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Approximate solutions of boundary value problems for ODEs using Newton
interpolating series

GH. GROZA, S. M. ALI KHAN and N. POP

ABSTRACT.
The paper deals with the study of approximate solutions, which are entire functions, of multipoint boundary value problems for differential
equations. The solutions are represented as Newton interpolating series.

1. INTRODUCTION

In this paper the power series used in the theory of initial value problems for differential equations are replaced
by Newton interpolating series, defined in Section 2, in order to find the solutions of multipoint boundary value
problems for differential equations.

We use Newton interpolating series to approximate solutions which are entire functions. Theorem 2.1 gives the
connection between an entire Newton interpolating series and its derivative series. In Section 3 we study entire
functions which are represented as entire Newton interpolating series (see Theorem 3.2). Two applications of the
method based on Newton interpolating series to construct approximate solutions of boundary value problems are
given in the last section.

2. NEWTON INTERPOLATING SERIES

Let S = {xk}k≥1 be a sequence of real numbers. We construct the polynomials

(2.1) ui =

i∏
k=1

(X − xk), i = 1, 2, ..., u0 = 1,

and we denote also by ui = ui(x),where x is a real variable, the polynomial function defined by ui. We call an infinite
series of the form

(2.2)
∞∑
i=0

aiui,

where ai ∈ R , a Newton interpolating series with coefficients ai at S.
For any sequence S = {xk}k≥1 we define the set

(2.3) IS = {i | xi 6= xj for all j < i}.

We call the sequence S purely periodic if IS is a finite set and there exists a positive integer m such that for each
positive integer i less or equal to m xi = xi+jm, j = 1, 2, ... . If S is purely periodic the Newton interpolating series at
S defined by (2.2) is called also purely periodic. More on the properties of purely periodic Newton interpolating series
can be found in [2] and [3].

Consider a Newton interpolating series at S given by (2.2). Then for every i ≥ 1

(2.4)
u′i(x)

ui(x)
=

i∑
k=1

1

x− xk
.

Since, for every i ≥ 1 there exist the real numbers Aj,i, j = 1, 2, ..., i, uniquely determined such that

(2.5)
i∑

k=1

1

x−xk
=

A1,i

x−xi
+

A2,i

(x−xi)(x− xi−1)
+ ...+

Ai,i
(x−xi)(x−xi−1)...(x−x1)

it follows that

(2.6) ui(x)

i∑
k=1

1

x− xk
=

i∑
k=1

Ai−k+1,iuk−1(x).
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We suppose that, for every i ≥ 0, the series
∞∑

k=i+1

Ak−i,kak converges and we denote by a
(1)
i its sum. Then the

Newton interpolating series

(2.7)
∞∑
i=0

a
(1)
i ui,

where

(2.8) a
(1)
i =

∞∑
k=i+1

Ak−i,kak

is called the derivative series of (2.2). If

(2.9) lim
i→∞

|ai|
1
i = 0,

the series (2.2) is called an entire Newton interpolating series. Suppose f : R → R is a function and S = {xk}k≥1 is
a sequence of distinct real numbers. We denote by fi1,i2,...,is the divided difference with respect to s distinct points

xi1 , ..., xis . Thus fj = f(xj), fj,k =
fk − fj
xk − xj

and generally fi1,...,is =
fi2,...,is − fi1,...,is−1

xis − xi1
.

Now we can prove the following result.

Theorem 2.1. Let S = {xk}k≥1 be a bounded sequence of distinct real numbers and let (2.2) be an entire Newton interpolating
series at S. Then the series and its derivative series converge absolutely at every x ∈ R. Moreover, if f = f(x) and respectively
g = g(x) are their sums, then f(x) is differentiable and g = f ′.

Proof. We choose a positive constant M such that |xi| ≤M for all i. If x is a real number, then

(2.10) |aiui(x)| ≤ |ai|(|x|+M)i

and by (2.9) it follows that the series (2.2) converges absolutely for all real numbers x. By (2.9) we can write for every

i |ai| = θii, where θi ≥ 0 and lim
i→∞

θi = 0. Now, by (2.8), |a(1)i | ≤
∞∑

k=i+1

|Ak−i,k|θkk . Since the numbers xi are distinct, by

(2.6) and Newton interpolation formula, it follows that

(2.11) Ai−k+1,i = h1,2,...,k =

k∑
s=1

hs
k∏

j=1,j 6=s
(xs − xj)

