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Diamond-α tangent lines of time scales parametrized regular curves

C. DINU

ABSTRACT.
We introduce the notion of ∆-regular, ∇-regular and ♦α-regular curve, as a generalization of the “classical” regular curve. For each type of curve,
we discuss the concept of tangent line on time scales.

1. INTRODUCTION

The study on time scales provides an unification of the discrete theory with the continuous theory and, in the
same time, it is an unification and an extension of the traditional differential and difference equations. Also, many
applications of this calculus are known, starting from biology, engineering, economics, physics, neural networks,
social sciences, computational and numerical algorithms. The standard elements of the time scale calculus are the
∆ (delta) and ∇ (nabla) dynamic derivatives and a combined dynamic derivative, called ♦α (diamond-α) dynamic
derivative. We refer the reader to [1, 2, 3, 4, 5, 7, 8, 9] for the basic rules of calculus associated with the diamond-α
dynamic derivatives.

A time scale can be used as the defining set of the parameter for a parametric equation of a curve. In this manner,
some parts of the classical differential geometry can be generalized to obtain a “dynamic” differential geometry.

In Section 2, we review some necessary definitions of the calculus on time scales. In Section 3 we define the
∆-regular, ∇-regular and ♦α-regular curve.

2. PRELIMINARIES

A time scale is any non-empty closed subset T of R (endowed with the topology of subspace of R). In this paper T
will denote a time scale and [a, b]T = [a, b] ∩ T a time scaled interval.

For all t ∈ T, we define the forward jump operator σ and the backward jump operator ρ by the formulas:

σ(t) = inf{τ ∈ T : τ > t} ∈ T, ρ(t) = sup{τ ∈ T : τ < t} ∈ T.
We make the convention:

inf ∅ := supT, sup ∅ := inf T.
If σ(t) > t, then t is said to be right-scattered, and if ρ(t) < t, then t is said to be left-scattered. The points that are

simultaneously right-scattered and left-scattered are called isolated. If σ(t) = t, then t is said to be right dense, and if
ρ(t) = t, then t is said to be left dense. The points that are simultaneously right-dense and left-dense are called dense.

The mappings µ, ν : T→ [0,+∞) defined by µ(t) := σ(t)− t and ν(t) := t−ρ(t) are called, respectively the forward
and backward graininess functions.

If T has a right-scattered minimum m, then define Tκ = T \ {m}; otherwise Tκ = T. If T has a left-scattered
maximum M , then define Tκ = T \ {M}; otherwise Tκ = T. Finally, put Tκκ = Tκ ∩ Tκ.

Definition 2.1. For f : T → R and t ∈ Tκ, one defines the delta derivative of f in t, to be the number denoted by
f∆(t) (when it exists), with the property that, for any ε > 0, there is a neighborhood U of t such that

|[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]| < ε|σ(t)− s|,
for all s ∈ U .

For f : T → R and t ∈ Tκ, one defines the nabla derivative of f in t, to be the number denoted by f∇(t) (when it
exists), with the property that, for any ε > 0, there is a neighborhood V of t such that

|[f(ρ(t))− f(s)]− f∇(t)[ρ(t)− s]| < ε|ρ(t)− s|,
for all s ∈ V .

We say that f is delta differentiable on Tκ, provided f∆(t) exists for all t ∈ Tκ and that f is nabla differentiable on Tκ,
provided f∇(t) exists for all t ∈ Tκ. See [1, 4] for the basic properties of the delta and nabla derivatives.

Definition 2.2. Let T be a time scale and for s, t ∈ Tκκ put µts = σ(t)− s, and νts = ρ(t)− s. One defines the diamond-
α dynamic derivative of a function f : T → R in t to be the number denoted by f�α(t) (when it exists), with the
property that, for any ε > 0, there is a neighborhood U of t such that for all s ∈ U,∣∣α[f(σ(t))− f(s)]νts + (1− α)[f(ρ(t))− f(s)]µts − f♦α(t)µtsνts

∣∣ < ε|µtsνts|.
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A function is called diamond-α differentiable on Tκκ if f♦α(t) exists for all t ∈ Tκκ. If f : T → R is differentiable on T
in the sense of ∆ and ∇, then f is diamond-α differentiable at t ∈ Tκκ, and the diamond-α derivative f♦α(t) is given
by

f♦α(t) = αf∆(t) + (1− α)f∇(t), 0 ≤ α ≤ 1.

As it was proved in [9, Theorem 3.9], if f is diamond-α differentiable for 0 < α < 1 then f is both ∆ and ∇
differentiable. It is obvious that for α = 1 the diamond-α derivative reduces to the standard ∆ derivative and for
α = 0 the diamond-α derivative reduces to the standard ∇ derivative. For α ∈ (0, 1) it represents a “weighted
dynamic derivative”. See [8, 9] for some operations with the diamond-α derivative.

