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A survey of different integer programming formulations of the generalized
minimum spanning tree problem

P. C. POP

ABSTRACT.
In this survey paper, we discuss the development of the Generalized Minimum Spanning Tree Problem, denoted by GMSTP, and we focus on
the integer programming formulations of the problem. The GMSTP is a variant of the classical minimum spanning tree problem (MST), in which
the nodes of an undirected graph are partitioned into node sets (clusters) and we are looking for a minimum cost tree spanning a subset of
nodes which includes exactly one node from every cluster. In this paper we describe twelve distinct formulations of the GMSTP based on integer
programming. Apart from the standard formulations all the new formulations that we describe are ’compact’ in the sense that the number of
constraints and variables is a polynomial function of the number of nodes in the problem. Comparisons of the polytopes corresponding to their
linear relaxations are established.

1. INTRODUCTION

Classical combinatorial optimization problems can be generalized in a natural way by considering a related prob-
lem relative to a given partition of the nodes of the graph into node sets. In the literature one finds generalized
problems such as the generalized minimum spanning tree problem, the generalized travelling salesman problem,
the generalized Steiner tree problem, the generalized (subset) assignment problem, etc. These generalized problems
typically belong to the class of NP-complete problems, are harder than the classical ones and nowadays are inten-
sively studied due to the interesting properties and applications in the real world.

We are concerned in this paper with the generalized version of the minimum spanning tree problem (MST) called
the generalized minimum spanning tree problem (GMSTP). Given an undirected graph whose nodes are partitioned
into a number of subsets (clusters), the GMSTP is then to find a minimum-cost tree spanning a subset of nodes which
includes exactly one node from each cluster. Therefore, the MST is a special case of the GMSTP where each cluster
consists of exactly one node.

The GMSTP was introduced by Myung et al. [14] and it has several real world applications in designing metro-
politan area networks [7] and regional area networks [24], in determining the location of the regional service centers
[17], energy transportation [15], agricultural irrigation [1], etc.

Myung et al. [14] proved that the GMSTP is an NP-hard problem by reduction from the vertex cover problem. A
stronger result regarding the complexity of the problem has been provided by Pop et al. [18], namely the GMSTP
even defined on trees is NP-hard. The proof of this result was based on a polynomially reduction of the set cover
problem to the GMSTP defined on trees. In the same paper [18], the authors presented an exponential time algorithm
that finds an exact solution to the GMSTP based on dynamic programming.

A negative approximation result have been proved by Myung et al. [14], namely there is no polynomial time
algorithm solving the problem with bounded worst-case ratio, unless P = NP . Some positive approximation results
for the special cases of GMSTP are described in Pop et al. [20] providing a polynomial time approximation algorithm
with worst-case ratio bounded by 2ρ if the cluster size is bounded by ρ and the cost function is strict positive and
satisfies the triangle inequality and in Feremans et al. [5] in the case of a geometric version of the GMSTP with grid
clustering providing a polynomial time approximation scheme (PTAS) for the case when all non-empty grid cells are
connected.

Myung et al. [14] used a branch and bound procedure in order to solve the GMSTP. Their lower procedure is a
heuristic method which approximates the linear programming relaxation associated with the dual of the multicom-
modity flow formulation of the GMSTP. They developed also a heuristic algorithm which finds a primal feasible
solution for the GMSTP using the obtained dual solution and reported the exact solution of instances with up to 100
vertices. The GMSTP was solved to optimality for nodes up to 200 by Feremans [2] using a branch-and-cut algo-
rithm. More recently, Pop et al. [21] have proposed a new integer programming formulation of the GMSTP based on
a distinction between local and global variables and a solution procedure that finds an optimal solution on instances
with up to 240 vertices.