=

k∑
s=1

i∏
j=k+1

(xs − xj),

where h(x) = ui(x)
i∑

k=1

1

x− xk
is a polynomial function which depends of i. If we denote δk = max

j≥k
{θj}, then

θk ≤ δk, δk+1 ≤ δk, k = 1, 2, ..., and lim
i→∞

δi = 0. We choose i1 such that for all i ≥ i1 |2Mδi+1| < 1. Since Ak−i,k =

i+1∑
s=1

k∏
j=i+2

(xs − xj) we obtain

(2.12) |Ak−i,kak| ≤ (i+ 1)(2M)k−i−1δkk

and the series
∞∑

k=i+1

Ak−i,kak converges. Moreover

|a(1)i | ≤
∞∑

k=i+1

(i+ 1)(2M)k−i−1δkk ≤
i+ 1

(2M)i+1

∞∑
k=i+1

(2Mδi+1)
k ≤

(i+ 1)δi+1
i+1

1− 2Mδi+1

which implies that lim
i→∞

|a(1)i |
1
i = 0. Hence the derivative series converges absolutely at every x ∈ R. Now by (2.4),

(2.6) and (2.8) we obtain
n−1∑
i=0

a
(1)
i ui(x) =

n−1∑
i=0

(
∞∑

k=i+1

Ak−i,kak

)
ui(x) =

n∑
j=1

aju
′
j(x) +

∞∑
j=n+1

(
n−1∑
k=0

Aj−k,juk(x)

)
aj .

Hence, because |u′i(x)| ≤ i(|x|+M)i−1, by (2.10) and (2.12) it follows easily that f(x) is differentiable and g = f ′. �

Remark 2.1. By the proof of Theorem 2.1 it follows that the derivative series can be obtained by termwise differenti-
ation of the series (2.2) and the series converges uniformly on every compact interval.
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3. FUNCTIONS REPRESENTED INTO NEWTON INTERPOLATING SERIES

Consider S = {xk}k≥1 a sequence of real numbers and a function f : I → R, where I ⊂ R is an interval. We say
that f can be represented into Newton interpolating series at S if there exists a series of the form (2.2) which converges
uniformly to f on I . A function g : R→ R is called an entire function if

(3.13) g(x) =

∞∑
i=0

bix
i,

where bi are real numbers such that lim
i→∞

|bi|
1
i = 0.

For every non-negative integer j and s we construct the set

(3.14) Fj,s = {(θ1, .., θs+1) ∈ Ns+1 : θ1 + ...+ θs+1 = j}

and the homogenous polynomials

(3.15) Pj,s(X1, ..., Xs+1) =
∑

(θ1,...,θs+1)∈Fj,s

Xθ1
1 ...X

θs+1

s+1 .

Then it follows immediately that for every non-negative integers n and i

(3.16) Pn,i(X1, ..., Xi+1) =

n∑
j=0

Pn−j,i−1(X1, ..., Xi)X
j
i+1,

where P0,i(X1, ..., Xi+1) = 1.

Lemma 3.1. Let g =
∞∑
i=0

bix
i be an entire function and S = {xk}k≥1 a sequence of distinct real numbers. Then for each s

(3.17) g1,2,...,s+1 =

∞∑
n=s

bnPn−s,s(x1, ..., xs+1).

Proof. Since g is an entire function, the series
∞∑
j=0

bjx
j
1 converges and g1 = g(x1) =

∞∑
j=0

bjPj,0(x1), with Pj,0(x1) = xj1.

Then g1,2 =
g(x2)− g(x1)
x2 − x1

=
∞∑
j=1

bj
xj2 − x

j
1

x2 − x1
=
∞∑
j=1

bjPj−1,1(x1, x2) with P0,1(x1, x2) = 1 and for j ≥ 1 Pj,1(x1, x2) =

xj1 + xj−11 x2 + ...+ xj2. Generally it follows that

g1,2,...,s+1 =
g2,...,s+1 − g1,...,s

xs+1 − x1

=

∞∑
n=s−1

bn
Pn−s+1,s−1(x2, ..., xs+1)− Pn−s+1,s−1(x1, ..., xs)

xs+1 − x1

=

∞∑
n=s

bnPn−s,s(x1, ..., xs+1)

and the lemma holds. �

Theorem 3.2. Suppose g : [0, 1]→ R is the restriction of an entire function. If S = {xk}k≥1 is a sequence of distinct points of
[0, 1], then g can be represented uniquely into an entire Newton interpolating series at S.

Proof. Suppose g(x) =
∞∑
i=0

bix
i and

(3.18) ai = g1,...,i+1

for every i = 0, 1, ... . From Lemma 3.1 it follows that the elements as are given by (3.17). We show that sequence
{ai}i≥0 verify (2.9).

Consider two positive constant M1,M2 such that

(3.19) M1 > M2 ≥ sup
j
|xj |.

