)), 0, 0, δ(p,G(v)), δ(p,G(v))) ≤ 0,

that is
T (u, 0, 0, u, u) ≤ 0,

and from T3, we have u = δ(p,G(v)) = 0, which gives G(v) = {p} = {g(v)}.
From weak compatibility of (G, g), we have

G(p) = Gg(v) = gG(v) = {g(p)}.
Next, since x2n � p, by using assumption 5, we have

T (δ(F (x2n), G(p)), d(f(x2n), g(p)), dist(f(x2n), F (x2n)), dist(g(p), G(p)),

dist(f(x2n), G(p)) + dist(g(p), F (x2n))) ≤ 0.

It further gives

T (d(y2n, g(p)), d(y2n−1, g(p)), d(y2n−1, y2n), d(g(p), g(p)),

d(y2n−1, g(p)) + d(g(p), y2n)) ≤ 0.

Letting n→∞, we have

T (d(p, g(p)), d(p, g(p)), d(p, p), d(g(p), g(p)), d(p, g(p)) + d(g(p), p) ≤ 0.

Thus,
T (u, u, 0, 0, 2u) ≤ 0.

From T3, we have u = d(u, g(p)) = 0, it gives g(p) = p.
Hence

Gp = {gp} = {p}.
Since (by assumption 1) Gp ⊆ f(X), there exists w ∈ X such that

f(w) ∈ G(p) = {p}
with w � p (by assumption 2).

Now from assumption 5, we have

T (δ(F (w), G(p)), d(f(w), g(p)), dist(f(w), F (w)), dist(g(p), G(p)),

dist(f(w), G(p)) + dist(g(p), F (w))) ≤ 0.

It implies,
T (δ(F (w), p), d(p, p), dist(p, F (w)), d(p, p), d(p, p) + dist(p, F (w))) ≤ 0,

and by T1, we have
T (δ(F (w), p), 0, δ(F (w), p), 0, δ(F (w), p)) ≤ 0.

That is,
T (u, 0, u, 0, u) ≤ 0,

and by using T3, we have u = δ(F (w), p) = 0, which gives F (w) = {p} = {f(w)}.
From weak compatibility of (F, f), we have

F (p) = Ff(w) = fF (w) = {f(p)}.
Next, since p � p, from assumption 5,

T (δ(F (p), G(p)), d(f(p), g(p)), dist(f(p), F (p)), dist(g(p), G(p)),

dist(f(p), G(p)) + dist(g(p), F (p))) ≤ 0,

and
T (d(f(p), p), d(f(p), p), d(f(p), f(p)), d(p, p), d(f(p), p) + d(p, f(p))) ≤ 0.

That is,
T (u, u, 0, 0, 2u) ≤ 0.

and by using T3, we have u = d(f(p), p) = 0, which gives f(p) = p.
Hence F (p) = {f(p)} = {p} = {g(p)} = G(p). �
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Remark 2.1. In the Theorem 2.3 assumptions 2 and 4, we need only comparability of the elements, there is no need
of monotonicity in the terms of the sequence. That is if we replace assumption 2 in Theorem 2.3 by the condition:

if g(u) ∈ F (x) then u � x, if f(w) ∈ G(x) then w � x,
or

if g(u) ∈ F (x) then u � x, if f(w) ∈ G(x) then w � x,
or

if g(u) ∈ F (x) then u � x, if f(w) ∈ G(x) then w � x,
then the conclusion remains true. Similarly for the assumption 4.

Note that in contrast with Theorem 1.3., we require the assumption 5, only for the comparable elements of the
partially ordered metric space.

Corollary 2.1. Let F,G : X → B(X) be such that the following conditions are satisfied:
(1) if u ∈ F (x) then u � x, if w ∈ G(x), then w � x;
(2) if {xn} is any sequence in X whose consecutive terms are comparable such that xn → x then xn � x, for all n;
(3) T (δ(F (x), G(y)), d(f(x), g(y)), dist(f(x), F (x)), dist(g(y), G(y)),

dist(f(x), G(y)) + dist(g(y), F (x))) ≤ 0,
for all comparable elements x, y of X and for some T ∈ T .

