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Permutation groups with the same movement

M. ALAEIYAN and H. A. TAVALLAEE

ABSTRACT.
Let G be a permutation group on a set Ω with no fixed point in Ω. If for each subset Γ of Ω the size |Γg \ Γ| is bounded, for g ∈ G, we define the
movement of g as the max|Γg \ Γ| over all subsets Γ of Ω, and the movement of G is defined as the maximum of move(g) over all non-identity
elements of g ∈ G. In this paper we classify all permutation groups with maximum possible degree in which every non-identity element has the
same movement.

1. INTRODUCTION

Let G be a permutation group on a set Ω with no fixed points in Ω and let m be a positive integer. If for each subset
Γ of Ω and each element g ∈ G, the size |Γg \Γ| is bounded, we define the movement of Γ as move(Γ) =maxg∈G|Γg \Γ|.
If move(Γ) ≤ m for all Γ ⊆ Ω, then G is said to have bounded movement and the movement of G is defined as the
maximum of move(Γ) over all subsets Γ. This notion was introduced in [10]. Similarly, for each 1 6= g ∈ G, we
define the movement of g as the max|Γg \ Γ| over all subsets Γ of Ω. If all non-identity elements of G have the same
movement, then we say that G has constant movement.

Clearly every permutation group with constant movement has bounded movement. Further by [10, Theorem 1],
if G has movement equal to m, then Ω is finite, and its size is bounded by a function of m.

For transitive permutation groups of movement m, the following bounds on Ω were obtained in [6] and [10].

Lemma 1.1. Let G be a transitive permutation group on a set Ω such that G has movement m. Then, (a) if G is a 2-group then
|Ω| ≤ 2m, (b) if G is not a 2-group and p is the least odd prime dividing |G|, then |Ω| ≤ b2mp/(p − 1)c. (For x ∈ R, bxc
denotes the greatest integer less than or equal to x.)

There are various types of transitive permutation groups in which every non-identity element has the same move-
ment, and the bounds in Lemma 1.1 are attained. For example, let G be either a p-group of exponent p or a 2-group.
If we considerG as a permutation group in its regular representation, then we see that all non-identity elements have
the same movement, and so G has constant movement. We denote by K : P a semi-direct product of K by P with
normal subgroup K.

The first purpose of this paper is to classify all transitive permutation groups G in which every non-identity
element has the same movement m as follows:

Theorem 1.1. Let m be a positive integer, and let G be a transitive permutation group on a set Ω which has constant movement
equal to m. Then G has the maximum possible degree as described in Lemma 1.1, and G is either a p-group in its regular
representation, where p is a prime or one of the following holds, when p is the least odd prime dividing the order of G:

1. |Ω| = p, m = (p− 1)/2 and G is the semi-direct product Zp : Z2a where 2a|(p− 1) for some a ≥ 1;
2. G := A4, A5, |Ω| = 6, and m = 2.
3. |Ω| = 2sp where p is a Mersenne prime, m = 2s−1(p− 1), and 1 < 2s < p, and G is the semi-direct product K : P with

K a 2-group and P = Zp is fixed point free on Ω; K has p-orbits of length 2s, and each non-identity element of K moves exactly
2s(p− 1) points of Ω.
Moreover, all permutation groups listed above have constant movement.

Now we consider the intransitive case and then we have the following lemma so that it gives an upper bound for
|Ω| (see [2,10]):

Lemma 1.2. Let G be a permutation group on a set Ω with no fixed point in Ω, and suppose that, for some positive integers m
and t, move(G) = m and G has t orbits in Ω. Then,

(a) If G is a 2-group, then |Ω| ≤ t+ 2m− 1 ≤ 4m− 2.
(b) If G is not a 2-group and if p is the least odd prime dividing |G|, then |Ω| ≤ 2mp/(p − 1) + t − 1 ≤ (9m − 3)/2 for

p = 3, and |Ω| ≤ 4m− p for p ≥ 5.

The second main result is as follows:

Theorem 1.2. Let m be a positive integer, let G be an intransitive permutation group on a set Ω of maximum possible size n,
as described in Lemma 1.3, with constant movement equal to m. Then either

1. G = Zr2 , m = 2r−1 ≥ 1 and G has 2m − 1 orbits of length 2, for some positive integer r, and in addition let p be a least
odd prime dividing |G|, then we have:
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2. For an odd prime p, G = Zdp , m = pd−1.(p− 1)/2 and G has (pd− 1)/(p− 1) orbits of length p, for some positive integer
d.

