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Counting maximal chains of subgroups of finite nilpotent groups

MIRELA ŞTEFĂNESCU and M. TĂRNĂUCEANU

ABSTRACT.
The main goal of our paper is to determine the total number of maximal chains of subgroups in a finite nilpotent group. This counting problem is
reduced to finite p-groups. Explicit formulas are obtained in some particular cases.

1. INTRODUCTION

One of the most important problems of combinatorial group theory is to count the chains of subgroups of a finite
group. This topic has enjoyed a rapid deve-lopment in the last few years. Thus, in [4]-[6], the set of k-chains and the
set of all chains of such groups are investigated in the context of subsets of multisets and partitions of a set, while
[3] deals with the cardinality of these sets by using the Inclusion-Exclusion Principle. Note also that the well-known
Delannoy numbers, studied in several papers as [3] and [11], count in fact all chains of subgroups of a finite cyclic
group which satisfy a certain property. Another more recent problem which involves some combinatorial aspects on
chains of subgroups is the classifying of distinct fuzzy subgroups of finite groups (for example, see [12]).

A chain of subgroups of a group is called a maximal chain if it is not properly included in another chain. The
total number of maximal chains of subgroups for a finite cyclic group was determined in different ways in [3] (see
Theorem 1 for k = kmax) or in [12] (see Proposition 11).

In the present paper we extend this study to finite nilpotent groups. Because any maximal subgroup of a finite
nilpotent group is normal, the maximal chains of these groups will coincide with their composition series. In partic-
ular, we infer that all maximal chains of subgroups of such a group are of the same length.

In the following let (G, ·, e) be a finite nilpotent group (where e denotes the identity of G) of order pn1
1 pn2

2 ...pnmm
(p1, p2, ..., pm are distinct primes) and L(G) be the subgroup lattice of G. Recall that L(G) is a complete bounded
lattice with respect to set-inclusion, having an initial element, {e}, and a final element, G. It is well-known that G can
be written as the direct product of its Sylow subgroups

G =

m×
i=1

Gi,

where |Gi| = pnii , for all i = 1, 2, ...,m. Since the subgroups of a direct product of groups having coprime orders are
also direct products (see Corollary of (4.19), [9], I), one obtains that

L(G) =

m×
i=1

L(Gi).

The above lattice direct decomposition is often used in order to reduce many problems on L(G) to the subgroup
lattices of finite p-groups. It will play an essential role in proving the key result of Section 2. In Section 3 we shall give
explicit formulas of the number of maximal chains of subgroups for three classes of finite p-groups: finite elementary
abelian p-groups, finite abelian p-groups of type Zpα1 × Zpα2 and finite p-groups possessing a maximal subgroup
which is cyclic. Some conclusions and further research directions are indicated in the last section.

Most of our notation is standard and will not be repeated here. Basic definitions and results on groups can be
found in [9]. For subgroup lattice concepts we refer to [7].

2. THE KEY RESULT

In this section we present how one can reduce the counting of the number n(G) of maximal chains of subgroups
in a finite nilpotent group G to the more convenient case of finite p-groups.

First of all, let G = G1 × G2, where |Gi| = pnii , i = 1, 2 (p1, p2 distinct primes), and consider π1, π2 to be the
canonical projections onto the direct factors G1, G2. Denote also by C, C1 and C2 the sets consisting of all maximal
chains of subgroups in G,G1 and G2, respectively. Then we get the surjective function

π : C → C1 × C2, π(C) = (π1(C), π2(C)), for any C ∈ C.
In order to compute |C| we need to determine the number of elements in an equivalence class modulo Ker π (it is
clear that all these classes have the same cardinality). Take C1 × C2 ∈ C1 × C2, where

Ci : {e} = Gi0 ⊂ Gi1 ⊂ ... ⊂ Gini = Gi, i = 1, 2,
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and denote by f(n1, n2) the number of chains C ∈ C satisfying π(C) = C1 × C2. For n2 = 1, there are n1 + 1 such
chains, namely

Ci :{e}=G10⊂ ... ⊂G1i⊂G1i×G2⊂G1i+1×G2⊂ ... ⊂G1n1
×G2 =G, i = 0, ni,

and therefore we have

(2.1) f(n1, 1) = n1 + 1.