Then by (3.16) |Pk,0(x1)| = |xk1 | < Mk
1 , |Pk,1(x1, x2)| ≤

k∑
j=0

|Pk−j,0(x1)xj2| <
k∑
j=0

Mk−j
1 M j

2 <
Mk

1

1− M2

M1

and by induction

(3.20) |Pk,j(x1, ..., xj+1)| ≤
Mk

1(
1− M2

M1

)j .
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Thus by (3.17) and (3.20)

(3.21) |an| ≤
∞∑
j=n

|bj ||Pj−n,n(x1, ..., xn+1)| ≤
1

(M1 −M2)
n ·

∞∑
j=n

|bj |M j
1 .

Since lim
j→∞

|bj |
1
j = 0, by putting |bj | = θjj as in the proof of Theorem 2.1 it follows that lim

n→∞

( ∞∑
j=n

|bj |M j
1

) 1
n

= 0 and

(3.21) implies (2.9).
Consider f the sum of the series (2.2) and

(3.22) f̃ =

∞∑
n=0

cnx
n,

where

(3.23) cn = an +

∞∑
j=n+1

(−1)j−najSn,j(x1, ..., xj)

and Sn,j(X1, ..., Xj) is the elementary symmetric function of degree j − n in the variables X1, ..., Xj . We prove that
the series from (3.23) converges, f̃ is an entire function and f̃(x) = g(x) for all real numbers x.

As in the proof of Theorem 2.1 we put |an| = εnn, where by (2.9) lim
n→∞

εn = 0. If δn = max
j≥n

εj , then lim
n→∞

δn = 0 and

we choose n0 such that for all n ≥ n0

(3.24) δn <
1

M2
.

Since δn+1 ≤ δn and

(3.25) |Sn,j(x1, ..., xj)| ≤
(

j
j − n

)
M j−n

2

the series from (3.23) converges and for all n ≥ n0

|cn| ≤
∞∑
j=n

δjn

(
j
j − n

)
M j−n

2 = δnn

∞∑
k=0

(
n+ k
k

)
(δnM2)

k
=

δnn
(1− δnM2)n+1

.

Hence lim
n→∞

|cn|
1
n = 0 and f̃ is an entire function. We choose n1 = n1(x) such that for all n ≥ n1

(3.26) δn+1(M2 + |x|) < 1.

Then by (3.23), (3.25) and (3.26) obtain∣∣∣∣∣
n∑
i=0

cix
i −

n∑
i=0

aiui

∣∣∣∣∣ =
∣∣∣∣∣∣
n∑
i=0

ci − ai − n∑
j=i+1

(−1)j−iajSi,j(α1, ..., αj)

xi

∣∣∣∣∣∣
≤
∞∑
k=1

|an+k|Mn+k
2 +

∞∑
k=1

|an+k|
(
n+ k

1

)
Mn+k−1

2 |x|

+

∞∑
k=1

|an+k|
(
n+ k

2

)
Mn+k−2

2 |x|2 + ...+

∞∑
k=1

|an+k|
(
n+ k

n

)
Mk

2 |x|n

≤
∞∑
k=1

δn+kn+kM
n+k
2 +

1

M2

∞∑
k=1

δn+kn+k

(
n+ k

1

)
Mn+k

2 |x|+ ...

+
1

Mn
2

∞∑
k=1

δn+kn+k

(
n+ k

n

)
Mn+k

2 |x|n ≤ δn+1
n+1M

n+1
2

( ∞∑
k=0

(δn+1M2)
k

+
|x|
M2

∞∑
k=0

(
n+ k

1

)
(δn+1M2)

k +
|x|2

M2
2

∞∑
k=0

(
n+ k

2

)
(δn+1M2)

k + ...

+
|x|n

Mn
2

∞∑
k=0

(
n+ k

n

)
(δn+1M2)

k

)
≤ δn+1

n+1M
n+1
2

∞∑
k=0

(δn+1M2)
k

(
1 +
|x|
M2

)n+k
≤ (δn+1(M2 + |x|))n+1

1− δn+1(M2 + |x|)
.
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Thus by (3.26) lim
n→∞

(
n∑
i=0

cix
i −

n∑
i=0

aiui

)
= 0 and f̃(x) = g(x) for all real numbers x. But by Theorem 2.1 it follows

the series f given by (2.2) converges for all x and g(xk) = f̃(xk) for all k. Since by (2.2) and (3.18) g(xk) = f(xk) it
follows that f(xk) = f̃(xk). Because the sequence S has a limit point it follows that f(x) = f̃(x) and then f(x) = g(x).
Now the result follows from Remark 2.1. �

4. SOLUTIONS OF DIFFERENTIAL EQUATIONS REPRESENTABLE INTO NEWTON INTERPOLATING SERIES

Consider a differential equation of the form

(4.27) y(n)(x) = F (x, y(x), y′(x), ..., y(n−1)(x)),

with x ∈ [0, 1] and F ∈ C∞(Rn+1). We construct the following sequence x1 = 0, x2 = 1, x3 =
1

2
and for k ≥ 4

(4.28) xk =
2s+ 1

2m+1
, where 2m + 1 < k ≤ 2m+1 + 1, s = k − 2m − 2.