3. G = K : H with normal 2-subgroup K, where H is isomorphic to Z2s : Zp, s ≥ 0.
Moreover if every non-identity element of G has prime order, then G is the semi-direct product of Z2

2 : Z3 with normal
subgroup Z2

2 , m = 2 and G has 2 orbits Ω1 and Ω2 of length 3 and 4 respectively.
4. G = P : H with normal p-subgroup P , where H is either isomorphic to Z2a , or a generalized quaternion group.

All the permutation groups in parts (1) and (2) are examples (see Example 2.2). Also there exist examples in part
(3) for p = 3, s = 0, and K = Z2

2 (see Example 2.3). But we do not know any other examples in part (3), or any
examples in part (4).

All the groups in Theorem 1.1 and Theorem 1.2, are given in Section 2 and proved to satisfy the hypotheses of
these theorems. In Section 4, we prove Theorem 1.1, and also we prove Theorem 1.1 in Section 5. Thus we complete
the classification of all permutation groups with constant movement which have maximum possible degree. In the
first step we have a classification of all transitive permutation groups with constant movement, and in the second
step we consider intransitive permutation group with maximum possible degree, and then we have a classification
of such groups which have constant movement.

2. EXAMPLES

Let G be a transitive permutation group on a finite set Ω. Then by [12, Theorem 3.26], which we shall refer to as
Burnside’s Lemma, the average number of fixed points in Ω of elements of G is equal to the number of G-orbits in
Ω, namely 1, and since 1G fixes |Ω| points and |Ω| > 1, it follows that there is some element of G which has no fixed
points in Ω. We shall say that such elements are fixed point free on Ω.
Let 1 6= g ∈ G and suppose that g in its disjoint cycle representation has t nontrivial cycles of lengths l1, ..., lt, say. We
might represent g as

g = (a1a2...al1)(b1b2...bl2)...(z1z2...zlt).

Let Γ(g) denote a subset of Ω consisting of bli/2c points from the ith cycle, for each i, chosen in such a way that
Γ(g)g ∩ Γ(g) = ∅. For example we could choose

Γ(g) = {a2, a4, . . . , ak1 , b2, b4, . . . , bk2 , ..., z2, z4, . . . , zkt},

where ki = li − 1 if li is odd and ki = li if li is even. Note that Γ(g) is not uniquely determined as it depends on the
way each cycle is written down. For any set Γ(g) of this kind we say that Γ(g) consists of every second point of every
cycle of g. From the definition of Γ(g) we see that |Γ(g)g −Γ(g)| = |Γ(g)| =

∑t
i=1bli/2c. In [6] we have shown that this

quantity is an upper bound for |Γg − Γ| for an arbitrary subset Γ. Thus the movement of g is |Γ(g)|.
First we give examples of groups with constant movement that are transitive and of exponent p.

Lemma 2.3. (a) Let m := pa−1(p− 1)/2 for some a ≥ 1, where p is an odd prime and suppose that G is a regular permutation
group of exponent p on a set Ω of size pa = 2mp/(p− 1). Then all elements of G have the same movement equal to m.

(b) Let m be a power of 2, and suppose that G is a 2-group of order 2m. Then the regular representation of G on Ω is a
permutation group in which every non-identity element has the same movement m.

Proof. Let 1 6= g ∈ G and let Γ ⊆ Ω. By [6, Lemma 2.1], |Γg − Γ| ≤ m. Since G is regular, g is fixed point free on Ω.
Suppose that Γ(g) consists of every second point of every cycle of g. Then by definition Γ(g)g ∩ Γ(g) = ∅. If p is an
odd prime, then

|Γ(g)g − Γ(g)| = |Γ(g)| = (|Ω|/p)(p− 1)/2 = pa−1.(p− 1)/2 = m.

Since g is an arbitrary element, all non-identity elements of G have the same movement m. Also with the same argu-
ment it can be shown that in every
2-group of order 2m in its regular representation all non-identity elements have the same movement. �

In what follows we will see that the regularity condition for each transitive p-group is a necessary condition. Let
H be a core-free subgroup of a p-group G and consider the permutation representation by right multiplication on
the right cosets of H . If H 6= 1 then G is not regular in this action and not all non-identity elements have the same
movement . An example of such a core-free subgroup H in a non-abelian p-group G of exponent p is the cyclic group
generated by any non-central element. Such elements exist provided that G is non-abelian.

