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Products of hypergroupoids associated to binary relations

S. BREAZ, C. PELEA and I. PURDEA

ABSTRACT.
We study closure properties with respect to products for hypergroupoids, semihypergroups and hypergroups associated to binary relations. Using
some basic category theory tools, from a certain point, the investigation turns into studying closure properties with respect to direct products for
some classes of monounary multialgebras.

1. INTRODUCTION

In a natural way, one can associate to each binary homogeneous relation with full domain R on a set H a hyper-
groupoid HR. This construction is presented and studied in [10]. In [10], Rosenberg also determined necessary and
sufficient conditions on R such that the hypergroupoid HR is a semihypergroup (or a hypergroup), and necessary
and sufficient conditions for a (semi)hypergroup to be the (semi)hypergroup determined by a binary relation. Later,
in [3], Corsini investigated when some constructions in the above class of relational structures provides a hypergroup
through the association rule introduced by Rosenberg. But the study of hypergroups obtained from binary relations
started before Rosenberg’s paper and we must mention Chvalina’s categorical approach of the subject from [1]. In
Chvalina’s paper, the considered binary relations were partial ordered relations. The work [4] can complete the back-
ground for the existing results on the subject we approach. The basic categorical tools we will use here can be found
in [6] and [9].

Our paper is related with Chvalina’s paper [1] since we begin by using similar categorical tools in our investi-
gation. In this paper, we will continue our investigation on constructions of hypergroupoids associated to binary
relations started in [8] with direct limits of direct systems. We mention that the relational systems with one binary
relation with full domain can be seen as multialgebras with one unary multioperation, thus we work in fact with
hypergroupoids associated to monounary multialgebras. In our opinion, the results obtained from this identification
have a “nicer” form and we hope our paper will prove this. In the case of products the situation is not as “good” as
in the case of the direct limits. Yet we obtained interesting results, even from a categorical point of view. For instance,
we will show that the hypergroupoids determined by monounary multialgebras form a subcategory Malg′(2) in
the category Malg(2) of hypergroupoids which is not closed under products. Yet, this subcategory is a category
with products and the product of a family of hypergroupoids from Malg′(2) in Malg′(2) and the product of these
hypergroupoids in Malg(2) have the same support set.

2. PRELIMINARIES

Let R be a binary relation on a set H . For x ∈ H , X ⊆ H we denote

R〈x〉 = {y ∈ H | xRy} and R(X) = {y ∈ H | ∃x ∈ X : xRy}.

Denote by
−1
R the inverse of the relation R. The domain of R is the set

D(R) = {x ∈ H | ∃y ∈ H : xRy} =
−1
R (H).

As in [10], one can associate to the binary relation R ⊆ H ×H the partial hypergroupoid HR = (H, ◦) defined by

(2.1) x ◦ y = R({x, y}).

It is obvious that x2 = x ◦ x = R〈x〉 = {y ∈ H | xRy} and x ◦ y = x2 ∪ y2.
The partial hypergroupoid HR = (H, ◦) is a hypergroupoid if and only if the domain of R is H (see [10, Lemma

1]). But then, we can identify (H,R) with the multialgebra (H, f) with one unary multioperation f : H → P ∗(H)
defined by

(2.2) xRy ⇔ y ∈ f(x).

If X ⊆ H then f(X) =
⋃

x∈X f(x) and the equality (2.1) becomes

x ◦ y = f({x, y}) = f(x) ∪ f(y)(= x2 ∪ y2).

From [10, Lemma 1] we have:
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Lemma 2.1. [8, Lemma 2.6] For any multialgebra (H, f) with one unary multioperation, the equality

x ◦ y = f({x, y})
defines a hypergroupoid Hf = (H, ◦).

So, we can talk about hypergroupoids associated to monounary multialgebras instead of hypergroupoids associ-
ated to binary relations with full domain and we can translate the results from [10] in this new language.

An element x ∈ H is an outer element (of (H, f)) if there exists h ∈ H such that x /∈ f(f(h)). An element x ∈ H is
an inner element if it is not an outer element (i.e. if x ∈ f(f(h)) for any h ∈ H).

From [10, Proposition 2 and Proposition 3] we have:

Proposition 2.1. [8, Propositions 2.7, 2.8] Let (H, f) be a multialgebra with one unary multioperation. The hypergroupoid
Hf is a semihypergroup if and only if the following conditions hold:

a) f(x) ⊆ f(f(x)), ∀x ∈ H ;
b) whenever x is an outer element we have

x ∈ f(f(a))⇒ x ∈ f(a).