Then there exists p ∈ X (not necessarily unique) with {p} = F (p) = G(p).

Proof. This can be proved by taking f and g as identity mappings in Theorem 2.3. �

Corollary 2.1 can also be further extended as:

Corollary 2.2. Let F,G : X → B(X) be such that the following conditions are satisfied:
(1) for any x ∈ X there exists u ∈ F (x) with u � x, and w ∈ G(x) with w � x;
(2) if {xn} is any sequence in X whose consecutive terms are comparable such that xn → x then xn � x, for all n;
(3) T (δ(F (x), G(y)), d(f(x), g(y)), dist(f(x), F (x)), dist(g(y), G(y)),

dist(f(x), G(y)) + dist(g(y), F (x))) ≤ 0,
for all comparable elements x, y of X and for some T ∈ T .

Then there exists p ∈ X (not necessarily unique) with {p} = F (p) = G(p).

Proof. Let x0 ∈ X , then from assumptions 1, there exists x1 ∈ F (x0) such that x0 � x1. For this x1 choose x2 ∈ G(x1)
such that x1 � x2.

Since x0 � x1, therefore by using assumption 3, we have,

T (δ(F (x0), G(x1)), d(x0, x1), dist(x0, F (x0)), dist(x1, G(x1)),
dist(x0, G(x1)) + dist(x1, F (x0))) ≤ 0.

By T1, we have
T (d(x1, x2), d(x0, x1), d(x0, x1), d(x1, x2), d(x0, x1) + d(x1, x2)) ≤ 0,

that is,
T (u, v, v, u, u+ v) ≤ 0,

where u = d(x1, x2), v = d(x0, x1).
Next by using T2, there exists h ∈ (0, 1) such that

(2.4) d(x1, x2) ≤ hd(x0, x1).
Now for this x2, we have the existence of x3 ∈ F (x2) such that x2 � x3.
Again since x1 � x2, therefore by assumption 3, we have

T (δ(F (x2), G(x1)), d(x2, x1), dist(x2, F (x2)), dist(x1, G(x1)),
dist(x2, G(x1)) + dist(x1, F (x2))) ≤ 0.

By using T1, we have

T (d(x3, x2), d(x1, x2), d(x2, x3), d(x1, x2), d(x1, x2) + d(x2, x3)) ≤ 0,

that is,
T (u, v, u, v, u+ v) ≤ 0,

where u = d(x2, x3), v = d(x1, x2).
Next, by using T2 and inequality 4, we have,

(2.5) d(x2, x3) ≤ hd(x1, x2) ≤ h2d(x0, x1).
Therefore, we have

d(xn, xn+1) ≤ hd(xn−1, xn) ≤ h2d(xn−2, xn−1)... ≤ hnd(x0, x1).
Continuing in this manner we can define a sequence {xn} with xn � xn+1 such that x2n+1 ∈ F (x2n) and x2n+2 ∈
G(x2n+1), for n = 0, 1, 2... .
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Next we will show that (xn) is a Cauchy sequence in X. Let m > n. Then

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + ....+ d(xm−1, xm)

≤ [hn + hn+1 + hn+2 + ....+ hm−1]d(x0, x1)

= hn[1 + h+ h2....+ hm−n−1]d(x0, x1)

= hn
1− hm−n

1− h
d(x0, x1)