Let H be cyclic of order n and K = 〈k〉 be cyclic of order m and suppose r is an integer such that rm ≡ 1 (mod n).
For i = 1, . . . ,m, let (ki)θ : H −→ H be defined by h(ki)θ = hr

i

for h in H . It is straightforward to verify that each
(ki)θ is an automorphism of H , and that θ is a homomorphism from K to Aut(H). Hence the semidirect product
G = H : K (with respect to θ) exists and if H = 〈h〉, then G is given by the defining relations:

hn = 1, km = 1, k−1h.k = hr, with rm ≡ 1 (mod n).

Here every element of G is uniquely expressible as hikj , where 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1. Certain semi-direct
products of this type (as a permutation group on a set Ω of size n) also provide examples of transitive permutation
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groups where every non-identity element has the same movement, and the bound in Lemma 1.1 holds (as the follow-
ing lemma). We note that, if n = p, a prime, then by [14, Theorem 3.6.1] this group G is a subgroup of the Frobenius
group AGL(1, p) = Zp : Zp−1.

Lemma 2.4. Let G be a semi-direct product Zp : Z2a denote a group defined as above of order p.2a where 2a|(p − 1) for some
a ≥ 1. Then G acts transitively on a set Ω of size p and in this action all non-identity elements of G have the same movement
equal to (p− 1)/2.

Proof. By the above statement of Lemma 2.4, the group G is a Frobenius group and has up to permutational isomor-
phism a unique transitive representation of degree p, on a set Ω, say. Let g ∈ G such that o(g) = p. Then by [6, Lemma
2.1], |Γg − Γ| ≤ m = (p − 1)/2 for all subsets Γ, and if Γ(g) consists of every second point of the unique cycle of g ,
then |Γ(g)g − Γ(g)| has size equal to m. Suppose now that g ∈ G has order o(g) a power of 2. Then g has one fixed
point and (p− 1)/o(g) cycles of length o(g) in Ω. For each Γ ⊆ Ω, |Γg − Γ| consists of at most o(g)/2 points from each
cycle of g of length o(g) ,and hence has size at most m. Since each element of G is either a 2-element or has order p ,
it follows that all non-identity elements of G have the same movement m. �

Lemma 2.5. The groupsA4, andA5 act transitively on a set of size 6 and in this action every non-identity element has the same
movement equal to 2.

Proof. By [9] the groups A4 and A5 have movement equal to 2. With similar argument we will show that all non-
identity elements of them also have the same movement equal to 2. Let 1 6= g ∈ A4. Then g has order 2 or 3. If g
has order 2 then g has two cycles of length 2 and hence |Γ(g)g − Γ(g)| = 2. Similarly, if g has order 3 then g has two
cycles of length 3 and again |Γ(g)g − Γ(g)| = 2 . As for A5, since every non-identity element of A5 has order 2, 3 or 5,
as above it is easy to see that every non-identity element of A5 has movement equal to 2. �

Let F be a finite field of order 2s+1, where s is a positive integer. Let K and P be the additive group and the
multiplication group of F , respectively. Then standard theory of fields shows that F is a vector space over GF (2)
and P (acting naturally via the multiplication in F , for v ∈ K and x ∈ P , x : v → xv) acts as a group of linear
transformations, and each non-identity element of P is fixed point free. This is the theory of Singer cycles, (see [8]).
The following example not only proves the Theorem 1.1, but also is a positive answer to the question about more
examples of the Theorem 1.2.b , we have made in [6].

Example 2.1. Let p := 2s+1 − 1 be a Mersenne prime, for some positive integer s. As above let K := Zs+1
2 , and let

P := Zp be a Singer cycle of GL(s+ 1, p). So P is fixed point free on K. Suppose that H1 is a subgroup of order 2 of
K, and P = 〈x〉.
Set Hi = (H1)x

i−1

, for 1 ≤ i ≤ p. Define Ωi to be the coset space of Hi in K of size 2s, and Ω = Ω1 ∪ ... ∪ Ωp. Then K
acts by right multiplication on Ω, KΩi is regular with kernel Hi, where 1 ≤ i ≤ p, and for each xj ∈ P , 1 ≤ j ≤ p− 1,
we have the linear transformation ϕxj on Ωi so that ϕxj (Hik) = Hi+jk

xj

. Now we have the permutation group G,
which is the semi-direct product of K by P . It is obvious that G is transitive on Ω and each element of G is either in
K or conjugate to an element of P . Let g ∈ P −{1}. So g is fixed point free on Ω and has 2s cycle of length p. Suppose
that Γ(g) consists of every second point of every cycle of g. Then by definition,

|Γ(g)| = 2s.
p− 1

2
= 2s−1(p− 1) = m.