The hypergroupoid Hf is a hypergroup if and only if H 6= ∅ and the conditions a), b) and
c) f(H) = H

hold.

Proposition 2.2. [8, Proposition 3.2] Let (H, ∗) be a hypergroupoid. There exists a unary multioperation f on H such that
(H, ∗) = Hf if and only if

(2.3) x ∗ y = x2 ∪ y2, ∀x, y ∈ H.

A hypergroupoid (H, ∗) which satisfies the condition (2.3) is a semihypergroup if and only if for any x, y ∈ H we have

x2 ⊆ (x2)2 and (x2)2 ∩ (H \ (y2)2) ⊆ x2.

Remark 2.1. A hypergroupoid (H, ∗) which satisfies the condition (2.3) is a hypergroup if and only if it verifies the
above conditions and

⋃
x∈H x2 = H.

Remark 2.2. In the terms of our discussion, a hypergroupoid (or semihypergroup, or hypergroup) (H, ∗) is deter-
mined by a unary multioperation f on H if and only if (H, ∗) satisfies the condition (2.3).

Let (H,R), (H ′, R′) be relational systems with binary relations and h : H → H ′. One says that h is a homomorphism
of relational systems if

xRy ⇒ h(x)R′h(y).

Let (H,R) and (H ′, R′) be relational systems with one binary relation with full domain. Take the multialgebras (H, f)
and (H ′, f ′) obtained from (H,R) and (H ′, R′) using (2.2). A mapping h : H → H ′ is a relational homomorphisms
between (H,R) and (H ′, R′) if and only if

h(f(x)) ⊆ f ′(h(x)), ∀x ∈ H,

i.e. h is a homomorphism between the multialgebras (H, f) and (H ′, f ′).

Remark 2.3. Let R2 be the category of the relational systems with one binary relation (having as morphisms the
homomorphisms of relational systems and as product the usual composition of homomorphisms) and let us denote
by R′2 the full subcategory of R2 whose objects are the relational systems (H,R) for which D(R) = H . The iden-
tification we made by using (2.2) gives in fact a categorical isomorphism between R′2 and the category Malg(1)
of the monounary multialgebras (i.e. the multialgebras of type (2.1)), where the morphisms are the multialgebra
homomorphisms and the product of two morphisms is the usual composition of homomorphisms.

Let (H, ◦), (H ′, ◦′) be hypergroupoids. Remember that a mapping h : H → H ′ is called homomorphism (of hyper-
groupoids) if

h(x ◦ y) ⊆ h(x) ◦′ h(y), ∀x, y ∈ H.

BesidesR2,R′2 and Malg(1), the following categories drew our attention:
• the category Malg(2) of hypergroupoids: the morphisms are the hypergroupoid homomorphisms and the pro-

duct of two morphisms is the usual composition of homomorphisms;
• the full subcategory of Malg(2) whose object are the hypergroupoids which satisfy (2.3), denoted by Malg′(2);
• the full subcategory of Malg(2) whose object are the semihypergroups, denoted by SHG;
• the full subcategory of SHG whose object are the semihypergroups which satisfy (2.3), denoted by SHG′;
• the category HG of hypergroups with hypergroup homomorphisms and the usual composition;
• the full subcategory of HG whose object are the hypergroups which satisfy (2.3), denoted by HG′;
• the full subcategory Malg′(1) of Malg(1) whose objects are the monounary multialgebras (H, f) which satisfy

the conditions a),b) from Proposition 2.1;
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• the full subcategory Malg′′(1) of Malg(1) whose objects are the nonempty monounary multialgebras (H, f)
which satisfy the conditions a), b), c) from Proposition 2.1.

If (H, f) ∈Malg(1) and h is a morphism from Malg(1), the correspondences

(H, f) 7→ Hf and h 7→ h

define a covariant functor
F : Malg(1)→Malg′(2)

(see [8, Corollary 3.6]). If we take (H, f) and h from Malg′(1) or from Malg′′(1) we obtain another two covariant
functors

F ′ : Malg′(1)→ SHG′ and F ′′ : Malg′′(1)→ HG′,

respectively (see [8, Remark 3.7]).
If (H, ∗) is a hypergroupoid and consider the multioperation

f∗ : H → P ∗(H), f∗(x) = x ∗ x,

then (H, f∗) is in Malg(1), and, the correspondences

(H, ∗) 7→ (H, f∗), h 7→ h

define a covariant functor Malg(2) → Malg(1) (see [8, Remark 3.8]). We compose this functor with the inclusion
functor Malg′(2)→Malg(2) and we obtain a covariant functor

G : Malg′(2)→Malg(1).

