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A fixed point result for asymptotically nonexpansive mappings on an
unbounded set

M. ABBAS and B. E. RHOADES

ABSTRACT.
A result regarding the existence of a fixed point for asymptotically nonexpansive mapping defined on an unbounded subset of a Banach space is
established.

1. INTRODUCTION AND PRELIMINARIES

Let (X, ‖.‖) be an arbitrary real Banach space, C a nonempty unbounded subset of X, and T : C −→ X. Then T is
said to be nonexpansive if, for any x, y ∈ C,

‖Tx− Ty‖ ≤ ‖x− y‖ ;
T is said to be asymptotically nonexpansive if there exists a sequence {kn} of real numbers, with kn ≥ 1 and lim

n→∞
kn = 1

such that,
‖Tnx− Tny‖ ≤ kn ‖x− y‖

for any x, y ∈ C and n ∈ N ; T is called demiclosed on C if, for any sequence {xn} in C which is weakly convergent to
an element x, with {Txn} norm convergent to an element y, we have x ∈ C and Tx = y.

A sequence {xn} in C said to be approximately convergent with respect to mapping T : C → C if, for some
sequence {αn} in (0, 1) with lim

n→∞
αn = 1, one has ‖xn − αnT

nxn‖ = 0. For example, define T : R → R by Tx = x2,

xn =
1

n
, and αn = 1 for each n ∈ N. It is obvious to note that {xn} is approximately convergent with respect to

the mapping T. Also, note that every bounded sequence in any normed space X is approximately convergent with
respect to the identity map on X.

An asymptotically nonexpansive mapping T is said to satisfy condition (A) if, for any bounded approximately
convergent sequence {xn}with respect to T, in C we have lim sup

n→∞
‖Tmxn − xn‖ = 0 for each m ∈ N.

An asymptotically nonexpansive mapping T is said to satisfy the bounded approximate fixed point property if T
satisfies condition (A) for m = 1.
A point x ∈ C is called a fixed point of T if x = Tx. We denote the set of all fixed points of a map T by F (T ).

Let u ∈ C. A setC is called, u− starshaped, or starshaped with respect to u, if tx+(1−t)u ∈ C for each x ∈ X.Note that
C is convex if C is starshaped with respect to every u ∈ X; C is boundedly compact if every bounded sequence in C
has a convergent subsequence in C.We note that a set C being boundedly compact does not imply that C is bounded;
for example take C = R. For a bounded sequence {xn} in X, denote lim sup

n→∞
‖xn − x‖ by r(x, {xn}), where x ∈ X.

The number inf
x∈C

r(x, {xn}) is called the asymptotic radius of {xn} with respect to C and is denoted by r(C, {xn}). A

point z ∈ C is called an asymptotic center of the sequence {xn} with respect to C if r(z, {xn}) = inf
x∈C

r(x, {xn}). The

set of all such points is denoted by A(C, {xn}). It is well known that every bounded sequence {xn} in a uniformly
convex Banach space X has a unique asymptotic centre with respect to any closed convex subset C of X. We have
the following lemma from ([?]).

Lemma 1.1. Let C be a nonempty closed convex subset of a uniformly convex Banach space X, {xn} a bounded sequence in X
and A(C, {xn}) = {x0}. If {yn} is a sequence of points in C such that lim

n→∞
r(ym, {xn}) = r(C, {xn}), then lim

n→∞
yn = x0.

Let G : X × X −→ R be a mapping which is linear in its first coordinate, and, for any x, y ∈ X, satisfies ‖x‖2 ≤
G(x, x) and |G(x, y)| ≤ M ‖x‖ ‖y‖ for some M > 0 ( [?] ). These conditions enable us to extend the results of [?], [?],
[?], and [?], which have been proved for asymptotically nonexpansive mappings on closed, convex, bounded subsets
of a Banach space. For the information of the reader we list several examples of functions G which satisfy condition
(2.1). We thank Professor George Isac for communicating these examples to us.

(1) If X is a Hilbert space, the mapping G can be the inner product of X.
(2) If X is a Banach space, the semi inner product in the sense of Lumer [?] can play the role of the mapping G.
(3) If X is a Banach space, B : X × X −→ R a bilinear mapping, and there is a positive constant k such that

B(x, x) ≥ k ‖x‖2 , then G : X ×X −→ R defined by G(x, y) =
1

k
B(x, y) satisfies all of the above conditions.
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(4) Consider the Banach space C([0, 1], H), where H is a Hilbert space. We can take G as,