Let a, b ∈ Rn, a = (a1, ..., an) and b = (b1, ..., bn) be any two vectors. The Euclidean scalar product is the number
defined as

< a, b >=

n∑
i=1

aibi.

The norm (or length) of a vector a ∈ Rn, denoted by ‖a‖, is given by

‖a‖ =
√
< a, a > =

√√√√ n∑
i=1

a2
i .

3. MAIN RESULTS

We introduce the delta-regular, nabla-regular and diamond-α-regular notions, thus generalizing [6, Definition 3.1].

Definition 3.3. Let T a time scale and let a, b ∈ T. A delta-regular curve γ is a map γ = (γ1, ..., γn) : [a, b]T → Rn, where
γ1, ..., γn are delta diferentiable real function on [a, b]κT with rd-continuous ∆-derivatives and

n∑
i=1

|γ∆
i (t)|2 6= 0, for all t ∈ [a, b]κT.

A nabla-regular curve γ is a map γ = (γ1, ..., γn) : [a, b]T → Rn, where γ1, ..., γn are nabla diferentiable real function
on [a, b]κT with ld-continuous∇-derivatives and

n∑
i=1

|γ∇i (t)|2 6= 0, for all t ∈ [a, b]Tκ.

A diamond-α-regular curve γ is a map γ = (γ1, ..., γn) : [a, b]T → Rn, where γ1, ..., γn are diamond-α diferentiable
real function on [a, b]κT with continuous ♦α-derivatives and

n∑
i=1

|γ♦α
i (t)|2 6= 0, for all t ∈ [a, b]κTκ.

Considering the vector x = (x1, ..., xn), then a curve can be given in a parametric form

(3.1) xi = γi(t), for all i ∈ {1, ..., n},

or in a vector form

(3.2) x = γ(t), t ∈ T,

while the conditions fulfilled by the derivatives are, respectively

(3.3)

‖γ∆(t)‖ 6= 0, t ∈ [a, b]κT,

‖γ∇(t)‖ 6= 0, t ∈ [a, b]Tκ,

‖γ♦α(t)‖ 6= 0, t ∈ [a, b]κTκ.

Let γ be a curve given in the parametric form (3.1), t0, t ∈ [a, b]κTκ and α ∈ [0, 1]. We denote by P0 = (γ1(t0), ..., γn(t0))
and P = (γ1(t), ..., γn(t)). We define the point

Pα0 = (αγ1(σ(t0)) + (1− α)γ1(ρ(t0)), ..., αγn(σ(t0)) + (1− α)γn(ρ(t0))) .

If α = 1, then P 1
0 = Pσ0 , while if α = 0, then P 0

0 = P ρ0 and Pσ0 , P ρ0 are points belonging to the curve γ. We denote by
d(P, ·) the distance from the point P to any object from Rn (point, lines, etc.). Using this notations, we can introduce
the notion of diamond-α tangent of a curve.

Definition 3.4. Let γ be a curve, α ∈ [0, 1], t0, t ∈ [a, b]κTκ and d a line trough the point Pα0 . One says that d is the
diamond-α tangent line to the curve γ at the point P0, if the following relation takes place

(3.4) lim
P→P0, P 6=Pα

0

d(P, d)

d(P, Pα0 )
= 0.



Diamond-α tangent lines of time scales parametrized regular curves 57

If α = 1, then the line d is called delta tangent or forward tangent line, while if α = 0, then the line d is called nabla
tangent or backward tangent line to the curve γ at the point P0.

The following theorem, that generalizes [6, Theorem 3.1], will allow to express the direction vectors of this diamond-
α tangent lines, for n = 3 and n = 2.

Theorem 3.1. All the diamond-α-regular curves from R3 and R2 have, at any point P0 = P0(t0), with µ(t0) = ν(t0), a
diamond-α tangent line that has the direction vector γ♦α(t0).

Proof. Let γ be a curve from R3, and the line d ⊂ R3 is its diamond-α tangent curve at the point P0 = P0(t0), with
µ(t0) = ν(t0). Let v a direction vector of the line d. The distance from the point P = P (t) to the point Pα0 is equal
‖γ(t)−αγ(σ(t0))−(1−α)γ(ρ(t0))‖, while the distance from P to the line d is equal ‖[γ(t)−αγ(σ(t0))−(1−α)γ(ρ(t0))]×
v‖, where × denotes the vector product of those two vectors.