Lemma 2.2. [8, Lemma 3.9] The covariant functor F is an isomorphism between the categories Malg(1) and Malg′(2), and
G is the inverse of F .

Corollary 2.1. [8, Corollary 3.11] The covariant functor F ′ is an isomorphism between Malg′(1) and SHG′, and its inverse
is the covariant functor G′ : SHG′ →Malg′(1) given by

G′(H, ∗) = (H, f∗), G
′(h) = h.

Corollary 2.2. [8, Corollary 3.12] The covariant functor F ′′ is an isomorphism between Malg′′(1) and HG′, and its inverse
is the covariant functor G′′ : HG′ →Malg′′(1) given by

G′′(H, ∗) = (H, f∗), G
′′(h) = h.

The above result is a generalization of Theorem 1 from [1].

Remark 2.4. The classes of objects of Malg′(2), SHG′ and HG′ are closed under isomorphic images, hence so there
are the classes of objects of Malg′(1), Malg′′(1).

3. PRODUCTS OF HYPERGROUPOIDS ASSOCIATED TO MONOUNARY MULTIALGEBRAS

Let ((Hi, fi) | i ∈ I) be a family of multialgebras of type (1). The direct product of the multialgebras (Hi, fi) is the
multialgebra

(∏
i∈I Hi, f

)
with

f((xi)i∈I) =
∏
i∈I

fi(xi).

This multialgebra, with the canonical projections of the product

eIj :
∏
j∈I

Hi → Hj , e
I
j ((xi)i∈I) = xj , j ∈ I,

is the product of the multialgebras (Hi, fi) in the category Malg(1).
Similarly, if ((Hi, ◦i) | i ∈ I) is a family of hypergroupoids then the direct product is the hypergroupoid

(∏
i∈I Hi, ◦

)
with

(xi)i∈I ◦ (yi)i∈I =
∏
i∈I

(xi ◦i yi).

This multialgebra, with the canonical projections of the product (eIj | j ∈ I) is the product of the multialgebras
(Hi, ◦i) in the category Malg(2).

The first main result of this paper is:

Theorem 3.1. The category Malg′(2) is a category with products, but, if we see it as a subcategory in Malg(2), Malg′(2) is
not closed under the products of Malg(2).
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Proof. Since F is an isomorphism from Malg(1) into Malg′(2) and Malg(1) is a category with products, it fol-
lows that Malg′(2) is also a category with products. Given a family ((Hi, ◦i) | i ∈ I) of hypergroupoids from
Malg′(2), the product of this family in Malg′(2) is the hypergroupoid

(∏
i∈I Hi, ∗

)
determined by the direct product∏

i∈I G(Hi, ◦i).
To show that the subcategory Malg′(2) of Malg(2) is not closed under products, consider two monounary mul-

tialgebras (H1, f1) and (H2, f2), and the hypergroupoids (H1)f1 = (H1, ◦1) and (H2)f2 = (H2, ◦2). The product of
(H1)f1 and (H2)f2 in Malg(2) is the direct product (H1 ×H2, ◦), thus we have:

(x1, x2) ◦ (y1, y2) = (x1 ◦1 y1)× (x2 ◦2 y2) = (f1(x1) ∪ f1(y1))× (f2(x2) ∪ f2(y2))

=(f1(x1)× f2(x2)) ∪ (f1(x1)× f2(y2)) ∪ (f1(y1)× f2(x2)) ∪ (f1(y1)× f2(y2)).

It is easy to give an example to show that, in general, the direct product hypergroupoid (H1 ×H2, ◦) does not satisfy
(2.3), hence it is not in Malg′(2).

For instance, if we take

H1 = H2 = {1, 2} and f1 = f2 = 1{1,2} : {1, 2} → {1, 2} ⊆ P ∗({1, 2})

then
(1, 1) ◦ (2, 2) = {1, 2} × {1, 2}, (1, 1) ◦ (1, 1) = (1, 1) and (2, 2) ◦ (2, 2) = (2, 2),

hence
(1, 1) ◦ (2, 2) 6= ((1, 1) ◦ (1, 1)) ∪ ((2, 2) ◦ (2, 2)),

which proves that (H1 ×H2, ◦) does not satisfy (2.3). �

Corollary 3.3. Let ((Hi, fi) | i ∈ I) be a family of monounary multialgebras and let ((Hi)fi = (Hi, ◦i) | i ∈ I) be the
corresponding family of hypergroupoids from Malg′(2). The binary multioperation of the product

(∏
i∈I Hi, ∗

)
of ((Hi)fi | i ∈

I) in the category Malg′(2) is given by

(xi)i∈I ∗ (yi)i∈I =
∏
i∈I

fi(xi) ∪
∏
i∈I

fi(yi).

