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Metrizable systems of autonomous second order differential equations

M. CRASMAREANU

ABSTRACT.
Well-known notions from tangent bundle geometry, namely nonlinear connections and semisprays, are extended to bundle-type tangent mani-
folds. As main subject, the metrizability of both semisprays and nonlinear connections is investigated through Obata operators.

1. INTRODUCTION

Almost tangent structures were introduced by Clark and Bruckheimer ([4]) and Eliopoulos ([10], [11], [12]) around
1960 and have been investigated by several authors, in [1], [5], [9], [20]. As is well-known, the tangent bundle of a
manifold carries a canonical integrable almost tangent structure, hence the name. This almost tangent structure play
an important role in the Lagrangian description of analytical mechanics ([9], [13], [17]).

The aim of present paper is to extend two natural objects, namely nonlinear connections and semisprays, from
tangent bundles to tangent manifolds geometry. The first geometrical object is studied by means of vertical projectors
and the second implies the existence of a global vector field of Liouville type.

The paper is structured as follows. In the second section nonlinear connections are introduced and interpreted as
kernels of vertical projectors and the equivalence with other two types of vector 1-forms is proved. In the third section
the notion of second order differential system (semispray on short) is defined and the relationship between semis-
prays and nonlinear connections is discussed in detail. As particular case, the notion of spray corresponds to a homo-
geneity condition. Types of curves associated in a natural manner to nonlinear connections and semisprays are stud-
ied in the next section. The significance of the notion of semispray from the point of view of differential equations is
the theme of
section 4.

The main part of the paper, namely the section 5, is devoted to the metrizability problem of both semisprays
and nonlinear connections. Let us remark that previously, the metrizability of nonlinear connections on tangent
bundles was studied by Bucataru in [3]. Therefore, our theorem 5.1 is a generalization of Theorem 2.4 of [3]. Other
very interesting studies on the metrizability problem are provided by Olga Krupkova in [14] and [15] in the usual
framework of tangent bundles. Thus, our notion of metric on a tangent bundle gives a natural generalization and
can be put in correspondence with the main notion of paper [16].

2. NONLINEAR CONNECTIONS ON TANGENT MANIFOLDS

Let M be a smooth, m-dimensional real manifold for which we denote:
C∞ (M)-the real algebra of smooth real functions on M , X (M)-the Lie algebra of vector fields on M , T r

s (M)-the
C∞ (M)-module of tensor fields of (r, s)-type on M . An element of T 1

1 (M) is usually called vector 1-form ([18, p.
176]).

The framework of our paper is fixed by:

Definition 2.1. J ∈ T 1
1 (M) is called almost tangent structure on M if:

(2.1) imJ = ker J.

The pair (M,J) is an almost tangent manifold.

The name is motivated by the fact that (2.1) imply the nilpotence J2 = 0 exactly as the natural tangent structure
of tangent bundles, [17].

Denoting rankJ = n it results m = 2n. In addition, we suppose that J is integrable i.e.:

(2.2) NJ (X,Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ] + J2 [X,Y ] = 0

and in this case J is called tangent structure and (M,J) is called tangent manifold.
In the following we shall work only on tangent manifolds. From [19] we get:

i) the distribution imJ (= ker J) defines a foliation denoted V (M) and called the vertical distribution.

Example 2.1. M = R2, J (x, y) = (0, x) is a tangent structure with ker J the Y-axis, hence the name.
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ii) there exists an atlas on M with local coordinates (x, y) =
(
xi, yi

)
1≤i≤n such that J = ∂

∂yi ⊗ dxi i.e.:

(2.3) J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
= 0.

We call canonical coordinates the above (x, y) and the change of canonical coordinates (x, y) → (x̃, ỹ) is given by
([19]):

(2.4)
{
x̃i = x̃i (x)

ỹi = ∂x̃i

∂xa y
a +Bi (x) .

It results an alternative description in terms of G-structures. Namely, a tangent structure is a G-structure with:

G =

{
C =

(
A On

B A

)
∈ GL(2n,R);A ∈ GL(n,R)

}
and G is the invariance group of the matrix J =

(
On On

In On

)
i.e. C ∈ G if and only if C · J = J · C.