The difficulty of obtaining optimum solutions for the GMSTP has led to the development of several metaheuris-
tics. The first such algorithms were the tabu search (TS) heuristic of Feremans [2] and the simulated annealing (SA)
heuristic of Pop [17], an improved version of the SA was described in [23]. Two variants of a TS heuristic and four
variable neighborhood search (VNS) based heuristics were later devised by Ghosh [8]. Another VNS algorithm for
the GMSTP was proposed by Hu et al. [12]. The authors report that their VNS approach can produce solutions that
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are comparable to those obtained by means of the second variant of the TS heuristic of Ghosh [8]. The same authors
proposed an improved VNS algorithm combining it with integer linear programming [13]. Golden et al. [10] have
devised a local search heuristic (LSH) and a genetic algorithm (GA) for the GMSTP. Both algorithms have yielded
improvements on TSPLIB instances with sizes between 198 ≤ n ≤ 225. On none of these instances did the LSH
outperform the GA. Another TS heuristic for the GMSTP was devised by Wang et al. [28]. The authors note that
their TS heuristic produces solutions slightly better than those obtained by the GA of Golden et al. [10]. Recently, an
attribute based tabu search heuristic employing new neighborhoods was proposed by Oncan et al. [15]. The authors
mention that their TS based heuristic yields the best results for all instances. Another metaheuristic approach may
be found in [16].

The aim of this paper is to describe twelve different integer programming formulations of the GMSTP and to
establish relations between the polytopes corresponding to their linear relaxations.

2. DEFINITION OF THE GENERALIZED MINIMUM SPANNING TREE PROBLEM

Let G = (V,E) be an n-node weighted undirected graph whose edges are associated with non-negative costs. Let
V1, . . . , Vm be a partition of V into m subsets called clusters (i.e., V = V1 ∪ V2 ∪ . . . ∪ Vm and Vl ∩ Vk = ∅ for all
l, k ∈ {1, . . . ,m} with l 6= k). We denote the cost of an edge e = (i, j) ∈ E by cij . Let V1 be the root cluster, and let
e = (i, j) be an edge with i ∈ Vl and j ∈ Vk. If l 6= k, then e is called an inter-cluster edge; otherwise, e is called an
intra-cluster edge.

The generalized minimum spanning tree problem (GMSTP) asks for finding a minimum-cost tree T spanning a subset
of nodes which includes exactly one node from each cluster Vi, i ∈ {1, ...,m}. We will call such a tree a generalized
spanning tree. In the next figure we present examples of generalized spanning trees.

FIGURE 1. Examples of generalized spanning trees

There were considered two variations of the GMSTP in the literature:
• the at least version of the GMSTP in which we are looking for a minimum-cost tree spanning a subset of

nodes which includes at least one node from each cluster. This variation was introduced by Dror et al. [1],
more information on the problem can be found in [2, 15].

• the prize-collecting generalized minimum spanning tree problem (PC-GMSTP) is a variation of the GMSTP
in which the nodes within the same cluster are competing to be selected and each node offers a certain prize
if selected. More information on this version of the GMSTP can be found in [22, 26, 11].

In the present paper we confine ourselves to the problem of choosing exactly one vertex per cluster.

3. INTEGER PROGRAMMING FORMULATIONS OF THE GMSTP

In order to formulate the GMSTP as an integer program we introduce the following binary variables:

xe = xij =

{
1 if the edge e = (i, j) ∈ E is included in the selected subgraph
0 otherwise

zi =

{
1 if the node i is included in the selected subgraph
0 otherwise

wij =

{
1 if the arc (i, j) ∈ A is included in the selected subgraph
0 otherwise.



106 P. C. Pop

We use the vector notations x = (xij), z = (zi), w = (wij) and the notations x(E
′
) =

∑
{i,j}∈E′

xij , for E
′ ⊆ E,

z(V
′
) =

∑
i∈V ′

zi, for V
′ ⊆ V and w(A

′
) =

∑
(i,j)∈A′

wij , for A
′ ⊆ A.

3.1. Formulations based on tree properties.

Generalized subtour elimination formulation (Myung et al. [14])

We consider G = (V,E) an undirected graph. A feasible solution of the GMSTP can be seen as a cycle free graph
with m − 1 edges, one node selected from each cluster and connecting all the clusters. Therefore the GMSTP can be
formulated as the following integer programming problem:

min
∑
e∈E

cexe

s.t. z(Vk) = 1, ∀ k ∈ K = {1, ...,m}(3.1)
x(E(S)) ≤ z(S − i), ∀ i ∈ S ⊂ V, 2 ≤ |S| ≤ n− 1(3.2)
x(E) = m− 1(3.3)
xe ∈ {0, 1}, ∀ e ∈ E(3.4)
zi ∈ {0, 1}, ∀ i ∈ V.(3.5)

For simplicity we used the notation S − i instead of S \ {i}. In the above formulation, constraints (3.1) guarantee
that from every cluster we select exactly one node, constraints (3.2) eliminate all the subtours and finally constraint
(3.3) guarantees that the selected subgraph has m − 1 edges. This formulation, introduced by Myung [14], is called
the generalized subtour elimination formulation since constraints (3.2) eliminate all the cycles.