Indeed,
(∏

i∈I Hi, ∗
)

is the hypergroupoid determined by the direct product multialgebra
(∏

i∈I Hi, f
)

of ((Hi, fi) |
i ∈ I). Hence

(xi)i∈I ∗ (yi)i∈I = f((xi)i∈I) ∪ f((yi)i∈I) =
∏
i∈I

fi(xi) ∪
∏
i∈I

fi(yi).

Remark 3.5. Since for each i ∈ I and any xi ∈ Hi,

xi ◦i xi = fi(xi),

we also have
(xi)i∈I ∗ (yi)i∈I =

∏
i∈I

(xi ◦i xi) ∪
∏
i∈I

(yi ◦i yi).

Thus, taking in Corollary 3.3 monounary multialgebras obtained from preordered relations using (2.2), the hyper-
groupoid

(∏
i∈I Hi, ∗

)
is the relational product introduced by Chvalina in [2].

Let I = {1, 2} and (H1, f1), (H2, f2) two monounary multialgebras. The product (H1×H2, ∗) of (H1)f1 and (H2)f2
in Malg′(2) is given by

(x1, x2) ∗ (y1, y2) = f(x1, x2) ∪ f(y1, y2) = (f1(x1)× f2(x2)) ∪ (f1(y1)× f2(y2)).

Using the notations from the proof of Theorem 3.1 we have

(3.4) (x1, x2) ∗ (y1, y2) ⊆ (x1, x2) ◦ (y1, y2), ∀x1, y1 ∈ H1, ∀x2, y2 ∈ H2.

Remark 3.6. In general, the property (3.4) is not valid if we replace the inclusion with equality, and the example from
the proof of Theorem 3.1 shows this fact, since

(1, 1) ◦ (2, 2) = {1, 2} × {1, 2} 6= {(1, 1), (2, 2)} = (1, 1) ∗ (2, 2).

As a matter of fact, the cases when the property (3.4) is true if we replace the inclusion with equality are the cases
when (H1 ×H2, ◦) is in Malg′(2). These cases are quite rare. One is the trivial case when (at least) one of the given
multialgebras is empty and the other cases are presented in the following theorem.

Theorem 3.2. Let (H1, f1), (H2, f2) be nonempty monounary multialgebras. The direct product (H1)f1 × (H2)f2 is in
Malg′(2) if and only if at least one of the unary multioperations f1 or f2 is a constant function.
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Proof. The direct product of (H1)f1 and (H2)f2 is in Malg′(2) if and only if

(x1, x2) ◦ (y1, y2) = (x1, x2) ∗ (y1, y2), ∀x1, y1 ∈ H1, ∀x2, y2 ∈ H2.

Indeed, (H1 ×H2, ◦) ∈Malg′(2) if and only if for any x1, y1 ∈ H1 and x2, y2 ∈ H2,

(x1, x2) ◦ (y1, y2) = ((x1, x2) ◦ (x1, x2)) ∪ ((y1, y2) ◦ (y1, y2))
= ((x1 ◦ x1)× (x2 ◦ x2)) ∪ ((y1 ◦ y1)× (y2 ◦ y2))
= (x1, x2) ∗ (y1, y2).

Suppose that x1, y1 ∈ H1 and there exists t ∈ f1(x1) \ f1(y1). Then

{t} × f2(y2) ∈ (x1, x2) ◦ (y1, y2) = (x1, x2) ∗ (y1, y2)
= (f1(x1)× f2(x2)) ∪ (f1(y1)× f2(y2)),

for any x2, y2 ∈ H2, hence
{t} × f2(y2) ⊆ f1(x1)× f2(x2).

It follows that f2(y2) ⊆ f2(x2), for any x2, y2 ∈ H2, which is equivalent to

f2(y2) = f2(x2), ∀x2, y2 ∈ H2.