Since the set π−1(C1×C2) consists of maximal chains C containingG1n1−1 ×G2 orG1×G2n2−1 and these subgroups
are maximal in G, we infer that f satisfies the following recurrence relation

(2.2) f(n1, n2) = f(n1 − 1, n2) + f(n1, n2 − 1).

Now, by using (2.1), (2.2) and the fact that f is symmetric, it results

f(n1, n2) =
( n1 + n2

n1

)
=
( n1 + n2

n1, n2

)
,

which implies that

|C| =
( n1 + n2

n1, n2

)
|C1| |C2|.

In this way, one obtains

n(G) =
(
n1 + n2
n1, n2

)
n(G1)n(G2).

This equality can naturally be extended to the general case of an arbitrary finite nilpotent group, by induction on
the number of its direct components.

Theorem 2.1. Let G be a finite nilpotent group of order pn1
1 pn2

2 ... pnmm (p1, p2, ..., pm distinct primes) and G =

m×
i=1

Gi be the

decomposition ofG as a direct product of its Sylow subgroups. Then the numbers n(G) and n(Gi), i = 1, 2, ...,m, are connected
by the following equality:

n(G) =
( n1 + n2 + ...+ nm

n1, n2, ..., nm

) m∏
i=1

n(Gi).

If the groupG is cyclic, then so is eachGi and we have n(Gi) = 1, i = 1, 2, ...,m. Therefore, the following corollary
holds.

Corollary 2.1. The number of maximal chains of subgroups in a finite cyclic group of order pn1
1 pn2

2 ... pnmm (p1, p2, ..., pm distinct
primes) is equal to the multinomial coefficient(

n1 + n2 + ...+ nm
n1, n2, ..., nm

)
=

(n1 + n2 + ...+ nm)!

n1!n2!...nm!
·

Note that the previous corollary is nothing else than Proposition 11 of [12], therefore Theorem 2.1 generalizes this
result. It is also clear that the quantity (

n1 + n2 + ...+ nm
n1, n2, ..., nm

)
represents the number of all maximal lattice paths in the lattice L(n1, n2, ..., nm) studied in [3] and [11].

3. MAXIMAL CHAINS OF SUBGROUPS OF FINITE p-GROUPS

Since by Theorem 2.1 our counting problem is reduced to finite p-groups, in this section we focus on these groups.
The following simple remark is very useful: any maximal chain of subgroups of a finite p-group contains a unique
mini-mal/maximal subgroup. So, for every group investigated here we shall count first the number of its mini-
mal/maximal subgroups and then we shall add the numbers of maximal chains of each such subgroup. We now
study three classes of finite p-groups.

3.1. Finite elementary abelian p-groups. A finite elementary abelian p-group has a direct decomposition of type

Zkp = Zp × Zp × ...× Zp︸ ︷︷ ︸
k factors

,

where p is a prime and k ∈ N∗. The total number of subgroups of a given order in such a group is well-known (for
example, see Proposition 2 of Tărnăuceanu [10], § 2.2).
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Lemma 3.1. For r ∈ {0, 1, ..., k}, the number of all subgroups of order pr in the finite elementary abelian p-group Zkp is 1 if
r = 0 or r = k, and it is ∑

1≤i1<i2<...<ir≤k

pi1+i2+...+ir−
r(r+1)

2

if 1 ≤ r ≤ k − 1.

In particular, the number of minimal subgroups (as well as the number of ma-ximal subgroups) of Zkp is

k∑
i=1

pi−1 =
pk − 1

p− 1
·

For all these subgroups M , the factor group
Zkp
M

is isomorphic to Zk−1p . We infer that n(Zkp) satisfies the following
recurrence relation

n(Zkp) =
pk − 1

p− 1
n(Zk−1p ).

Obviously, this leads to an explicit formula of n(Zkp).