We denote the feasible set of the linear programming relaxation of this formulation by Psub, where we replace the
constraints (3.4) and (3.5) by 0 ≤ xe, zi ≤ 1, for all e ∈ E and i ∈ V .

Generalized cutset formulation (Myung et al. [14])

We may replace the subtour elimination constraints (3.2) by connectivity constraints, resulting the generalized cutset
formulation introduced in [14]:

min
∑
e∈E

cexe

s.t. (1), (3), (4), (5) and
x(δ(S)) ≥ zi + zj − 1, ∀ i ∈ S ⊂ V, j /∈ S(3.6)

where the cutset δ(S) is defined as usually δ(S) = {e = (i, j) ∈ E | i ∈ S, j /∈ S}, S ⊂ V .
We denote the feasible set of the linear programming relaxation of this formulation by Pcut. Myung et al. [14]

proved the following relation: Psub ⊂ Pcut.

Generalized multicut formulation (Pop [17])

Our next model, the so-called generalized multicut formulation, is obtained by replacing simple cutsets by multicuts.
Given a partition of the nodes V = C0 ∪ C1 ∪ . . . ∪ Ck, we define the multicut δ(C0, C1, ..., Ck) to be the set of edges
connecting different Ci and Cj . The generalized multicut formulation for the GMSTP is:

min
∑
e∈E

cexe

s.t. (1), (3), (4), (5) and

x(δ(C0, C1, ..., Ck)) ≥
k∑

j=0

zij − 1, ∀ C0, C1, ..., Ck node partitions

of V and ∀ ij ∈ Cj for j = 0, 1, ..., k.(3.7)

Let Pmcut denote the feasible set of the linear programming relaxation of this model. Clearly, Pmcut ⊆ Pcut, in
addition, Pop [17] showed that Psub = Pmcut.

Cluster subpacking formulation (Feremans [2])

We may strengthen the generalized subtour formulation of the GMSTP by replacing the subtour elimination con-
straints (3.2) with the cluster subpacking constraints

x(E(S)) ≤ z(S \ Vk), ∀S ⊂ V, 2 ≤ |S| ≤ n− 1, k ∈ K.
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We observe that these constraints are dominated by:

x(E(S′)) ≤ z(S′ \ Vk) = z(S′)− 1,

where S′ = S ∪ Vk. Therefore we arrive at the cluster subpacking formulation of the GMSTP, introduced by Feremans
[2]:

min
∑
e∈E

cexe

s.t. (1), (3), (4), (5) and
x(E(S)) ≤ z(S)− 1, ∀ S ⊂ V, 2 ≤ |S| ≤ n− 1, |{k : Vk ⊆ S}| 6= 0.(3.8)

The cluster subpacking constraints (3.8) guarantee that the number of edges selected from any subset of nodes S with
S ⊂ V, 2 ≤ |S| ≤ n− 1, cannot be greater than the number of nodes selected from that set minus 1. We will denote by
Pspack the feasible set of the linear programming relaxation of the cluster subpacking formulation.
3.2. Formulations based on arborescence properties.

Consider the directed graph D = (V,A) obtained by replacing each edge e = (i, j) ∈ E by the opposite arcs
(i, j) and (j, i) in A having the same weight as the edge (i, j) ∈ E. The directed version of the GMSTP introduced
by Myung et al. [14], called Generalized Minimum Spanning Arborescence problem is defined on the directed graph
D = (V,A) rooted at a given cluster, say V1 without loss of generality, and consists of determining a minimum cost
arborescence which includes exactly one node from every cluster.

The next two formulations that we are going to present in this section, were presented by Feremans et al. [2].