The converse implication is obvious. �

Remark 3.7. Let ((Hi, ◦i) | i ∈ I) be a family of hypergroupoids from Malg′(2), let P =
∏

i∈I Hi, let eIj : P →
Hj (j ∈ I) be the canonical projections of the Cartesian product, let (P, ∗) be the product of the given family of
hypergroupoids in Malg′(2) and let (P, ◦) be the product of this family in Malg(2). The morphisms eIj : P → Hj are
the canonical projections of both products (P, ∗) and (P, ◦) in Malg′(2) and Malg(2) respectively, and the identity
function 1P is the unique function for which the following diagram is commutative

(P, ∗)
eIj // (Hj , ◦j)

(P, ◦)

1P

OO

eIj

::ttttttttt

.

Yet, 1P is neither a multialgebra isomorphism, hence nor an isomorphism in Malg(2), since it is not an ideal homo-
morphism. For the case I = {1, 2} this fact is very well illustrated by Remark 3.6.

Another question arises from our previous discussion: What about Malg′′(2) and Malg′′′(2)? Are these subcategories
of Malg′(2) closed under products?

Since each member of a family ((Hi, ◦i) | i ∈ I) of hypergroupoids from Malg′′(2) (or Malg′′′(2)) is determined
by the monounary multialgebra

(Hi, fi) = G′(Hi, ◦i) (or (Hi, fi) = G′′(Hi, ◦i) respectively)

and the product of ((Hi, ◦i) | i ∈ I) in Malg′(2) is the hypergroupoid determined by the direct product
∏

i∈I G(Hi, ◦i)
our problem is to establish if the subcategories Malg′(1) and Malg′′(1) of Malg(1) are closed under products, hence
our question is equivalent to the following one:

(Q) Is the direct product of multialgebras from Malg′(1) (or Malg′′(1)) in Malg′(1) (or Malg′′(1), respectively)?

The answer is no and the following example proves it.

Example 3.1. Let H1 = H2 = {1, 2, 3} and f1, f2 : {1, 2, 3} → P ∗({1, 2, 3}) given by

f1 = 1{1,2,3} and f2(1) = {2, 3}, f2(2) = {1, 3}, f2(3) = {1, 2}.
Clearly, the multialgebras (H1, f1) and (H2, f2) satisfy the conditions a), b) and c) from Proposition 2.1, thus they are
in Malg′′(1) ⊆Malg′(1). Yet, the direct product multialgebra (H1×H2, f) of (H1, f1) and (H2, f2) is nor in Malg′′(1)
neither in Malg′(1). Indeed, since

f1(f1(1)) = {1}, f1(f1(2)) = {2}, f1(f1(3)) = {3}
and

f2(f2(1)) = f2(f2(2)) = f2(f2(3)) = {1, 2, 3},
we have

(1, 1) /∈ {2} × {1, 2, 3} = f1(f1(2))× f2(f2(2)) = f(f(2)),

hence the element (1, 1) of (H1 ×H2, f) is outer element. Yet,

(1, 1) ∈ {1} × {1, 2, 3} = f1(f1(1))× f2(f2(1)) = f(f(1))

and
(1, 1) /∈ {1} × {2, 3} = f1(1)× f2(1) = f(1),
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which means that (H1 ×H2, f) does not satisfy condition b) from Proposition 2.1.

Remark 3.8. Notice that for any x1 ∈ H1, x2 ∈ H2 the equality

f(f(x1, x2)) = f1(f1(x1))× f2(f2(x2))

holds. Moreover, if ((Hi, fi) | i ∈ I) is a family of monounary multialgebras and the multialgebra
(∏

i∈I Hi, f
)

is the
their direct product then for any (xi)i∈I ∈

∏
i∈I Hi,

f(f((xi)i∈I)) =
∏
i∈I

fi(fi(xi)).

This follows from the form of the term functions of a direct product of multialgebras (see [7, Lemma 1]).

Even if the answer to Question (Q) is negative, it seems possible to determine some (large enough) classes of
multialgebras from Malg′(1) or Malg′′(1) which are closed under the formation of direct products.

We mention that all the products of multialgebras which will appear herein after will be direct products. First, we prove
the following:

Lemma 3.3. Let ((Hi, fi) | i ∈ I) be a family of nonempty multialgebras of type (2.1) and let
(∏

i∈I Hi, f
)

be their direct
product. The following statements are true:

1) an element (xi)i∈I ∈
∏

i∈I Hi is an inner element of
(∏

i∈I Hi, f
)

if and only if for all i ∈ I , xi is an inner element of
(Hi, fi);

2) an element (xi)i∈I ∈
∏

i∈I Hi is an outer element of
(∏

i∈I Hi, f
)

if and only if there exists i ∈ I such that xi is an
outer element of (Hi, fi);