Let k ∈ K − {1}. So k lies in exactly one of the subgroup Hi, and then k permutes exactly 2s(p − 1) points and as
above we have, |Γ(k)| = 2s−1(p− 1) = m. Hence all non-identity elements of G have the same movement m, and so
all of such groups are examples for Theorem 1.1.

In continuation, we consider the intransitive case, and we will show that there certainly are families of examples
of intransitive permutation groups in which every non-identity element has the same movement. The following
example shows that intransitive p-groups, in which each element has the same movement do exist.

Example 2.2. Let d be a positive integer p a prime, let G := Zdp , let t := (pd − 1)/(p − 1), and let H1, · · · , Ht be an
enumeration of the subgroups of index p in G. Define Ωi to be the coset space of Hi in G and Ω = Ω1 ∪ · · · ∪ Ωt.
If g ∈ G − {1}, then g lies in (pd−1 − 1)/(p − 1) of the groups Hi and therefore acts on Ω as a permutation with
p(pd−1 − 1)/(p− 1) fixed points and pd−1 orbits of length p. Taking every second point from each of these p-cycles to
form a set Γ we see that move(g) = m ≥ pd−1(p − 1)/2 if p is odd or 2d−1 if p = 2, and it is not hard to prove that in
fact move (g) = m = pd−1.(p − 1)/2 if p is odd or 2d−1 if p = 2. Since g is non-trivial, all non-identity elements of G
have the same movement equal to m.

The last example for p = 3, inclined to the following example not only are examples in which every non-identity
element has the same movement equal to 3d−1 and 2 respectively, but also gives some positive answer to the Question
1.5 in [11].

Example 2.3. Let Ω = Ω1 ∪ Ω2 be a set of size 7, such that Ω1 = {1, 2, 3} and Ω2 = {1′, 2′, 3′, 4′}. Moreover, suppose
that Z2

2
∼=< (1′2′)(3′4′), (1′3′)(2′4′) > and Z3

∼=< (123)(1′2′3′) >. Then the semi-direct product G := Z2
2 : Z3 with
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normal subgroup Z2
2 is a permutation group on a set Ω with 2 orbits in which every non-identity element has the

same movement 2, since each non-identity element of G has two cycles of length 2 or two cycles of length 3.

3. PRELIMINARY ANALYSIS

Throughout the rest of the paper, letG be a permutation group on a set Ω of size n in which all non-trivial elements
have the same movement, and let m be a positive integer. First we note that for each permutation in G the size of its
non-trivial cycles is constant.

Lemma 3.6. Let 1 6= g ∈ G, then all non-trivial cycles of g have the same size. Moreover, g is either an odd prime or a power of
2.

Proof. Let g = c1...cs be the decomposition of g into its disjoint non-trivial cycles such that |ci| = li for 1 ≤ i ≤ s. Then
the movement of G, move(g), is the size of the subset Γ(g) consisting of every second point of every cycle g, that is,

move(g) =
s∑
i=1

⌊ li
2

⌋
. For each i ≤ s, now we consider the element h = gli of G and compare the movement of h with

the movement of g. As above, we have

move(h) ≤
∑
j 6=i

⌊ lj
2

⌋
<

s∑
i=1

⌊ li
2

⌋
= move(g).

Since all non-identity elements of G have the same movement, so h = 1. Hence we must have l := l1 = l2 = ... = ls.
Suppose now that l is not a power of 2, and let p be an odd prime such that l = pk, for some positive integer k. Then
by comparing the movement of g and its power gk we obtain

s
⌊ l

2

⌋
= move(g) = move(gk) = sk

p− 1

2
.

It can be easily verified that
⌊kp

2

⌋
= k(p− 1)/2 if and only if k = 1, and so l = p. The result now follows. �

Definition 3.1. A group G is called an EPPO-group if every non-identity element has prime power order. Moreover,
a group G is called an EPO-group if all of its non-identity elements have prime order.

It is known that an EPPO group is a p-group, a non-abelian simple group or a Frobenius group (see [3, 7, 13). If G
is solvable, then by [7, Theorem 1] |G| = 2apb for some non-negative integers a, b.

