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Nonlinear multigrid methods for solving Richards’ equation in two space
dimensions

GH. JUNCU, A. NICOLA, C. POPA and T. UDRESCU

ABSTRACT.
We propose in this paper a nonlinear multigrid algorithm of Full Approximation Storage (MG-FAS) for efficient numerical solution of two di-
mensional Richards’ equation modelling water infiltration into an isotropic, homogeneous, unsaturated porous medium. Comparisons with the
nonlinear Alternating Line Gauss-Seidel iterations (ALGS) ilustrate the much better behaviour of our solver.

1. INTRODUCTION

Richards’ equation [1] is the widely used mathematical model for flow in porous media in both saturated and
unsaturated regimes. It is obtained by inserting Darcy law into the continuity equation. Considering the pressure of
the air in the medium constant, Richards’ equation has two unknowns: the saturation and the pressure in the fluid
phase. Depending on the regime of the flow (unsaturated, or completely saturated), we have to decide which of the
two unknowns is the primary ones. This leads to three main forms of the Richards’ equation, i.e. saturation based,
pressure based, or mixed.

Independent of the form used, two general strategies were developed in order to solve numerically Richards’
equation. In the first [5], the original parabolic equation is reduced to an ODE (DAE) system by discretizing the
spatial derivatives with finite difference, finite volume or Galerkin methods. The resulted ODE (DAE) system is
integrated in time by an ODE (DAE) solver. In the second, the implicit Euler method is used for time discretization
(for the discretization of the spatial derivates the methods mentioned previously were used). The nonlinear system
obtained is solved by Newton, Picard or modified Picard methods. The linear solvers employed in a nonlinear
iteration step are preconditioned conjugated gradients (PCG) ([6] - [3]) or linear multigrid (MG) ([13] - [9]). For some
other related results, see [10].

Nonlinear MG proved to be the most powerful iterative methods to solve numerically nonlinear partial differential
equations (Navier-Stokes equations, especially). Nonetheless, this method has not been used until now in numerical
solving of the Richards’ equation. The aim of this work is to rigorously analyse the numerical performances of the
nonlinear MG algorithm in solving Richards’ equation. The test problems we simulated describe variable inflows and
outflows (e.g. infiltration and drainage of water into ) in a homogeneous unsaturated porous medium. Boundary
conditions of Dirichlet and/or Robin type were taken into consideration. We must mention that a similar approach
was used in [7], where the nonlinear iteration used was SIP.

The present paper is organized as follows: in section 2 we present Richards’ equation employed as test problem.
The finite differences discretization scheme used together with some considerations about the MG-FAS algorithm are
presented in section 3. Section 4 is devoted to the description of the iterative solver. In the last section, we present
the numerical experiments performed.

2. UNSATURATED FLOW EQUATIONS

Following the approach presented in [9] and [8], the nonlinear diffusion-con- vection equation used to describe
the 2-dimensional water infiltration into an isotropic, homogeneous, unsaturated porous medium (with a constant
porosity) is

(2.1)
∂u

∂t
−∇ • (β(u)∇u) +

∂K(u)

∂y
= f(x, y)

where u(x, y, t) is the dimensionless fluid content (reduced saturation) and (x, y) ∈ Ω = [0, 1]2, t ∈ [0, T ]. For the
unsaturated regime u ∈ [0, 1). Two models were used for the hydraulic diffusivity:

- Broadbridge and White (see [2])

(2.2a) β(u) =
c(c− 1)

(c− u)2
, c ∈ (1,∞)

- and (see [8])

(2.2b) β(u) =
1

(1− u)1−p
, 0 < p < 1
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Relation (2.2b) with 0 < p < 1 is not exactly a model for unsaturated flow (this would be with p ≤ 0). The data
considered in the numerical tests will be taken small enough such that the medium remain far from saturation. The
model considered for the hydraulic conductivity is from [2],

(2.3) K(u) =
(c− 1)u2

c− u
, c ∈ (1,∞).