3) if each multialgebra (Hi, fi) satisfies the condition a) (or c), respectively) from Proposition 2.1 then the multialgebra(∏
i∈I Hi, f

)
satisfies the condition a) (or c), respectively) from Proposition 2.1;

4) if the multialgebra
(∏

i∈I Hi, f
)

satisfies the condition a) (or c), respectively) from Proposition 2.1 then each multialge-
bra (Hi, fi) satisfies the condition a) (or c), respectively) from Proposition 2.1;

5) the multialgebra
(∏

i∈I Hi, f
)

consists only in inner elements if and only if each multialgebra (Hi, fi) consists only in
inner elements;

6) if for any i ∈ I , any outer element xi ∈ Hi satisfies the condition

(3.5) xi /∈ f(f(Hi))

then any outer element from
(∏

i∈I Hi, f
)

satisfies the condition (3.5);
7) if

(∏
i∈I Hi, f

)
is in Malg′(1) (or Malg′′(1)) then each (Hi, fi) is in Malg′(1) (or Malg′′(1) respectively).

Proof. 1) Follows immediately from inner element definition and Remark 3.8.
2) Is an immediate consequence of 1).
3) If each (Hi, fi) satisfies the condition a), and (xi)i∈I ∈

∏
i∈I Hi then

f((xi)i∈I) =
∏
i∈I

fi(xi) ⊆
∏
i∈I

fi(fi(xi)) = f(f((xi)i∈I)).

Suppose that each multialgebra (Hi, fi) satisfies the condition c). If

(xi)i∈I ∈
∏
i∈I

Hi =
∏
i∈I

f(Hi)

and each xi ∈ fi(hi) for some hi ∈ Hi then

(xi)i∈I ∈
∏
i∈I

fi(hi) = f((hi)i∈I) ⊆ f

(∏
i∈I

Hi

)
.

4) Obviously, the multialgebras
∏

i∈I(Hi, fi) and (Hj , fj) ×
∏

i∈I\{j}(Hi, fi) are isomorphic. So, it is enough to
prove the property for two monounary multialgebras (H1, f1) and (H2, f2).

If (H1×H2, f) satisfies the the condition a) from Proposition 2.1 then for any x1 ∈ H1 we take an element x2 ∈ H2

and we have
f1(x1)× f2(x2) = f((x1, x2)) ⊆ f(f((x1, x2))) = f1(f1(x1))× f2(f2(x2)),

hence f1(x1) ⊆ f1(f1(x1)).
If (H1 ×H2, f) satisfies the the condition c) from Proposition 2.1 then

H1 ×H2 = f(H1 ×H2) = f1(H1)× f2(H2).

Applying the first canonical projection of the direct product to this equality, we obtain H1 = f1(H1).
5) Is an immediate consequence of 1).
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6) Let (xi)i∈I ∈
∏

i∈I Hi be an outer element of
(∏

i∈I Hi, f
)
. Suppose that

(xi)i∈I ∈ f

(
f

(∏
i∈I

Hi

))
.

Then there exists (hi)i∈I ∈
∏

i∈I Hi such that

(xi)i∈I ∈ f (f ((hi)i∈I)) =
∏
i∈I

fi(fi(hi)).

Thus, there exists j ∈ I such that xj is outer element in (Hj , fj) and

xj ∈ fj(fj(hj)) ∈ fj(fj(Hj)),

which contradicts our hypothesis.
7) As we have seen in the proof of 4), it is enough to prove the property for two monounary multialgebras (H1, f1)

and (H2, f2). Let (H1, f1) × (H2, f2) be in Malg′(1) (or in Malg′′(1)). Then, according to 4), (H1, f1) satisfies the
condition a) from Proposition 2.1 (and the condition c) from Proposition 2.1, respectively). We only have to prove
that H1 satisfies the condition b) from Proposition 2.1. If H1 has not outer elements then H1 ∈Malg′(1). Let x1 ∈ H1

be an outer element. Then for any x2 ∈ H2, x = (x1, x2) is an outer element of H1 ×H2. Suppose that x1 /∈ f1(h1) for
some h1 ∈ H1. We take an element h2 ∈ H2. Since

x = (x1, x2) /∈ f1(h1)× f2(h2) = f((h1, h2)),

and b) from Proposition 2.1 holds for H1 ×H2 we have

x /∈ f(f((h1, h2))) = f1(f1(h1))× f2(f2(h2)).