Directed generalized cutset formulation (Feremans [2])

We consider first a directed generalized cutset formulation of the GMSTP. In this model we consider the directed graph
D = (V,A) with the cluster V1 chosen as a root, without loss of generality, and we denote K1 = K \ {1}.

min
∑
e∈E

cexe

s.t. z(Vk) = 1, ∀ k ∈ K = {1, ...,m}
x(E) = m− 1

w(δ−(S)) ≥ zi, ∀ i ∈ S ⊆ V \ V1(3.9)
wij ≤ zi , ∀ i ∈ V1, j /∈ V1(3.10)
wij + wji = xe , ∀ e = (i, j) ∈ E(3.11)
x, z, w ∈ {0, 1}.(3.12)

In this model constraints (3.9) and (3.10) guarantee the existence of a path from the selected root node to any other
selected node which includes only the selected nodes. Let Pdcut denote the projection of the feasible set of the linear
programming relaxation of this model into the (x, z)-space.

Another possible directed generalized cutset formulation considered by Myung et al. in [14], was obtained by
replacing (3.3) with the following constraints:

w(δ−(V1)) = 0(3.13)
w(δ−(Vk)) ≤ 1, ∀ k ∈ K1.(3.14)

Directed subpacking formulation (Feremans [2])

We introduced now a formulation of the GMSTP based on branchings. Consider, as in the previous formulation,
the digraph D = (V,A) with V1 chosen as the cluster root. The directed subpacking formulation of the GMSTP is defined
as follows:

min
∑
e∈E

cexe

s.t. z(Vk) = 1, ∀ k ∈ K = {1, ...,m}
x(E) = m− 1

w(A(S)) ≤ z(S − i), ∀ i ∈ S ⊂ V, 2 ≤ |S| ≤ n− 1(3.15)
w(δ−(j)) = zj , ∀ j ∈ V \ V1(3.16)
wij + wji = xe , ∀ e = (i, j) ∈ E

x, z, w ∈ {0, 1}.
Let Pdspack denote the projection of the feasible set of the linear programming relaxation of this model into the

(x, z)-space. Obviously, Pdspack ⊆ Psub and Pspack = Pdspack (see [2]). This means that a simple undirected formula-
tion can be as tight as a directed formulation, even if there are fewer variables. This is also the case for the MST and
Steiner Tree Problem.
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The following result was established by Feremans [2]: Pdspack = Pdcut ∩ Psub. A different proof of this result was
presented by Pop [17].

3.3. Flow based formulations. All the formulations that we have described so far have an exponential number of
constraints. The formulations that we are going to consider next will have only a polynomial number of constraints
but an additional number of variables. In order to give compact formulations of the GMST problem one possibility
is to introduce ’auxiliary’ flow variables beyond the natural binary edge and node variables.

We wish to send a flow between the nodes of the network and view the edge variable xe as indicating whether the
edge e ∈ E is able to carry any flow or not. We consider four such flow formulations: a single commodity model,
a multicommodity model, a bidirectional flow model and a flow cut formulation. In each of these models, although
the edges are undirected, the flow variables will be directed. That is, for each edge (i, j) ∈ E, we will have flow in
the both directions i to j and j to i.

Single commodity flow formulation (Pop [17])

In the single commodity model, the source cluster V1 sends one unit of flow to every other cluster. Let fij denote the
flow on edge e = (i, j) in the direction i to j. This leads to the following formulation:

min
∑
e∈E

cexe

s.t. z(Vk) = 1, ∀ k ∈ K = {1, ...,m}
x(E) = m− 1∑
e∈δ+(i)

fe −
∑

e∈δ−(i)

fe =

{
(m− 1)zi for i ∈ V1

−zi for i ∈ V \V1
(3.17)

fij ≤ (m− 1)xe, ∀ e = (i, j) ∈ E(3.18)
fji ≤ (m− 1)xe, ∀ e = (i, j) ∈ E(3.19)
fij , fji ≥ 0, ∀ e = (i, j) ∈ E(3.20)
x, z ∈ {0, 1}.

In this model, the mass balance equations (3.17) imply that the network defined by any solution (x, z) must be
connected. Since the constraints (3.1) and (3.3) state that the network defined by any solution contains m − 1 edges
and one node from every cluster, every feasible solution must be a generalized spanning tree. Therefore, when
projected into the space of the (x, z) variables, this formulation correctly models the GMSTP. We let Pflow denote the
projection of the feasible set of the linear programming relaxation of this model into the (x, z)-space.