Proposition 3.1. The number n(Zkp) of maximal chains of subgroups in the finite elementary abelian p-group Zkp is given by
the following equality:

n(Zkp) =
1

(p− 1)k

k∏
i=1

(pi − 1).

3.2. Finite abelian p-groups of type Zpα1 × Zpα2 . By the fundamental theorem of finitely generated abelian groups,
a finite abelian p-group has a direct decomposition of type

Zpα1 × Zpα2 × ...× Zpαk ,

where p is a prime and 1 ≤ α1 ≤ α2 ≤ ... ≤ αk. The subgroups of such a group have been studied in [1] and [2]. It is

well-known that it possesses also
pk − 1

p− 1
minimal subgroups, but the corresponding factor groups have not the same

structure, as in § 3.1. In the following we shall look at its maximal subgroups (whose number is
pk − 1

p− 1
, too). In order

to simplify our study, we shall also suppose that k = 2.
According to Suzuki [9], vol. I, (4.19), a subgroup M of Zpα1 × Zpα2 is uniquely determined by two subgroups

H1 ⊆ H ′1 of Zpα1 , two subgroups H2 ⊆ H ′2 of Zpα2 and a group isomorphism ϕ :
H ′1
H1
→ H ′2

H2
(more exactly, M =

{(a1, a2) ∈ H ′1 × H ′2 | ϕ(a1H1) = a2H2}). Moreover, we have |M | = |H ′1| |H2| = |H ′2| |H1|. Imposing the condition
that M is maximal (i.e. |M | = pα1+α2−1), we distinguish the next three cases.

Case 1. |H ′1| = |H1| = pα1 , |H ′2| = |H2| = pα2−1.

Then, between
H ′1
H1

and
H ′2
H2

, there exists only the trivial isomorphism and therefore M ∼= Zpα1 × Zpα2−1 .

Case 2. |H ′1| = |H1| = pα1−1, |H ′2| = |H2| = pα2 .

Similarly to Case 1, we get M ∼= Zpα1−1 × Zpα2 .

Case 3. |H ′1| = pα1 , |H1| = pα1−1, |H ′2| = pα2 , |H2| = pα2−1.

In this case there are p − 1 distinct isomorphisms ϕ from
H ′1
H1

to
H ′2
H2
· Put

H ′1
H1

= 〈x1H1〉 and
H ′2
H2

= 〈x2H2〉. Then

ϕ(x1H1) = xq2H2 for some q ∈ {1, 2, ..., p − 1}. Because the elements (xp1, e), (x1, x
q
2) ∈ M have the orders pα1−1 and

pα2 , respectively, and 〈(xp1, e)〉 ∩ 〈(x1, x
q
2)〉 = {(e, e)}, we infer again that M ∼= Zpα1−1 × Zpα2 .

Thus, we have shown that Zpα1 × Zpα2 has p + 1 maximal subgroups, one isomorphic to Zpα1 × Zpα2−1 and p
isomorphic to Zpα1−1 ×Zpα2 . Let us denote by fp(α1, α2) the number of maximal chains of subgroups in Zpα1 ×Zpα2 .
Then the function fp is symmetric and we have fp(α1, 0) = fp(0, α2) = 1, for all α1, α2. Moreover, fp verifies the
following recurrence relation

(3.3) fp(α1, α2) = pfp(α1 − 1, α2) + fp(α1, α2 − 1), for all 1 ≤ α1 ≤ α2.
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Fix α2 ∈ N∗. For ”small” values of α1 we are able to compute directly fp(α1, α2) :

fp(1, α2) = 1 + α2p,

fp(2, α2) = 1 + (α2 + 1)p+
(α2 − 1)(α2 + 2)

2
p2,

fp(3, α2) = 1 + (α2 + 2)p+
α2(α2 + 3)

2
p2 +

(α2 − 2)(α2 + 2)(α2 + 3)

6
p3,

fp(4, α2) = 1 + (α2+3)p+
(α2+1)(α2+4)

2
p2 +

(α2−1)(α2+3)(α2+4)

6
p3+

+
(α2 − 3)(α2 + 2)(α2 + 3)(α2 + 4)

24
p4,

...

and so on. The above equalities show that we must search fp(α1, α2) of type

fp(α1, α2)=

α1∑
i=0

aα1
i (α2)pi.