It follows that x1 /∈ f1(f1(h1)), and the proof is complete. �

Remark 3.9. There exists only one (trivial) structure of monounary multialgebra (∅, f) on the empty set. This mul-
tialgebra has no (outer) elements, thus it trivially satisfies the conditions from the first part of Proposition 2.1. If for
a family ((Hi, fi) | i ∈ I) of monounary multialgebras there exists i ∈ I such that Hi = ∅ then

∏
i∈I Hi = ∅ and the

multialgebra
(∏

i∈I Hi, f
)

is in Malg′(1).

From the statement 5) of the above lemma we obtain:

Corollary 3.4. The subclass of Malg′(1) and the subclass of Malg′′(1) whose elements are the multialgebras consisting only
in inner elements are closed under the formation of the direct products.

We denote by K′1 the subclass of Malg′(1) which consists in those multialgebras for which any outer element
satisfies the condition (3.5) and by K′′1 the subclass of Malg′′(1) which consists in those multialgebras for which any
outer element satisfies the condition (3.5).

From the statement 6) of Lemma 3.3, we have:

Corollary 3.5. The classes K′1 and K′′1 are closed under the formation of the direct products.

The monounary multialgebras consisting only in inner elements trivially satisfy the request that for any outer
element (3.5) holds. So, the elements of K′1 and K′′1 are the multialgebras of Malg′(1) and Malg′′(1), respectively,
which consist only in inner elements or/and outer elements satisfying (3.5). Thus, K′1 and K′′1 include the class of the
multialgebras from Malg′(1) and Malg′′(1), respectively, which consist only in inner elements.

Lemma 3.4. A multialgebra (H, f) from Malg′(1) is in K′1 if and only if it satisfies the following condition

(3.6) f(f(x)) = f(f(H)), ∀x ∈ H.

Proof. The set of the inner elements of (H, f) is
⋂

h∈H f(f(h)). It follows that in (H, f) any outer element satisfies the
condition (3.5) if and only if

H \

( ⋂
h∈H

f(f(h))

)
⊆ H \ f(f(H)),

or, equivalently,

(3.7) f(f(H)) ⊆
⋂
h∈H

f(f(h)).

Since for any x ∈ H , ⋂
h∈H

f(f(h)) ⊆ f(f(x)) ⊆ f(f(H)),

the inclusion (3.7) holds if and only if the above inclusions are equalities, hence

f(f(H)) =
⋂
h∈H

f(f(h)) = f(f(x)), ∀x ∈ H,

and the lemma is proved. �
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Since f(H) = H for any multialgebra (H, f) from Malg′′(1) we have

Corollary 3.6. A multialgebra (H, f) from Malg′′(1) is in K′′1 if and only if

(3.8) f(f(x)) = H, ∀x ∈ H.

For the monounary multialgebras (H, f) which satisfy condition (3.6) the condition b) from Proposition 2.1 is
clearly satisfied since they do not contain any outer element x such that x ∈ f(f(a)) for some a ∈ H .

Corollary 3.7. A monounary multialgebra (H, f) is in K′1 if and only if it satisfies the condition a) from Proposition 2.1 and
(3.6).

Corollary 3.8. A nonempty monounary multialgebra (H, f) is in K′′1 if and only if it satisfies the condition c) from Proposition
2.1 and (3.6).

Another main result of the paper is

Theorem 3.3. Let ((Hi, fi) | i ∈ I) be a family of nonempty multialgebras from Malg′(1). The direct product multialgebra∏
i∈I (Hi, fi) is in Malg′(1) if and only if either all the multialgebras (Hi, fi) are inK′1 or all the multialgebras (Hi, fi) satisfy

the identity

(3.9) f(f(x)) = f(x)

(f denotes the symbol of the multioperation corresponding to our multialgebra type).

Proof. If all the multialgebras Hi are in K′1 then, according to Corollary 3.5, the multialgebra
∏

i∈I (Hi, fi) is in K′1,
hence in Malg′(1). If all the multialgebras Hi satisfy the identity (3.9) then the direct product

∏
i∈I (Hi, fi) also sat-

isfies (3.9) (see [7, Proposition 4]). Since any monounary multialgebra which satisfies (3.9) also satisfy the conditions
a) and b) from Proposition 2.1, the multialgebra

∏
i∈I (Hi, fi) is in Malg′(1).