Multicommodity flow formulation (Myung et al. [14])

A stronger relaxation is obtained by considering multicommodity flows. This directed multicommodity flow model
was introduced by Myung et al. in [14]. In this model every node set k ∈ K1 defines a commodity. One unit of
commodity k originates from V1 and must be delivered to node set Vk. Letting fk

ij be the flow of commodity k in arc
(i, j) we obtain the following formulation:

min
∑
e∈E

cexe

s.t. z(Vk) = 1, ∀ k ∈ K = {1, ...,m}
x(E) = m− 1∑
a∈δ+(i)

fk
a −

∑
a∈δ−(i)

fk
a =

 zi , i ∈ V1

−zi , i ∈ Vk

0 , i /∈ V1 ∪ Vk

, k ∈ K1(3.21)

fk
ij ≤ wij , ∀ a = (i, j) ∈ A, k ∈ K1(3.22)

wij + wji = xe , ∀ e = (i, j) ∈ E

fk
a ≥ 0, ∀ a = (i, j) ∈ A, k ∈ K1(3.23)
x, z ∈ {0, 1}.

In [14], Myung et al. presented a branch and bound procedure to solve the GMSTP. The computational efficiency
of such a procedure depends greatly upon how quickly it generates good lower and upper bounds. Their lower
bounding procedure was based on the directed multicommodity flow model, since its linear programming relaxation
not only provides a tight lower bound but also has a nice structure based on which an efficient dual ascent algorithm
can be constructed. They developed also a heuristic algorithm which finds a feasible solution for the GMSTP using
the obtained dual solution.
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We let Pmcflow denote the projection of the feasible set of the linear programming relaxation of this model into the
(x, z)-space. Pop [17] showed that the following relation exists between the feasible sets of the linear programming
relaxation of these flow models Pmcflow ⊆ Pflow.

Bidirectional flow formulation (Pop [17])

We obtain a closely related formulation by eliminating the variables wij . The resulting formulation consists of
constraints (3.1), (3.3), (3.21), (3.23) plus

(3.24) fh
ij + fk

ij ≤ xe , ∀ h, k ∈ K1 and ∀ e ∈ E.

We refer to this model as the bidirectional flow formulation of the GMSTP and let Pbdflow denote its set of feasible
solutions in (x, z)-space. Observe that since we have eliminated the variables wa in constructing the bidirectional
flow formulation, this model is defined on the undirected graph G = (V,E), even though for each commodity k we
permit flows fk

ij and fk
ji in both directions on edge e = (i, j).

In the bidirectional flow formulation, constraints (3.24) which we are called the bidirectional flow inequalities,
link the flow of different commodities flowing in different directions on the edge (i, j). These constraints model the
following fact: in any feasible generalized spanning tree, if we eliminate edge (i, j) and divide the nodes in two sets;
any commodity whose associated node lies in the same set as the root node set does not flow on edge (i, j); any two
commodities whose associated nodes both lie in the set without the root both flow on edge (i, j) in the same direction.
So, whenever two commodities h and k both flow on edge (i, j), they both flow in the same direction and so one of
fh
ij and fk

ij equals zero.

Proposition 3.1. (Pop [17]) Pmcflow = Pbdflow.

Proof. If (w, x, z, f) ∈ Pmcflow , using (3.11) we have that

fh
ij + fk

ji ≤ wij + wji = xe , ∀ e = (i, j) ∈ E and ∀ h, k ∈ K1.

On the other hand, assume that (x, z, f) ∈ Pbdflow . By (3.24)

max
h

fh
ij +max

k
fk
ji ≤ xe ∀ e = (i, j) ∈ E.

Hence we can choose w such that max
h

fh
ij ≤ wij and xe = wij + wji for all e = (i, j) ∈ E. For example take

wij =
1

2
(xe +max

h
fh
ij −max

k
fk
ji).

Clearly, (w, x, z, f) ∈ Pmcflow .
We obtain another formulation, which we refer to as the undirected multicommodity flow model, by replacing the

inequalities (3.22) by the weaker constraints:

fk
ij ≤ xe , for every k ∈ K1 and e ∈ E.

�

Flow cut formulation (Feremans [2])

The flow cut formulation is closely related to the multicommodity flow formulation. The main difference between
the two is that the flow balance constraints (3.21) and constraints (3.22) are replaced by a directed cutset constraint
using the Gale [6] necessary and sufficient feasibility condition for the existence of a feasible flow.

min
∑
e∈E

cexe

s.t. z(Vk) = 1, ∀ k ∈ K = {1, ...,m}
wij + wji = xe , ∀ e = (i, j) ∈ E

w(δ−(V1)) = 0(3.25)
w(δ−(Vk)) ≤ 1, ∀k ∈ K1(3.26)
w(δ−(S)) ≥ z(Vk ∩ S)− z(V1 ∩ S), ∀S ⊂ V, 1 ≤ |S| ≤ n− 1, k ∈ K1(3.27)
x, z ∈ {0, 1}.