By identifying the coefficients in the relation (3.3), an explicit formula for fp(α1, α2) is obtained, namely

fp(α1, α2) = 1+

α1∑
i=1

(α1+α2−2i+1)(α1+α2−i+2)(α1+α2−i+3)...(α1+α2)

i!
pi.

Remark that we have
(α1+α2−2i+1)(α1+α2−i+2)(α1+α2−i+3)...(α1+α2)

i!
=

=
( α1+α2

i

)
−
( α1+α2

i−1

)
, for all i = 1, α1.

Hence the next proposition holds.

Proposition 3.2. The number n(Zpα1× Zpα2 ) of maximal chains of subgroups in the finite abelian p-groups Zpα1× Zpα2 is:

n(Zpα1×Zpα2 ) = 1 +

α1∑
i=1

(( α1+α2

i

)
−
( α1+α2

i−1

))
pi.

Remark 3.1. 1) Let n be a fixed nonnegative integer and An = (aij) ∈ Mn+1(IN) be the matrix defined by aij =

fp(i, j), for all i, j = 0, 1, ..., n. Then An is symme-tric and defines a quadratic form
n∑

i,j=0

aijX
iY j . By using (3.3), a

direct calculation shows that all principal minors in the top left corner of An are > 0, and so the previous quadratic
form is positively defined. In particular, all eigenvalues of the matrix An are positive.

2) We consider the central numbers fp(n, n), n ∈ IN. From (3.3), we have

fp(n, n) = pfp(n− 1, n) + fp(n, n− 1) = (p+ 1)fp(n− 1, n),

which implies that
(p+ 1) | fp(n, n), for any n ≥ 1.

Moreover, fp(n, n), n ∈ N, can be written in the more convenient form

fp(n, n) =

n∑
i=0

aip
i,

where

ai =
2n− 2i+ 1

2n− i+ 1

( 2n
i

)
, for all i = 0, 1, ..., n.

We also obtain the following inequality

fp(n, n) <

n∑
i=1

( 2n
i

)
pi.

Finally, we note that the method developed above can successfully be applied for any k ≥ 2, and this leads to an
explicit formula for the number of maximal chains of subgroups of an arbitrary finite abelian group.



Counting maximal chains of subgroups of finite nilpotent groups 123

3.3. Finite p-groups possessing a cyclic maximal subgroup. Let p be a prime, r ≥ 3 be an integer and denote by G
the class consisting of all finite p-groups of order pr having a maximal subgroup which is cyclic. Clearly, G contains
finite abelian p-groups of type Zp × Zpr−1 (studied in § 3.2), but in contrast with § 3.1 and § 3.2 which deal only with
finite abelian p-groups, it also contains some finite nonabelian p-groups. They are completely described by Theorem
4.1, [9], II: a nonabelian group G belongs to G if and only if it is isomorphic to

– M(pr) =
〈
x, y | xpr−1

= yp = 1, y−1xy = xp
r−2+1

〉
,

when p is odd, or to one of the next groups
– M(2r) (r ≥ 4),

– the dihedral group

D2r =
〈
x, y | x2

r−1

= y2 = 1, yxy−1 = x2
r−1−1

〉
,

– the generalized quaternion group

Q2r =
〈
x, y | x2

r−1

= y4 = 1, yxy−1 = x2
r−1−1

〉
,

– the quasi-dihedral group

S2r =
〈
x, y | x2

r−1

= y2 = 1, y−1xy = x2
r−2−1

〉
(r ≥ 4),

when p = 2.
We determine in turn n(G) for all these groups.
We shall focus first on M(pr). It is well-known that its commutator subgroup D(M(pr)) has order p and is gener-

ated by xq , where q = pr−2. We also have Ω1(M(p2)) = 〈xq, y〉 ∼= Zp × Zp, therefore M(pr) contains p + 1 minimal
subgroups: M1 = D(M(pr)), M2 = 〈y〉, M3 = 〈xqy〉 ,..., Mp+1 =