G(x, y) =

∫ 1

0

< x(t), y(t) > dt,

where < ., . > is the inner product defined on H.
The class of asymptotically nonexpansive mappings, which is a natural generalization of the important class of

nonexpansive mappings, was introduced by Goebel and Kirk [?], where it was shown that, if C is a nonempty
bounded closed convex subset of a uniformly convex Banach space and T : X −→ X is asymptotically nonexpansive,
then T has a fixed point. Moreover, the set F (T ) is closed and convex. Asymptotically nonexpansive mappings
have been studied by many authors ( see, for example [?], [?], [?], [?], and the references contained therein ). A
survey of the literature about asymptotically nonexpansive mappings T shows, however, that most of the results
deal with the strong and weak convergence of different iterative processes to a point in F (T ) under the assumption
that F (T ) 6= φ. This paper establishes the existence of a fixed point for an asymptotically nonexpansive mapping
defined on a unbounded starshaped set, which in turn generalizes several comparable results valid for bounded
convex sets.

Definition 1.1. [?] A normed space is said to satisfy Opial’s condition if, whenever a sequence {xn} converges weakly
to a point x in X, then, for y ∈ X, y 6= x,

lim inf ‖xn − x‖ < lim inf ‖xn − y‖ .

It is well known from [?], that all of the lp spaces for 1 < p <∞ have this property. However, the Lp spaces, do not,
unless p = 2.

Definition 1.2. [?] Let C be a nonempty unbounded subset of X , and φ : [0,∞) → [0,∞). A mapping T : C → E is
said to be φ− asymptotically bounded on C if there exist r, c > 0 such that

‖Tx‖ ≤ cφ(‖x‖)
for all x ∈ C with ‖x‖ > r.

2. FIXED POINT THEOREM

Theorem 2.1. Let (X, ‖.‖) be a uniformly convex Banach space, and C a nonempty unbounded closed starshaped subset with
respect to some u ∈ C. Suppose that T is an asymptotically nonexpansive self map of C. If, for each n ∈ N, x ∈ C

(2.1) lim sup
‖x‖→∞

G(Tnx− u, x)
‖x‖2

< 1 ,

then T has a fixed point in C if and only if T satisfies condition (A).

Proof. Suppose that T satisfies condition (A). For each n ≥ 1, define the mapping Tn : C −→ X by

Tnx = αnT
nx+ (1− αn)u,

where αn =
λn
kn

and {λn} is a sequence of real numbers in (0, 1) such that

lim
n→∞

λn = 1. Since C is starshaped with respect to u, and T (C) ⊆ C, Tn(C) ⊆ C. For all x, y ∈ C,

‖Tnx− Tny‖ = αn ‖Tnx− Tny‖
≤ λn ‖x− y‖ ,

which implies that, for each n ∈ N, Tn is a contractive mapping with contractive constant λn < 1. Applying the
Banach contraction principle , we obtain a unique element xn ∈ C such that Tnxn = xn. We shall show that {xn} is
a bounded sequence. Assume, on the contrary, that {xn} is not bounded. Then there exists a subsequence of {xn}
whose norm tends to infinity. For notational convenience, denote this subsequence by {xm}. By (2.1), there exists an
α ∈ (0, 1) and a β > 0 such that G(Tmx− u, x) ≤ α ‖x‖2 for x ∈ C and ‖x‖ > β. For m large enough, we have

‖xm‖2 ≤ G(xm, xm) = G(αm(Tmxm − u) + u, xm)

≤ αm(G(Tmxm − u, xm) +G(u, xm))

≤ αm(α ‖xm‖2 +M ‖u‖ ‖xm‖).

Divide both sides of the above inequality by ‖xm‖2 and take the limit as m → ∞ to obtain 1 ≤ α, which is a
contradiction. Thus ‖xn‖ is bounded. Let x0 be the asymptotic centre of the sequence {xn}. Now define a sequence
{ym} in C by ym = Tmx0. For m,n ∈ N, we have

‖ym − xn‖ ≤ ‖Tmx0 − Tmxn‖+ ‖Tmxn − xn‖
≤ km ‖xn − x0‖+ ‖Tmxn − xn‖
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Now

r({ym}, {xn}) = lim sup
n→∞

‖xn − ym‖

≤ km lim sup
n→∞

‖xn − x0‖+ lim sup
n→∞

‖Tmxn − xn‖

which approaches r(x, {xn}) as m→∞ and hence ym → x0. The continuity of T implies that x0 is a fixed point of T.
To prove the converse, suppose that {xn} converges to a fixed point p of T . Since T is asymptotically nonexpansive,
it is continuous. Thus, for each integer m, lim

n→∞
Tmxn = Tmp = p, and condition (A) is satisfied. �

Example 2.1. Let X = lp = {x = {xn} :
∞∑
i=1

|xi|p < ∞} with ‖x‖ =

[ ∞∑
i=1

|xi|p
] 1

p

. Define T : X → X by Tx = λx,

λ ∈ (0, 1). Take G(x, y) as the inner product on X, u = (1, 0, 0, ....). Note that

lim sup
‖x‖→∞

G(Tnx− u, x)
‖x‖2

= lim sup
‖x‖→∞

[λn − x1

‖x‖2
] = λn < 1

Let {xn} be bounded and approximately convergent with respect to T . For m ∈ N, we have