Inspired by Definition 1.1 of [2, p. 71] we give a first main notion:

Definition 2.2. A vector 1-form v : X (M)→ X (M) satisfying:

(2.5)
{
J ◦ v = 0
v ◦ J = J

is called vertical projector.

From (2.51) imv ⊆ ker J = V (M) and from (2.52) v|imJ = 1V (M). In conclusion imv = V (M) and v2 = v; these
facts explain the name of v.

Another well-known notion in tangent bundles geometry extends to:

Definition 2.3. ([19]) A supplementary distribution N to the vertical distribution V (M):

(2.6) X (M) = N ⊕ V (M)

is called normalization or horizontal distribution or nonlinear connection. A vector field belonging toN is called horizontal
and one belonging to V (M) is called vertical.

Because a vertical projector v is C∞ (M)-linear with imv = V (M) we have a first important result:

Proposition 2.1. A vertical projector v yields a nonlinear connection denoted N (v) through relation N (v) = ker v.

This relation is a generalization of remarks from [2, p. 71] where the tangent bundles case is treated. An important
remark is that the last result admits a converse. Namely, if N is a nonlinear connection let hN , vN the horizontal and
vertical projection with respect to the decomposition (2.6).

Proposition 2.2. vN is a vertical projector with N (vN ) = N .

Proof. From imvN = V (M) = ker J it follows (2.51). vN being projector satisfy vN (V (M)) = V (M) = imJ and then
we have (2.52). The second fact is immediately from the definition of N (vN ). �

With respect to the identification nonlinear connection=vertical projector let us point other two equivalent choices:
I) Following [13] we get:

Definition 2.4. A vector 1-form Γ is called nonlinear connection of almost product type if:

(2.7)
{

Γ ◦ J = −J
J ◦ Γ = J.

Proposition 2.3. If Γ is a nonlinear connection of almost product type then:

(i) vΓ =
1

2

(
1X (M) − Γ

)
is a vertical projector,

(ii) V (M) is the (−1)-eigenspace of Γ,
(iii) N (vΓ) is the (+1)-eigenspace of Γ.

It results that every vertical projector v yields a nonlinear connection of almost product type: Γ = 1X (M) − 2v. From this last
relation it results Γ2 = 1X (M) i.e. Γ is an almost product structure on M (hence the name).

Proof. (i) J ◦ vΓ =
1

2
(J − J ◦ Γ)

(2.72)
=

1

2
(J − J) = 0 and vΓ ◦ J =

1

2
(J − Γ ◦ J)

(2.71)
=

1

2
(J + J) = J.

(ii) V (M) = imvΓ = {X ∈ X (M) ; Γ (X) = −X}.
(iii) N (vΓ) = ker vΓ = {X ∈ X (M) ; Γ (X) = X}. �

II) Inspired by [18, p. 180] we define:
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Definition 2.5. A vector 1-form h is called horizontal projector if:

(2.8)
{
h2 = h
kerh = V (M) .

Proposition 2.4. If h is a horizontal projector then:
(i) vh = 1X (M) − h is a vertical projector,
(ii) N (vh) is the (+1)-eigenspace of h.

It follows that every vertical projector v yields a horizontal projector:
h = 1X (M) − v.

Proof. (i) From h
(
1X (M) − h

)
= 0 we have im

(
1X (M) − h

)
⊆ kerh = V (M) = ker J then J ◦ vh = 0. Also, imJ =

V (M) = kerh imply vh ◦ J = J − h ◦ J = J.
(ii) N (vh) = ker vh = {X ∈ X (M) ;h (X) = X}. �

In canonical coordinates a vertical projector reads:

(2.9) v = N i
j

∂

∂yi
⊗ dxj +

∂

∂yi
⊗ dyi =

∂

∂yi
⊗
(
N i

jdx
j + dyi

)
and the functions

(
N i

j (x, y)
)

1≤i,j≤n are called the coefficients of v respectively N (v). A basis of X (M) adapted to the

decomposition (2.6) is
{

δ

δxi
:=

∂

∂xi
− N j

i

∂

∂yj
,
∂

∂yi

}
1≤i≤n

called Berwald basis. Then: v =
∂

∂yi
⊗ δyi, h =

δ

δxi
⊗ dxi

where {dxi, δyi = dyi +N i
jdx

j} is the dual of Berwald basis.