We attach to the equation (2.1) the initial data

(2.4) u(x, y, 0) = g(x, y), (x, y) ∈ Ω

and the boundary conditions
Dirichlet

(2.5) u(x, y, t) = γ(x, y), (x, y) ∈ ∂Ω, t > 0

and / or
Robin

(2.6) (K(u)iy − β(u)∇u) • n = γ(x, y), (x, y) ∈ ∂Ω

where iy is the versor of the y - axis and n the normal to the surface. The dimensionless fluid content describes the
local behaviour of the system. The quantity used to describe the global behaviour of the system is

(2.7) u =

∫∫
Ω

u(x, y)dxdy.

3. NUMERICAL SOLUTION OF THE RICHARDS’ EQUATION

Equation (2.1) was discretized with the central second order accurate scheme on uniform grids with N ×N points,
N = 33, 65, 129 and 257. The mesh step size h is equal to h = 1/(N − 1)). The discrete approximation obtained is

dui,j

dt
−

βi,j+1/2(ui,j+1 − ui,j)− βi,j−1/2(ui,j − ui,j−1)

h2

−
βi+1/2,j(ui+1,j − ui,j)− βi−1/2,j(ui,j − ui−1,j)

h2

+
dK

du
(ui,j)

ui,j+1 − ui,j−1

2h
= f(xi, yj)

where

βi,j+1/2 =
2

1

β(ui,j+1)
+

1

β(ui,j)

, βi,j−1/2 =
2

1

β(ui,j)
+

1

β(ui,j−1)

βi+1/2,j =
2

1

β(ui+1,j)
+

1

β(ui,j)

, βi−1/2,j =
2

1

β(ui,j)
+

1

β(ui−1,j)

The time discretization is the fully implicit second order accurate scheme from below

3uk+1
i,j − 4uk

i,j + uk−1
i,j

2∆t
(3.8)

−
βk+1
i,j+1/2(u

k+1
i,j+1 − uk+1

i,j )− βk+1
i,j−1/2(u

k+1
i,j − uk+1

i,j−1)

h2

−
βk+1
i+1/2,j(u

k+1
i+1,j − uk+1

i,j )− βk+1
i−1/2,j(u

k+1
i,j − uk+1

i−1,j)

h2

+
dK

du
(uk+1

i,j )
uk+1
i,j+1 − uk+1

i,j−1

2h
= f(xi, yj)

During the numerical experiments, the time step was constant and equal to
∆t = 10−3. The Robin boundary conditions (2.6) are discretized as
y = 0 (j = 1) (

−K(u)− β(u)
∂u

∂y

)
= γ0(x)

−βi,1

− 3ui,1 + 4ui,2 − ui,3

2h
−Ki,1 = γ0,i



84 Gh. Juncu, A. Nicola, C. Popa and T. Udrescu

y = 1 (j = N) (
K(u)− β(u)

∂u

∂y

)
= γ1(x)

−βi,N

3ui,N − 4ui,N−1 + ui,N−2

2h
+Ki,N = γ1,i

x = 0 (i = 1) (
−β(u)

∂u

∂y

)
= 0

−β1,j

− 3u1,j + 4u2,j − u3,j

2h
= 0

x = 1 (i = N) (
−β(u)

∂u

∂y

)
= 0(3.9)

−βN,j

3uN,j − 4uN−1,j + uN−2,j

2h
= 0

4. THE NONLINEAR ITERATIVE SOLVERS

The first iterative solver considered for (3.8) was the Alternating Line Gauss-Seidel (ALGS) method, a nonlinear
iterative algorithm similar to that used for the Navier-Stokes equations. The linearization is only local and of Picard
type. In order to describe the method let us consider that the numerical values of the dimensionless water content
after (l-1) iterations are known. The values corresponding to the l iteration are calculated by applying one iteration
sweep to