Conversely, suppose that the multialgebra
∏

i∈I (Hi, fi) is in Malg′(1). If all the multialgebras from the given
family satisfy the condition (3.6) then all the multialgebras (Hi, fi) are in K′1. Assume there exists an element i0 ∈ I
such that (Hi0 , fi0) is a multialgebra which does not satisfy the condition (3.6). It results that in (Hi0 , fi0) there exits
an element h0 such that

fi0(fi0(Hi0)) \ fi0(fi0(h0)) 6= ∅,
so in (Hi0 , fi0) there exist an outer element x0 and an element a0 such that

x0 ∈ fi0(fi0(a0)).

Let us denote (H ′, f ′) =
∏

i∈I\{i0}(Hi, fi). The multialgebras
∏

i∈I(Hi, fi) and

(Hi0 , fi0)× (H ′, f ′) = (Hi0 ×H ′, f)

are isomorphic. Thus, according to statement 7) of Lemma 3.3, the multialgebra (H ′, f ′) is in Malg′(1). We prove
that

f ′(f ′(a)) = f ′(a), ∀a ∈ H ′.

Since the inclusion f ′(a) ⊆ f ′(f ′(a)) already holds, we have to prove only that

f ′(f ′(a)) ⊆ f ′(a), ∀a ∈ H ′.

We take x ∈ f ′(f ′(a)). There are two possibilities:
• x is an outer element of (H ′, f ′): in this case, according to condition b) from Proposition 2.1, we have x ∈ f ′(a).
• x is an inner element of (H ′, f ′): since the direct product (Hi0 , fi0) × (H ′, f ′) is in Malg′(1), it satisfies the

condition b) from Proposition 2.1. According to Lemma 3.3, 2), the element (x0, x) is an outer element of (Hi0×H ′, f)
and we have

(x0, x) ∈ fi0(fi0(a0))× f ′(f ′(a)) = f(f((a0, a))).

We deduce that
(x0, x) ∈ f((a0, a)) = fi0(a0)× f ′(a),

hence x ∈ f ′(a).
So, for any i ∈ I \ {i0} and any xi ∈ Hi, we have∏

i∈I\{i0}

fi(fi(xi)) = f ′(f ′((xi)i∈I\{i0})) = f ′((xi)i∈I\{i0}) =
∏

i∈I\{i0}

fi(xi).

Taking j ∈ I \ {i0} and applying e
I\{i0}
j to the above equality we obtain

fj(fj(xj)) = fj(xj).

Since this equality holds for all i ∈ I \ {i0} and all xi ∈ Hi, we conclude that each multialgebra (Hi, fi) satisfies
(3.9). �

With no major changes in the proof the above result can be also proved for multialgebras from Malg′′(1).
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Theorem 3.4. Let (Hi | i ∈ I) be a family of nonempty multialgebras from Malg′′(1). The direct product multialgebra(∏
i∈I Hi, f

)
is in Malg′′(1) if and only if either all the multialgebras Hi are in K′′1 or all the multialgebras Hi satisfy the

identity (3.9).

We denote by K′2 the subclass of Malg′(1) which consists in multialgebras which satisfies (3.9), and by K′′2 the
subclass of Malg′′(1) which consists in multialgebras which satisfies (3.9). Since the direct product of a family of
multialgebras which satisfy (3.9) also satisfies (3.9), the classesK′2 andK′′2 are closed under the formation of the direct
products.

Remark 3.10. As we have mentioned before, any monounary multialgebra which satisfies (3.9) also satisfy the con-
ditions a) and b) from Proposition 2.1, hence a monounary multialgebra (H, f) is in K′2 if and only if it satisfies the
condition (3.9). Also, a nonempty monounary multialgebra (H, f) is in K′′2 if and only if it satisfies the condition c)
from Proposition 2.1 and (3.9).

Corollary 3.9. LetK be a class of multialgebras from Malg′(1) which contains a multialgebra which is not inK′1. IfK is closed
under the formation of (finite) direct products then K is included in K′2.

Indeed, let (H0, f0) ∈ K \ K′1. For any multialgebra (H, f) ∈ K, since

(H0, f0)× (H, f) ∈ K ⊆Malg′(1),

both multialgebras (H0, f0) and (H, f) satisfy (3.9), hence (H, f) ∈ K′2.
From Corollary 3.9 we immediately deduce:

Corollary 3.10. Let K be a class of monounary multialgebras from Malg′(1). If K is closed under the formation of finite direct
products then

K ⊆ K′1 or K ⊆ K′2.

A similar result can be proved in the same way for Malg′′(1).

Corollary 3.11. Let K be a class of monounary multialgebras from Malg′′(1). If K is closed under the formation of finite direct
products then

K ⊆ K′′1 or K ⊆ K′′2 .
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