We present a method based on Newton interpolating series to approximate a solution, which is an entire function,
of a boundary value problem for the equation (4.27). There are conditions which implies the existence of analytic
solutions of a differential equation (see, for example, [4], Ch. IV). For some other related results, see [6], [7], [5].

For simplicity we take n = 2, V = C∞([0, 1]) and we define the operator L : V → V such that

(4.29) Ly(x) = y′′(x)− F (x, y(x), y′(x)).
Let γi, i = 0, 1 be linear functionals on V of the form γi(y) = y(i) such that the system {γ0, γ1} is linearly independent
over kerL. We want to approximate the solution of the two-point boundary value problem

(4.30) Ly = 0, γ0(y) = α0, γ1(y) = α1, α0, α1 ∈ R.
Denote by V1 = {y ∈ V : γ0(y) = α0, γ1(y) = α1, y entire function} and suppose that the restriction of L to V1

denoted also by L is an one-to-one mapping from V1 onto L(V1) ⊂ V .
For every s ≥ 2, consider the subset of V1

Xs−2 =

{
ys, ys(x) =

s∑
i=0

aiui(x), γ0(y) = α0, γ1(y) = α1, , ai ∈ R

}
,

where ui are defined by (2.1) and xk by (4.28). Then by Theorem 3.2 for every ε > 0 we can find s ≥ 2 and an element

(4.31) ys(x) =

s∑
i=0

aiui(x) ∈ Xs−2

such that the absolute error ‖y − ys‖∞ < ε. Since an entire function is uniquely determined by its values at a set
having an accumulation point it follows that ys and y have the same values at xk, k = 1, ..., s+ 1 and the solutions of
system y′′s (xk)− F (xk, ys(xk), y′s(xk)) = 0 give the values of ai from (2.2).

Example 4.1. Consider the two-point boundary value problem ([1], p. 141)

(4.32) y′′(x)−2500y(x)=2500 cos2 πx+2π2 cos 2πx, x ∈ [0, 1], y(0) = y(1) = 0.

This two-point boundary value problem has a solution y ∈ V1 uniquely determined which by Theorem 3.2 can be
represented into a Newton interpolating series where xk are given by (4.28).

We approximate the solution by taking the partial sums y32(x) =
32∑
i=0

aiui(x). The boundary conditions imply

a0 = a1 = 0.

Table 1 lists the absolute errors in y with respect to the exact solution y∗(x) =
e50(x−1) + e−50x

1 + e−50
− cos2 πx. The

computations were performed on a computer with a 30-hexadecimal-digit mantissa. Note that the errors in simple
shooting method ([1], p. 141) are clearly unacceptable (see the second column). The third column contains the results
by using Newton series with s = 32.
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Table 1

x simple shooting Newton series
(Ex. 4.1)

Newton series
(Ex. 4.2)

0.1 .19 · 10−7 .14 · 10−7 0.965 · 10−10
0.2 .28 · 10−5 .98 · 10−10 0.339 · 10−9
0.3 .41 · 10−3 .54 · 10−12 0.548 · 10−9
0.4 .61 · 10−1 .2 · 10−13 0.578 · 10−9
0.5 .90 · 10 .22 · 10−14 0.643 · 10−9
0.6 .13 · 104 .27 · 10−12 0.108 · 10−8
0.7 .20 · 106 .43 · 10−10 0.179 · 10−8
0.8 .29 · 108 .64 · 10−8 0.203 · 10−8
0.9 .44 · 1010 .95 · 10−6 0.106 · 10−8
1.0 .65 · 1012 .0 .0

Errors associated with Examples 4.1 and 4.2

Example 4.2. Consider the two-point boundary value problem

(4.33) y′′(x)−
√
1 + y′2(x) = 0, x ∈ [0, 1], y(0) = 1; y(1) = cosh(1).

This two-point boundary value problem has a solution y ∈ V1 uniquely determined which by Theorem 3.2 can be
represented into a Newton interpolating series where xk are given by (4.28).

We approximate the solution by taking the partial sums y9(x) =
9∑
i=0

aiui(x). The boundary conditions imply

a0 = 1; a1 = cosh(1)− 1.
The fourth column of Table 1 lists the absolute errors in y with respect to the exact solution y∗(x) = cosh(x).
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