3uk+1,l
i,j − 4uk

i,j + uk−1
i,j

2∆t
−

βk+1,l−1
i,j+1/2 (uk+1,l

i,j+1 − uk+1,l
i,j )− βk+1,l−1

i,j−1/2 (uk+1,l
i,j − uk+1,l

i,j−1)

h2

−
βk+1,l−1
i+1/2,j (uk+1,l

i+1,j − uk+1,l
i,j )− βk+1,l−1

i−1/2,j (uk+1,l
i,j − uk+1,l

i−1,j )

h2

+
dK

du
(uk+1,l−1

i,j )
uk+1,l
i,j+1 − uk+1,l

i,j−1

2h
= f(xi, yj)

or in stencil form  CN
CW CM CE

CS

uk+1,l
i,j = f(xi, yj) +

4uk,l
i,j − uk−1,l

i,j

2∆t
,

where

CM =
3

2∆t
+

βk+1,l−1
i,j+1/2

h2

βk+1,l−1
i,j−1/2

h2
+

βk+1,l−1
i−1/2,j

h2
+

βk+1,l−1
i+1/2,j

h2
,

CN = −
βk+1,l−1
i,j+1/2

h2
+

dK

du
(uk+1,l−1

i,j )
1

2h
,CS = −

βk+1,l−1
i,j−1/2

h2
− dK

du
(uk+1,l−1

i,j )
1

2h
,

CW = −
βk+1,l−1
i−1/2,j

h2
,CE = −

βk+1,l−1
i+1/2,j

h2
.

The y-line relaxation sweep can be written as

for i=2,N-1
j=1;

a(j)=1; ba(j)=1; c(j)=0; v(j)=u(i,j);
for j=2,N-1

a(j) = CM
ba(j) = CN
c(j) = CS
v(j) = f(i,j)-CE*u(i+1,j)+CW*u(i-1,j)+....

endfor
j=n;
a(j)=1; ba(j)=1; c(j)=0; v(j)=u(i,j);
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TRIDT (n, a, ba, c, v)
for j=1, N

u(i,j) = v(j)
endfor

endfor
The meaning of the above code sequence is the following: for a fixed column i we obtain a tridiagonal linear system
containing the unknown values of u on the column i. This tridiagonal system is solved by Gaussian elimination with
TRIDT(n,a,ba,c,v). The x-line relaxation sweep can be written in a similar manner. The ALGS algorithm consists of a
y-line relaxation sweep followed by a x-line relaxation sweep.

The second nonlinear iterative method tested is the MG-FAS algorithm from [4]. The structure of the MG cycle
is: 1) cycle of type V; 2) smoothing by alternating - line Gauss-Seidel; two smoothing steps are performed before
the coarse grid correction and one after; 3) prolongation by bilinear interpolation for corrections; 4) restriction of
residuals by full weighting. For two discretization levels the algorithm looks like

uh = RELAXν1(uh, Lh, fh)

dh = Lhuh − fh

dH = IHh dh

uH = L−1
H (LHuH

h − dH)

uh = uh + IhH(uH − uH
h )

uh = RELAXν2(uh, Lh, fh)

where Lhuh = fh is the fine grid equation, dh and dH the defects on the fine and coarse grid, respectively and IhH ,IHh
the interpolation and restriction operators, LH the coarse grid operator and uH

h the restriction of uh to the coarse grid.
As relaxation (RELAX) we used the ALGS iteration.
The stopping criterion used is:

(4.10)
‖ri‖
‖r0‖

≤ 10−6

where ri is the residual after i iterations and ‖·‖ the discrete Euclidean norm. The maximum number of iterations
allowed is 1000.

Remark 4.1. For the convergence proof of the MG-FAS solver see [4].