3. SEMISPRAYS ON BUNDLE-TYPE TANGENT MANIFOLDS

In the following we suppose that V (M) admits a global section E = yi
∂

∂yi
called Euler vector field after [19] (on

tangent bundles E is called Liouville vector field, [2, p. 70]). Again after [19] the triple (M,J,E) will be called bundle-
type tangent manifold and in this case

(
Bi
)

from (2.42) are zero cf. [19]. For examples of bundle-type tangent manifolds
see [19].

As in the tangent bundle case ([2, p. 70]) we give a second main notion:

Definition 3.6. If (M,J,E) is a bundle-type tangent manifold then S ∈ X (M) is called semispray or second order
differential equation (sode on short) if:

(3.10) J (S) = E.

In canonical coordinates:

(3.11) S = yi
∂

∂xi
− 2Gi (x, y)

∂

∂yi

and the functions
(
Gi (x, y)

)
are the coefficients of S.

Another important result is:

Proposition 3.5. A vertical projector v yields an unique horizontal semispray denoted S (v).

Proof. This proposition is a generalization of a similar result (without proof) from [2, p. 71]. The formula:

(3.12) Gi =
1

2
N i

jy
j

gives the conclusion. �

In other words:

(3.13) S (v) = yi
δ

δxi
.

The converse of last result is:

Proposition 3.6. If S is a semispray then vS : X (M)→ X (M) given by:

(3.14) vS (X) =
1

2
(X + [S, JX] + J [X,S])

is a vertical projector.
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Proof. Because:

J ◦ vS (X) =
1

2
(JX − J [JX, S]) , vS ◦ J (X) =

1

2
(JX + J [JX, S])

it must to prove that:

(3.15) J [JX, S] = JX

for every X ∈ X (M).
But from (2.2) with Y = S:

(3.16) [JX,E]− J [JX, S]− J [X,E] = 0

and then (3.15) is equivalent with:

(3.17) [JX,E] = J ([X,E] +X) .

Case 1) X =
∂

∂xi
⇒
[
∂

∂yi
, ya

∂

∂ya

]
=

∂

∂yi
= J

(
∂

∂xi

)
i.e. (3.17) is true for this case.

Case 2) X =
∂

∂yi
⇒ [0, E] = 0 = J

(
∂

∂yi
+

∂

∂yi

)
i.e. (3.17) is true again. �

If S is given by (3.11) then the coefficients of vS are:

(3.18) N i
j =

∂Gi

∂yj
.

A first natural question is: given the vertical projector v
(
= N i

j

)
there exists a semispray S such that v = vS?

Looking at (3.18) it results that
(
N i

j

)
must be a gradient with respect to

(
yi
)
. Then if we define: tkij =

∂Nk
i

∂yj
−
∂Nk

j

∂yi
it

results:

Corollary 3.1. There exists a semispray S such that v = vS if and only if tkij = 0, 1 ≤ i, j, k ≤ n.

A second natural question is with respect to the sequence:

S → vS → S (vS)

Gi (3.18)→
∂Gi

∂yj
(3.12)→

1

2

∂Gi

∂yj
yj

;

when S = S (vS)?

Corollary 3.2. Let S be a semispray and vS the associated vertical projector. Then S is exactly S (vS) given by Proposition 3.5
if and only if:

(3.19) [E,S] = S.

Proof. vS (S) = 0
(3.14)⇔ S + [S,E] = 0. �

Definition 3.7. A semispray satisfying (3.19) will be called spray.

Locally (3.19) means:

(3.20) 2Gi = yj
∂Gi

∂yj

i.e. the functions
(
Gi
)

are homogeneous of degree 2 with respect to variables
(
yi
)
. In terms of the associated vertical

projector vS =
(
N i

j

)
it results, using (3.18), that

(
N i

j

)
are homogeneous of degree 1 with respect to

(
yi
)
:

(3.21) N i
j = ya

∂N i
j

∂ya
.

The above formulae can be put in a compact form using the Frölicher-Nijenhuis formalism. Recall that for a vector
1-form K and Z ∈ X (M) we have the bracket [K,Z]FN : X (M)→ X (M) given by ([18, p. 177]):

(3.22) [K,Z]FN (X) = [K (X) , Z]−K [X,Z]

where in the R.H.S. we have the usual Lie bracket of vector fields. Then (3.14) becomes:

(3.23) vS =
1

2

(
1X (M) − [J, S]FN

)
and looking to Proposition 2.3 it results that [J, S]FN is exactly the nonlinear connection of almost product type Γ
associated to vS .