The directed cutset constraint (3.27) together with constraints (3.1), (3.11), (3.25) and (3.26) guarantees tree design
and connectivity between all clusters. We refer to this model as the flow cut formulation of the GMSTP and let Pfcut

denote its set of feasible solutions in (x, z)-space.
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The relationship between the polyhedron defined by the linear relaxation of the flow cut formulation of the GMSTP
and some of the polyhedrons of the linear relaxations of corresponding formulations is (see [2], [17], [26]):

Pspack = Pdspack = Pfcut = Pmcflow = Pbdflow.

3.4. A model based on Steiner tree properties. Raghavan [25] have fransformed the GMSTP into a Steiner tree
problem which can be solved with any of the specialized algorithms for this problem.

Steiner tree formulation (Raghavan [25])

The Steiner tree formulation, introduced by Raghavan [25], is a multicommodity flow formulation for the GMSTP,
once the GMSTP is transformed into a Steiner tree problem with degree constraints. The transformation of the
GMSTP to a Steiner tree problem is performed using the following steps. Let sr be an artificial root node, and
T = {t1, t2, ..., tk} be a set of artificial sink nodes that are required to be in the Steiner tree. Artificial node sr is
connected to each node ı ∈ V with zero cost arc (sr, i) and all nodes i ∈ Vk of a given cluster k = 1, ...,m are
connected with zero cost arc (i, tk) to the corresponding artificial node tk. In this new graph, a set of commodities H
is also defined so that there is exactly one commodity h ∈ H originating at node sr and terminating at node tk for
each k = 1, ...,m. The Steiner tree formulation of the GMSTP is described as follows:

min
∑
e∈E

cexe

s.t.
∑

(i,j)∈A:i/∈Vk,j∈Vk

wij = 1, ∀ k ∈ K1(3.28)

wij + wji ≤ 1, ∀(i, j) ∈ A(3.29)

∑
a∈δ+(i)

fh
a −

∑
a∈δ−(i)

fh
a =

 −1 , if i = O(h)
1 , if i = D(h) ∀i ∈ V andh ∈ H
0 , otherwise

(3.30)

0 ≤ fh
ij ≤ wij , ∀ (i, j) ∈ A, h ∈ H(3.31)

w ∈ {0, 1}.
The Steiner tree formulation of the GMSTP is then the standard multicommodity fow model for the Steiner tree

problem with additional degree constraints (3.28) that ensure an in-degree of 1 for each of the clusters (k ∈ K). This
formulation ensures the design of a minimum-cost directed Steiner tree, containing root node sr, all the nodes in T ,
and exactly one node from each cluster.

We denote by Pstree the set of feasible solutions in (x, z)-space of this formulation. In [25], Raghavan has shown
that the Steiner tree formulation is equivalent to the multicommodity flow formulation, where the node variables
had to be used to indicate whether a node is selected to be in the GMSTP.

3.5. Local-global formulation of the GMSTP. Our last formulation was introduced by Pop [17] and aims at distin-
guishing between global, i.e. inter-cluster connections, and local ones, i.e. connections between nodes from different
clusters. We introduce variables yij (i, j ∈ {1, ...,m}) to describe the global connections. So yij = 1 if cluster Vi is
connected to cluster Vj and yij = 0 otherwise and we assume that y represents a spanning tree. The convex hull of all
these y-vectors is generally known as the spanning tree polytope (on the contracted graph with vertex set {V1, ..., Vm}
which we assume to be complete).

Following Yannakakis [27] this polytope, denoted by PMST , can be represented by the following polynomial num-
ber of constraints: ∑

{i,j}

yij = m− 1

yij = λkij + λkji, for 1 ≤ k, i, j ≤ m and i 6= j(3.32) ∑
j

λkij = 1, for 1 ≤ k, i, j ≤ m and i 6= k(3.33)

λkkj = 0, for 1 ≤ k, j ≤ m(3.34)
yij , λkij ≥ 0, for 1 ≤ k, i, j ≤ m.

where the variables λkij are defined for every triple of nodes k, i, j, with i 6= j 6= k and their value for a spanning tree
is are λkij = 1, if j is the parent of i when we root the tree at k and 0 otherwise.