<
hn

1− h
d(x0, x1),

because h ∈ (0, 1), 1− hm−n < 1.
Therefore d(xn, xm)→ 0 as n→∞ implies that (xn) is a Cauchy sequence, and hence there exists some point (say)

x in the complete metric space X , such that

lim
n→∞

xn = lim
n→∞

x2n = lim
n→∞

x2n+1 = x ∈ lim
n→∞

F (x2n),

lim
n→∞

xn = lim
n→∞

x2n = lim
n→∞

x2n+2 = x ∈ lim
n→∞

G(x2n+1),

and by assumption 2, xn � x for all n.
Next

T (δ(F (x2n), G(x)), d(x2n, x), dist(x2n, F (x2n), dist(x,G(x)),
dist(x2n, G(x)) + dist(x, F (x2n))) ≤ 0,

which gives,

T (δ(x2n+1, G(x)), d(x2n, x), d(x2n, x2n+1), dist(x,G(x)),
dist(x,G(x)) + d(x, x2n+1)) ≤ 0.

Letting n→∞ and using T1, we get

T (δ(x,G(x)), 0, 0, δ(x,G(x)), δ(x,G(x))) ≤ 0,

that is
T (u, 0, 0, u, u) ≤ 0,

and from T3, we have u = δ(x,Gx) = 0, which gives G(x) = {x}.
Similarly

T (δ(F (x), G(x2n+1)), d(x, x2n+1), dist(x, F (x)), dist(x2n+1, G(x2n+1)),
dist(x,G(x2n+1)) + dist(x2n+1, F (x))) ≤ 0,

which implies

T (δ(F (x), x2n+2), d(x, x2n+1), dist(x, F (x)), d(x2n+1, x2n+2),
d(x, x2n+2) + dist(x2n+1, F (x))) ≤ 0.

Letting n→∞ and using T1, we get

T (δ(F (x), x), 0, δ(F (x), x), 0, δ(F (x), x)) ≤ 0,

that is
T (u, 0, u, 0, u) ≤ 0,

and from T3, we have u = δ(F (x), x) = 0, which gives F (x) = {x}. �

Example 2.1. Let X =

{
(0, 0),

(
0,
− 1

2

)
,

(
1

8
, 0

)
,

( − 1

8
,
1

8

)}
be a subset of R2 with usual order defined as: for

(u, v), (x, y) ∈ X , (u, v) ≤ (x, y) if and only if u ≤ x, v ≤ y. Let d be a metric on X defined as:

d((x1, x2), (y1, y2)) := max{| x1 − y1 |, | x2 − y2 |},
so that (X, d) is a complete metric space.

Define F,G : X → B(X) and f, g : X → X as

F (x, y) =

{(
−1
8
,
1

8

)}
,

G(x, y) =



{(
−
1

8
,
1

8

)}
if x < y{

(0, 0),

(
1

8
, 0

)}
if x ≥ y
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f(x, y) =



(
−
1

8
,
1

8

)
if x < y

(0, 0) if x = y(
1

8
, 0

)
if x > y

G(x, y) =



(
−
1

8
,
1

8

)
if x < y(

0,−
1

2

)
if x ≥ y

It is clear that

F (x, y) =

(
−1

8
,
1

8

)
⊆ g(X) =

{(
−1

8
,
1

8

)
,

(
0,−1

2

)}
,

G(x, y) =

{(
−1

8
,
1

8

)
, (0, 0),

(
1

8
, 0

)}
= f(X).

For
(
0,−

1

2

)
≤ (0, 0) ≤

(
1

8
, 0

)
and

(0, 0) ≤ (0, 0),

(
0,−

1

2

)
≤
(
0,−

1

2

)
,

(
1

8
, 0

)
≤
(
1

8
, 0

)
;

δ

(
F

(
0,−1

2

)
, G(0, 0)

)
= δ

(
F (0, 0), G

(
1

8
, 0

))
= δ

(
F

(
0,−1

2

)
, G

(
1

8
, 0

))
= δ (F (0, 0), G(0, 0)) = δ

(
F

(
0,−1

2

)
, G

(
0,−1

2

))
= δ

(
F

(
1

8
, 0

)
, G

(
1

8
, 0

))
=

1

4
,

and

d

(
f

(
0,−1

2

)
, g(0, 0)

)
= d

(
f(0, 0), g

(
1

8
, 0

))
= d

(
f

(
0,−1

2

)
, g

(
1

8
, 0

))
= d (f(0, 0), g(0, 0)) = d

(
f

(
0,−1

2

)
, g

(
0,−1

2

))
= d

(
f

(
1

8
, 0

)
, g

(
1

8
, 0

))
=

1

2
.