By Lemma 3.6, all non-trivial cycles of g ∈ G have the same size and the number 2 and the odd prime p are the
only primes that divide the order of G. Hence, by considering the above statement about the structure of EPPO-
groups and compare its with all permutation groups with the same movement which have maximum degree (see the
classification of all permutation groups with bounded movement in [2, 6, 9]), we have the following corollary:

Corollary 3.1. The group G is an EPPO-group, and either G = A5 or |G| = 2apb for some non-negative integers a, b.

4. TRANSITIVE CASE

In this section we suppose thatG is a transitive permutation group on a set Ω of size n in which every non-identity
element has the same movement m, and p is the least odd prime dividing |G|. First we show that the degree n is the
maximum possible.

Lemma 4.7. If G is a 2-group then n = 2m, and otherwise n = 2mp/(p− 1).

Proof. By Burnside’s Lemma, G has a fixed point free element on a set Ω, say g. But by [5, Theorem 1], for some prime
q dividing |G|, the fixed point free element g is a q-element of order qc (for some positive integer c), and by Lemma
3.6 (and Corollary 3.1), either q = 2 or qc = p and p is the only odd prime dividing |G|. Let Γ(g) consist of every
second point of every cycle of g and also let o denote the number of odd length cycles. By definition, |Γ(g)| = n/2 if
q = 2, and

|Γ(g)| = n− o
2

=
n− n/p

2
=
n(p− 1)

2p
,

if q = p. On the other hand, since every non-identity element has the same movement m, so |Γ(g)| = m. Hence if G is
a 2-group then n = 2m, and otherwise n = 2mp/(p− 1). By Lemma 1.1 these expressions are the maximum possible
degree of G. �

We are now in a position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let G, Ω, m be as in Theorem 1.1 with n = |Ω|. Then by Lemma 4.7, n is the maximum possible
degree as in Lemma 1.1. We first suppose thatG is a 2-group. By Lemma 4.7, n = 2m. As each 1 6= g ∈ G has constant
movement m, |supp(g)| = 2m, where supp(g) = {α ∈ Ω|αg 6= α}. Thus g is a fixed point free element on Ω, that is,
Gα = 1 for each α ∈ Ω. Hence G is a regular 2-group.
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Now suppose that G is not a 2-group. Then by Corollary 3.1, G = A5 or |G| = 2apb with b ≥ 1 and p an odd prime,
and so by Lemma 4.7, n = 2mp/(p− 1). Then by [6, 9], one of the following holds:

(1) |Ω| = p, m = (p− 1)/2 and G is the semi-direct product Zp : Z2a where 2a|(p− 1) for some a ≥ 1, as in part (1)
of Theorem 1.1.

(2) G is the semi-direct product K : P with K a 2-group and P = Zp is fixed point free on Ω; |Ω| = 2sp, m =
2s−1(p − 1), and 2s < p, where p is a Mersenne prime, K has p-orbits of length 2s, and each element of K moves at
most 2s(p − 1) points of Ω. (We note that A4

∼= (Z2)2 : Z3 is a transitive permutation group of degree 6 which has
constant movement 2, this occurs in this case where p = 3 and m = 2 . )

(3) G is a p-group.
(4) G = A5, n = 6, m = 2.

All groups in part (1) are examples for Theorem 1.1. In part (2) except the case when p is Mersenne prime, and
the part (4) except the groups A4 and A5 acting on a set of size 6, we will show that the other groups have some
elements whose movements are less than m, which contradicts the fact that every non-identity element of G has the
same movement. In part (2), when p is not a Mersenne prime, since every non-identity element of G = K.P has
the same movement m, each non-identity element k ∈ K has (p − 1) cycles of length 2s. We consider the element
kkg of K. This element is fixed point free on Ω and so has movement p.2s−1, which is a contradiction. In part (3),
by Burnside’s lemma, G has a fixed point free element, say g, on a set of size pa for some positive integer a. Since
every fixed point free element has order p with movement pa.(p − 1)/2 (see [6, Proposition 4.4), o(g) = p and hence
move(g) = pa−1(p− 1)/2. But by our assumption, m = pa−1(p− 1)/2. Therefore, each non-identity element g of G is
a fixed point free element, so that G is a regular p-group of exponent p. This completes the proof of Theorem 1.1. �

5. INTRANSITIVE CASE

Suppose now that G is an intransitive permutation group on a set Ω of size n, in which every non-identity element
has the same movement m. By Corollary 3.1, |G| = 2apb where p is an odd prime, a ≥ 0, b ≥ 0. Then we have the
following result which is some part of the proof of Theorem 1.2.