We have two cases, according to the density of t0.
(1) If µ(t0) = ν(t0) = 0, then t0 is dense and Pα0 = P0, for every α ∈ [0, 1], by Definition 3.4,

lim
P→P0, P 6=P0

d(P, d)

d(P, Pα0 )

= lim
t→t0,t6=t0

‖(γ(t)− γ(t0))× v‖
‖γ(t)− γ(t0)‖

= 0.

But

lim
t→t0,t6=t0

‖(γ(t)− γ(t0))× v‖
‖γ(t)− γ(t0)‖

= lim
t→t0,t6=t0

∥∥∥γ(t)−γ(t0)
t−t0 × v

∥∥∥∥∥∥γ(t)−γ(t0)
t−t0

∥∥∥
=
‖γ′(t0)× v‖

γ′(t0)
= 0.

As γ′(t0) = γ♦α(t0) 6= 0 and γ′(t0)× v = 0, then the vectors γ′(t0) and v are collinear.
(2) If µ(t0) = ν(t0) 6= 0, then t0 is isolated and, since d is diamond-α tangent line of the curve γ, we have

lim
P→P0, P 6=Pα

0

d(P, d)

d(P, Pα0 )

= lim
t→t0, P 6=Pα

0

‖[γ(t)− αγ(σ(t0))− (1− α)γ(ρ(t0))]× v‖
‖γ(t)− αγ(σ(t0))− (1− α)γ(ρ(t0))‖

= 0.

On the other hand,

lim
t→t0, P 6=Pα

0

‖[γ(t)− αγ(σ(t0))− (1− α)γ(ρ(t0))]× v‖
‖γ(t)− αγ(σ(t0))− (1− α)γ(ρ(t0))‖

= lim
t→t0, P 6=Pα

0

‖{α[γ(t)− γ(σ(t0))] + (1− α)[γ(t)− γ(ρ(t0))]} × v‖
‖α[γ(t)− γ(σ(t0))] + (1− α)[γ(t)− γ(ρ(t0))]‖

= lim
t→t0, P 6=Pα

0

∥∥∥[ α
t−ρ(t0)

γ(t)−γ(σ(t0))
t−σ(t0) + (1−α)

t−σ(t0)
γ(t)−γ(ρ(t0))

t−ρ(t0)

]
× v
∥∥∥∥∥∥ α

t−ρ(t0)
γ(t)−γ(σ(t0))

t−σ(t0) + (1−α)
t−σ(t0)

γ(t)−γ(ρ(t0))
t−ρ(t0)

∥∥∥

=

∥∥∥[ α
t0−ρ(t0)γ

∆(t0) + (1−α)
t0−σ(t0)γ

∇(t0)
]
× v
∥∥∥∥∥∥ α

t0−ρ(t0)γ
∆(t0) + (1−α)

t0−σ(t0)γ
∇(t0)

∥∥∥
=
‖γ♦α(t0)× v‖
‖γ♦α(t0)‖

.

As in the previous case, the fact that γ♦α(t0) 6= 0 and γ♦α(t0) × v = 0, gives us the collinearity of the vectors
γ♦α(t0) and v. Both cases imply that the vector γ♦α(t0) is the direction vector of the line d. Thus, the equation of the
diamond-α tangent line at the point P0 to the curve γ is

(3.5)
x− γ1(t0)

γ♦α
1 (t0)

=
y − γ2(t0)

γ♦α
2 (t0)

=
z − γ3(t0)

γ♦α
3 (t0)

.
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In order to obtain the equation of a plane curve, we consider γ3 = c, constant, in (3.5), and we get

(3.6)
x− γ1(t0)

γ♦α
1 (t0)

=
y − γ2(t0)

γ♦α
2 (t0)

.

From (3.6), we get the equation of diamond-α tangent line, at the point P0(x0), with µ(x0) = ν(x0) to the curve given
by the equation

y = γ(x), x ∈ [a, b]T.

That is the line given by the equation
y − γ(x0) = γ♦α(x− x0).

�

Remark 3.1. During the proof of Theorem 3.1, we have used the syntax ” lim
t→t0,P 6=Pα

0

” instead of “ lim
t→t0,t6=t0

” since Pα0

is not situated on the curve γ, in general, and the point t for which P (t) = Pα0 , if it exists, it does not only depend on
t0, but also on γ.

The following result completes Theorem 3.1, and its proof follows in the same manner, and thus we omit it.

Theorem 3.2. All the diamond-α-regular curves in R3 and R2 have, at any point P0 = P0(t0), a forward tangent line that has
the direction vector γ∆(t0) and a backward tangent line that has the direction vector γ∇(t0).

Remark 3.2. If P0 6= Pσ0 , then the forward tangent line at the point P0 of the curve γ is the line through the points P0

and Pσ0 , and if P0 6= P ρ0 , then the backward tangent line at the point P0 of the curve γ is the line through the points
P0 and P ρ0 .
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