For
(
−

1

8
,
1

8

)
≤
(
−

1

8
,
1

8

)
;

δ

(
F

(
−1

8
,
1

8

)
, G

(
−1

8
,
1

8

))
= 0 = d

((
−1

8
,
1

8

)
,

(
−1

8
,
1

8

))
.

Thus for all comparable elements of X we have

δ(F (x), G(y)) =
1

4
≤ 1

2

1

2
=

1

2
d(f(x), g(y))

=
1

2
max

{
d(f(x), g(y)), dist(f(x), F (x)), dist(g(y), G(y)),

dist(f(x), G(y)) + dist(g(y), F (x))

2

}
.

Thus assumption 5 of Theorem 2.3 is satisfied with

T (t1, ..., t5) = t1 − αmax{t2, t3, t4, t5/2},

where 0 ≤ α < 1. Also (F, f) and (G, g) are weakly compatible and only
(
−

1

8
,
1

8

)
is the coincidence point where

these pair commute. Consequently all conditions of Theorem 2.3 are satisfied and{(
−1

8
,
1

8

)}
= F

(
−1

8
,
1

8

)
= G

(
−1

8
,
1

8

)
= f

(
−1

8
,
1

8

)
= g

(
−1

8
,
1

8

)
.
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[5] Altun, I., Türkoğlu, D. and Rhoades, B. E., Fixed points of weakly compatible maps satisfying a general contractive condition of integral type, Fixed

Point Theory and Appl., (to appear)
[6] Beg, I. and Butt, A. R., Fixed point for set valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Anal. (2009),

doi:10.1016/j.na.2009.02.027, (to appear)
[7] Bouhadjera, H. and Djoudi, A., Common fixed point theorem for single and set valued maps satisfying a strict contractive condition, Math. Commun.

13 (2008), 27–32
[8] Cabada A. and Nieto, J. J., Fixed points and approximate solutions for nonlinear operator equations, J. Comput. Appl. Math. 113 (2000), 17–25
[9] Djoudi, A. and Nisse, L., Gregus type fixed points for weakly compatible maps, Bull. Belg. Math. Soc. 10 (2003), 369–378

[10] Drici, Z., McRae, F. A. and Devi, J. V., Fixed point theorems in partially ordered metric space for operators with PPF dependence, Nonlinear Anal. 67
(2007), 641–647

[11] Echenique, F., A short and constructive proof of Tarski’s fixed-point theorem, Int. J. Game Theory, 33 (2) (2005), 215–218
[12] Gnana, T., Bhaskar and Lakshmikantham, V., Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006),

1379–1393
[13] Granas, A. and Dugundji, J., Fixed Point Theory, Springer-Verlag, New York, 2003
[14] Harjani, J. and Sadarangani, K., Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal.,

doi:10.1016/j.na.2009.01.240, (to appear)
[15] Jungck, G., Compatible mappings and common fixed points, Int. J. Math. Math. Sci, 9 (1986), 771–779
[16] Jungck, G. and Rhoades, B. E., Fixed point for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (3) (1998), 227–238
[17] Kirk, W. A. and Goebel, K., Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge 1990
[18] Lakshmikantham, V. and Ciric, L., Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal.

doi:10.1016/j.na.2008.09.020. (to appear)
[19] Nieto, J. J., Applications of contractive-like mapping principles to fuzzy equations, Rev. Mat. Complut. 19 (2006), 361–383
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[21] Nieto, J. J. and Rodrı́guez-López, R., Existence of extremal solutions for quadratic fuzzy equations, Fixed Point Theory and Appl. 2005 (3) (2005),

321–342
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