5. NUMERICAL EXPERIMENTS

We performed tests for the numerical solution of problem (2.1) with both algorithms ALGS and MG-FAS, the
two types of hydraulic diffusivity (2.2a) and (2.2b), the two kind of boundary conditions - Dirichlet (2.5) and Robin
(2.6) and for different values of N . In Tables 1 and 2 from below we present the corresponding average numbers
of iterations per time step (i.e., total number of ALGS or MG-FAS iterations divided by the total number of time
steps, respectively) with respect to the stopping rule (4.10). In Figures 1-7 we illustrate the numerical solution of
problem (2.1) (left), and the quantity ū defined in (2.7) used to describe the global behaviour of the system (right),
up to final time t = 10 (figures 1-2), and, respectively t = 5 (figures 3-7). For the cases presented in figures 1,3 and
columns 3,4 of table 1 we considered g(x, y) = 0.90, f(x, y) ≡ 0, Dirichlet boundary conditions with γ(x, y) = 0.0
and β(x, y) from (2.2a) (figure 1 and column 3 of table (1) or (2.2b) with p = 0.5 (figure 3 and column 4 from table
1). In figures 2,4 and columns 5,6 from table 1 we present the results obtained for g(x, y) = 0.1, f(x, y) = 0.50,
Dirichlet boundary conditions with γ(x, y) = 0.1 and β(x, y) from (2.2a) (figure 2 and column 5 from table 1) or (2.2b)
(figure 4 and column 6 from table 1). The solutions presented in figures 5 and 6 and column 3 from table 2 were
computed with g(x, y) = 0.1, f(x, y) = 0.0, γ0 = 0.01 and β(x, y) from (2.2a) (figure 5) or (2.2b) (figure 6). At y = 1
we assumed Dirichlet boundary conditions with u(x, y, t) = 0. The data presented in column 3 of table 2 are average
values obtained from the cases plotted in figures 5 and 6. In figure 7 and column 4 of table 2 we depicted the results
obtained for g(x, y) = 0.1, f(x, y) = 0.0, γ0 = 0.01 and γ1 = 0.0. In all numerical experiments c was considered equal
to c = 1.01 (highly nonlinear soil).

As expected, we observe in Tables 1 and 2 the much better behaviour of the MG-FAS algorithm against ALGS.
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N Algorithm f(x, y) = 0.0 f(x, y) = 0.5
β(u) from (2.2a) β(u) from (2.2b) β(u) from (2.2a) β(u) from (2.2b)

33 ALGS 3.0 9.0 3.45 10.16
MG-FAS 1.0 2.0 1.0 1.4

65 ALGS 3.01 13.88 5.94 16.74
MG-FAS 2.0 2.57 2.0 2.1

129 ALGS 4.9 18.0 11.0 18.0
MG-FAS 3.9 4.0 3.8 4.0

257 ALGS 8.0 307 28.16 311
MG-FAS 4.0 4.84 4.0 4.76

TABLE 1. Dirichlet boundary conditions (2.5).

N Algorithm Dirichlet like boundary Robin like boundary
condition on y = 1 condition on y = 1

33 ALGS 14.9 14.0
MG-FAS 4.0 3.7

65 ALGS 32.9 30.7
MG-FAS 4.9 5.7

129 ALGS 93.3 83.9
MG-FAS 4.3 7.9

257 ALGS 280.5 268.75
MG-FAS 10.89 12.67

TABLE 2. Robin boundary conditions (2.6).

Test 1. Computed solution for problem (2.1) with Dirichlet boundary conditions (2.5; N = 129)

1 2 3 4 5 6 7 8 9 10

0.01

0.02

0.03

0.04

0.05

0.06

t

ū

FIGURE 1. f(x, y) = 0.0, Diffusion 2.2a
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ū

FIGURE 2. f(x, y) = 0.5, Diffusion 2.2a
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FIGURE 3. f(x, y) = 0.0, Diffusion 2.2b
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FIGURE 4. f(x, y) = 0.5, Diffusion 2.2b
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Test 2. Computed solution for problem (2.1) with Robin boundary conditions (2.6; N = 129)
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FIGURE 5. Diffusion 2.2a; Dirichlet-like condition on y = 1
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FIGURE 6. Diffusion 2.2b; Dirichlet-like condition on y = 1
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FIGURE 7. Diffusion 2.2b; Robin-like condition on y = 1
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