〈
xqyp−1

〉
. For each i ∈ {2, 3, ..., p + 1}, it is obvious

that
M(pr)

Mi

∼= Zpr−1 , and so there exists only one maximal chain in M(pr) which contains Mi. On the other hand,

M(pr)

D(M(pr))
is an abelian group of order pr−1. Denote by x1, y1 the classes of x, y modulo D(M(pr)). Then xq1 = yp1 = 1

and y−11 x1y1 = y−1xyD(M(pr)) = xq+1D(M(pr)) = xD(M(pr)) = x1 (that is, x1 and y1 commute), which show that

M(pr)

D(M(pr))
∼= Zp × Zpr−2 .

One obtains n
(

M(pr)

D(M(pr))

)
= n(Zp × Zpr−2) = 1 + (r − 2)p, in view of Proposition 3.2. Since n(M(pr)) =

p+1∑
i=1

n

(
M(pr)

Mi

)
, we get an explicit formula for this number.

Proposition 3.3. The number n(M(pr)) of maximal chains of subgroups in the finite p-group M(pr) is

n(M(pr)) = 1 + (r − 1)p.

Now we study the groups D2r , Q2r , S2r . An important property of these groups is that their center is of order 2 (it
is generated by xq , where q = 2r−2). Moreover, we have

G

Z(G)
∼= D2r−1 ,

which leads us to a recurrence relation satisfied by n(G).
The minimal subgroups of D2r are: M1 =Z(D2r ), M2 = 〈y〉 , M3 = 〈xy〉 , ..., M2r−1+1=

〈
x2

r−1−1y
〉
. Again, it results

D2r

Mi

∼= Z2r−1 , for all i=2, 3, ..., 2r−1+1.

Since
D2r

M1

∼= D2r−1 , we infer that the number n(D2r ) of maximal chains of subgroups in D2r verifies the recurrence

relation

(3.4) n(D2r ) = n(D2r−1) + 2r−1.

Writing (3.4) for r = 2, 3, ... and summing up these equalities, we find an explicit formula of n(D2r ).

Proposition 3.4. The following equality holds:
n(D2r ) = 2r − 1.

The simplest situation is that of the generalized quaternion groupQ2r . This possesses a unique minimal subgroup,
namely Z(Q2r ). Then n(Q2r ) = n(D2r−1) and this number is obtained by Proposition 3.4.
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Proposition 3.5. The following equality holds:
n(Q2r ) = 2r−1 − 1.

Finally, we count the maximal chains of S2r , r≥4. For each i∈{0, 1, ..., 2r−1−1}, we have (xiy)2 = xiq(q−1) = x−iq.
Therefore ord(xiy) = 2 when i is even, while ord(xiy) = 4 when i is odd. So, the minimal subgroups of S2r are

of the form 〈xq〉 and
〈
x2jy

〉
, j = 0, 1, ..., 2r−2 − 1. As in the previous situations, we obtain

S2r

〈x2jy〉
∼= Z2r−1 , for all

j = 0, 2r−2 − 1. Since
S2r

〈xq〉
∼= D2r−1 , it results that n(S2r ) = n(D2r−1) + 2r−2, which proves the next result.

Proposition 3.6. The number n(S2r ) of maximal chains of subgroups in the finite p-group S2r is given by the following
equality:

n(S2r ) = 3 · 2r−2 − 1.

We finish this section by mentioning that the number of maximal chains of subgroups in any finite nilpotent group
whose Sylow subgroups are of types des-cribed in Section 3 can precisely be determined, according to Theorem 2.1.

4. CONCLUSIONS AND FURTHER RESEARCH

All our previous results show that the counting of maximal chains of subgroups of finite groups is an interesting
combinatorial aspect of group theory. Clearly, it can successfully be made for other finite nilpotent groups, whose
structure of minimal/maximal subgroups leads to a certain recurrence relation. This study can be also extended to
more large classes of finite groups, as supersolvable or solvable groups. It will surely constitute the subject of some
further researches.
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