‖Tmxn − xn‖ = |λm − 1| ‖xn‖
≤ |λm − 1| [‖xn − αnT

nxn‖+ ‖αnT
nxn‖]

= |λm − 1| [‖xn − αnT
nxn‖+ αnλ

n ‖xn‖] ,
thus

lim sup
n→∞

‖Tmxn − xn‖ = 0.

T satisfies all of the conditions of Theorem 2.1, and (0, 0, 0, ....) is a fixed point of T.

Corollary 2.1. Let (X, ‖.‖) be a uniformly convex Banach space, and C a nonempty unbounded closed starshaped subset with
respect to some u ∈ C. Suppose that T is an asymptotically nonexpansive self map of C. If f : C → X is a φ− asymptotically

bounded mapping on C such that lim
t→∞

φ(t)

t
= 0 and, for each n ∈ N, x ∈ C,

lim sup
‖x‖→∞

G(Tnx− fx, x)
‖x‖2

< 1,

then T has a fixed point in C if and only if T satisfies condition (A).

Theorem 2.2. Let (X, ‖.‖) be a reflexive Banach space, and C a nonempty unbounded closed starshaped subset with respect to
some u ∈ C. Suppose T is an asymptotically nonexpansive selfmap of C satisfying the bounded approximate fixed point property
such that I − T is demiclosed. If (??) holds then T has a fixed point in C.

Proof. Following an argument similar to that in Theorem 2.1, we obtain a bounded sequence {xn} in C. Since T sat-
isfies the bounded approximate fixed point property, lim

n→∞
‖xn − Txn‖ = 0. As X is reflexive and {xn} is a bounded

sequence, we may assume that {xn} is weakly convergent to an element p ∈ C. The demiclosedness of I − T implies
that p is a fixed point of T. �

Theorem 2.3. Let (X, ‖.‖) be a uniformly convex Banach space. Suppose that T is an asymptotically nonexpansive self map of
C, where C is a nonempty unbounded closed starshaped subset with respect to some point u in C. If for each n ∈ N,

(2.2) lim sup
‖x‖→∞

‖Tnx− Tu‖
‖x− u‖

< 1, for x ∈ C, x 6= u,

then T has a fixed point in C if and only if T satisfies condition (A).

Proof. Suppose that T satisfies condition (A). For each n ≥ 1, define a mapping Tn : C −→ X by

Tnx = αnT
nx+ (1− αn)u,

where αn =
λn
kn

and {λn} is a sequence of real numbers in (0, 1) such that

lim
n→∞

λn = 1. Following an argument similar to that in Theorem 2.1, we obtain a sequence {xn} in C such that

Tn(xn) = xn for each n ∈ N. Now we show that {xn} is a bounded sequence. Assume, on the contrary, that {xn} is
not. Then there exists a subsequence of {xn} whose norm tends to infinity. For notational convenience, denote this
subsequence by {xm}. By (2.2), there exists an α ∈ (0, 1) and a β > 0 such that ‖Tnx− Tu‖ ≤ α ‖x− u‖ for x ∈ C
with ‖x‖ > β. For n large enough, we have

‖xn‖ = ‖αnT
nxn + (1− αn)u‖

≤ αn(‖Tnxn − Tu‖+ ‖Tu‖) + (1− αn) ‖u‖
≤ αn(α ‖xn − u‖+ ‖Tu‖) + (1− αn) ‖u‖ .
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Dividing both sides by ‖xn‖ and taking the limit as n → ∞, we obtain 1 ≤ α, which is a contradiction. Thus ‖xn‖ is
bounded. The rest of the proof is similar to that given in Theorem 2.1.

Note that if we define T : R → R by Tx = x + a where a is some non zero constant, then obviously T does not
satisfy condition (A).Moreover T is a fixed point free mapping. ForX = R2 with usual norm. A mapping T : X → X
defined by T (x, y) = t(x, y) where t ∈ (0, 1) satisfies all condition of Theorem 2.3. Moreover (0,0) is a fixed point of
T. �

Remark 2.1. (a) Theorem 2.1 can easily be extended to locally convex spaces and thus contains the result of [?] as a
special case.

(b) Theorem 2.2 extends Proposition 2 of [?] to asymptotically nonexpansive mappings.

Acknowledgement. The authors are thankful to the referees for their precise remarks to improve the presentation of
the paper.
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