The constraints (3.32) mean that an edge (i, j) is in the spanning tree if and only if either i is the parent of j or j is
the parent of i; the constraints (3.33) mean that if we root a spanning tree at k then every node other than node k has
a parent and finally constraints (3.34) mean that the root k has no parent.

If the vector y describes a spanning tree on the contracted graph, the corresponding best (w.r.t. minimization of
the costs) local solution x ∈ {0, 1}|E| can be obtained by one of the following two methods described by Pop [17] using
dynamic programming or integer linear programming.



A survey of different integer programming formulations ... 111

If the 0-1 vector y describes a spanning tree on the contracted graph, the corresponding local solution x ∈ {0, 1}|E|

that minimizes the costs can be obtained by solving the following integer linear programming problem:

min
∑
e∈E

cexe

s.t. z(Vk) = 1, ∀ k ∈ K = {1, ...,m}
x(Vl, Vr) = ylr, ∀ l, r ∈ K = {1, ...,m}, l 6= r

x(i, Vr) ≤ zi, ∀ r ∈ K, ∀ i ∈ V \ Vr

xe, zi ∈ {0, 1}, ∀ e = (i, j) ∈ E, ∀ i ∈ V,

where x(Vl, Vr) =
∑

i∈Vl,j∈Vr

xij and x(i, Vr) =
∑
j∈Vr

xij .

For given y, we denote the feasible set of the linear programming relaxation of this program by Plocal(y). The
following result holds (Pop et al. [21]):

Proposition 3.2. If y is the 0-1 incidence vector of a spanning tree of the contracted graph then the polyhedron Plocal(y) is
integral.

In order to prove that the polyhedron Plocal(y) is integral, Pop et al. [21] showed that every solution of the lin-
ear programming relaxation can be written as a convex combination of solutions corresponding to spanning trees:
(x, z) =

∑
λT (xT , zT ). The proof was done by induction on the support of x, denoted by supp(x) and defined as

follows supp(x) := {xe | xe 6= 0, e ∈ E}.

Local-global formulation

The observations presented so far lead to our final formulation, called local-global formulation of the GMSTP as an
0-1 mixed integer programming problem, where only the global variables y are forced to be integral:

min
∑
e∈E

cexe

s.t. (x, z) ∈ Plocal(y)

y ∈ PMST

ylr ∈ {0, 1}, ∀ 1 ≤ l, r ≤ m.

This new formulation of the GMSTP was obtained by incorporating the constraints characterizing PMST , with
y ∈ {0, 1}, into Plocal(y). The local-global formulation of the GMSTP uses three types of variables to define the
connections between clusters in the graph. The first group of variables, which we have already used in the previous
formulations, are indicator edge variables, xij . These variables define the use of specific edges between nodes in the
graph. The other two groups of variables, ylr and λklr, on the other hand, define connections between clusters in the
graph. The ylr variables indicate whether the solutions includes any of the edges directly connecting clusters l and r.
The λklr variables are used to define K directed trees, one for each of the clusters in the graph.

This new model of the GMSTP has several nice properties that can be used for the development of exact solu-
tion procedures [17, 21], metaheuristic algorithms [12, 13], heuristic algorithms [18] and as well heuristic and exact
procedures for the PC-GMSTP [26, 11].

Note that although the presented formulations are defined for the GMSTP, these formulations are also valid for
the PC-GMSTP, we only need to add the prize of selecting a node from a cluster to the objective function.

4. CONCLUSIONS

We have presented a survey of twelve integer programming formulations of the GMSTP, 3 introduced by Myung
et al., 4 introduced by Feremans et al., 4 introduced by Pop and one introduced by Raghavan. We have shown that
the best linear relaxation is provided by the undirected cluster subpacking formulation, directed cluster subpacking
formulation, multicommodity flow formulation, bidirectional flow formulation, flow cut formulation and Steiner
tree formulation. Among the described integer programming formulations, the local-global formulation is the most
compact in terms of number of variables and number of constraints.

The relationships between the described formulations are depicted in the following figure:
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FIGURE 2. Relationship between the polyhedrons defined by the linear relaxations of corresponding
GMSTP formulations
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