We suppose that G is a q-group for an odd prime q. So G is either a 2-group or a p-group. First we consider the
case when G is a 2-group which has maximum possible degree and also has constant movement m. Then by [4], m
is a power of 2, and G is elementary abelian of order 2m, all G-orbits have length 2, that is, G is one of the groups
in Example 2.1. In this case we obtained part (1) of the theorem. Suppose now that G is a p-group. By Lemma 3.6,
G has exponent p. Since G has maximum possible degree, by [1, Theorem 1] G ∼= Zdp , for some positive integer d,
m = pd−1(p− 1)/2, and all G-orbits have length p. Hence in this case we have part (2) of the theorem.

Assume that G is not a q-group, for an odd prime q. Then by Corollary 3.1, G is an EPPO-group and |G| = 2apb,
where a, b are positive integers. Hence by Burnside’s ”pq-theorem” [14, Theorem 2.10.17], G is solvable. Since by
Lemma 3.6, G is a solvable EPPO-group, it has a non-trivial normal q-subgroup K for some q ∈ {2, p}. Suppose G
also has a non-trivial normal q′-subgroup for q′ 6= p. Then G contains an element of order 2p contradicting the fact
that G is an EPPO-group. Now we consider two cases.

Case 1. q = 2. Let K := O2(G) be the largest normal 2-subgroup of G. Then by Higman’s classification [7, Theorem
1] G/K is either a cyclic group whose order is a power of p or a group of order 2spb with cyclic Sylow subgroups, p
being a prime of the form k2t + 1. Since every p-element of G has order p, so the cyclic p-subgroup is isomorphic to
Zp, that is, each Sylow p-subgroup of G is a cyclic group Zp.

Now we got the following result in EPO-groups.

Lemma 5.8. Let G be a EPO-group. Then G is a Frobenius group.

Proof. Suppose thatG is a EPO-group. Then by Lemma 3.6 and Corollary 3.1, |G| = 2ap. So by Burnside’s pq-theorem’
(see [14, Theorem 2.10.17]), G is a solvable and non-nilpotent EPO-group. Let K be the maximal normal 2-subgroup
of G and S ∈Sylow2(G). We claim that K = S. If not, since G is a EPO-group with constant movement of order 2ap
and S is regular, G has a normal 2-complement [8, Sat 8.1 IV]. It implies that there exists in G an element of order 2p,
contradicting the hypothesis. Therefore K is normal in G and G = K : P is a Frobenius group with kernel K and
complement P . �

The following result is the classification of intransitive permutation EPO-groups with constant movement, which
have normal 2-subgroup.

Lemma 5.9. Let G = K : Zp, denote the group defined as in Case 1, be an EPO-group where K = O2(G) of order 2a, a ≥ 1.
Then G is the semi-direct product of Z2

2 : Z3 with normal subgroup Z2
2 , m = 2 and G has 2 orbits Ω1 and Ω2 of length 3 and 4

respectively.

Proof. By Lemma 5.8, G is a Frobenius group on a set Ω1, of size 2a. Let Ω2, ...,Ωt be others orbits of G such that
|Ω2| =, ...,= |Ωt| = p. Set Ω =

⋃t
i=1 Ωi. By Burnside’s lemma, t|G| =

∑
g∈G |fix(g)|. So,

t2ap = |Ω|+
∑
16=g

|fix(g)| = 2a + (t− 1)p+ (2a − 1)(t− 1)p+ (2ap− 2a)(
2a − 1

p
).
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This equality holds if and only if (2a − 1)/p = 1.
Hence we have 2a = p+ 1. Suppose that g is a 2-element and h is a p-element of G. Since every non-identity element
of G has same movement, so

2a−1 = move(g) = move(h) = (t− 1)
(p− 1)

2
+

2a − 1

p
.
p− 1

2
= t

(p− 1)

2
.

Thus 2a = t(p− 1). Since t = (p+ 1)/(p− 1) is an integer, so this equality holds if and only of p = 3, t = 2, and hence
G = Z2

2 : Z3 as defined in Example 2.3. �

Case 2. Let P := Op(G) be the largest normal p-subgroup of G. Then again by Higman’s classification [8, Theorem
1], G/P is either a cyclic 2-group, or a generalized quaternion group.

Finally, one may ask whether there exists an example in Case 2.
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