Corollary 3.3. A semispray S is a spray if and only if:

(3.24) [vS , E]FN = 0.
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Proof. Let X ∈ X (M). The above relation means: [vS (X) , E] = vS ([X,E]).

I) X =
∂

∂yi
⇒
[
∂

∂yi
, E

]
= vS

([
∂

∂yi
, E

])
which is true because[

∂

∂yi
, E

]
= E ∈ V (M),

II) X =
δ

δxi
⇒ 0 = vS

([
δ

δxi
, E

])
= vS

((
ya
∂N j

i

∂ya
−N j

i

)
∂

∂yj

)
=(

ya
∂N j

i

∂ya
−N j

i

)
∂

∂yj
which is equivalent with characterization (3.21). �

A third natural question is with respect to the sequence:

v → S (v)→ vS(v)

N i
j

(3.12)→ Gi =
1

2
N i

ky
k (3.18)→

∂Gi

∂yj
;

when v = vS(v)? We must have: N i
j =

1

2

∂

∂yj
(
N i

ky
k
)

=
1

2
N i

j +
1

2
yk
∂N i

k

∂yj
and then:

Corollary 3.4. Let v
(
= N i

j

)
be a vertical projector and S (v) the associated semispray. Then v is exactly vS(v) given by

Proposition 3.6 if and only if:

(3.25) N i
j = yk

∂N i
k

∂yj
.

If v = vS(v) then S (v) is a spray and then tkij = 0 and (3.21) holds.

A last question is: given the semispray S
(
= Gi

)
there exists a vertical projector v such that S = S (v)? So, we must

to solve the system Gi = N i
jy

j in the unknowns
(
N i

j

)
.

We don’t know the general answer, yet, but is obviously that if S is spray then the answer is positive with v = vS .

4. PATHS OF NONLINEAR CONNECTIONS AND SEMISPRAYS

Let N be a nonlinear connection with associated vertical projector v =
(
N i

j

)
. With respect to the Berwald basis{

δ

δxi
,
∂

∂yi

}
1≤i≤n

we have:

(4.26)



[
δ

δxi
,
δ

δxj

]
= Ra

ij

∂

∂ya[
δ

δxi
,
∂

∂yj

]
=
∂Na

i

∂yj
∂

∂ya[
∂

∂yi
,
∂

∂yj

]
= 0

where:

(4.27) Ra
ij =

δNa
i

δxj
−
δNa

j

δxi
.

Then the horizontal distribution N is integrable if and only if: Rk
ij = 0, 1 ≤ i, j, k ≤ n.

Let us suppose that v = vS for the semispray S
(
= Gi

)
. From (3.23) we get that X is symmetry for vS if and only

if:
[
1X (M) − [J, S]FN , X

]
FN

= 0; but
[
1X (M), X

]
FN

= 0 for every X and then X is symmetry for vS if and only if:

(4.28) [[J, S]FN , X]
FN

= 0.

Looking at local expressions let us note that Ra
ij for vS is:

(4.29) Ra
ij =

δ

δxj

(
∂Ga

∂yi

)
− δ

δxi

(
∂Ga

∂yj

)
.

Since we are interested in dynamics let us study curves on bundle-type tangent manifolds. Let c = c (t) be a curve
on M with local expression c (t) = (x (t) , y (t)) =

(
xi (t) , yi (t)

)
. Three cases are of importance:

I) c is an integral curve of the semispray S. It results from (3.11) the differential system:

(4.30)


dxi

dt
(t) = yi (t)

dyi

dt
(t) + 2Gi (x (t) , y (t)) = 0
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which explains the name sode for S.
II) the tangent field of c is horizontal with respect to the vertical projector v. From (2.9):

(4.31) v

(
dc

dt

)
= v

(
dxi

dt

∂

∂xi
+
dyi

dt

∂

∂yi

)
=

(
N i

j

dxj

dt
+
dyi

dt

)
∂

∂yi
.

Such a curve is called h-path of v and is solution of differential system:

(4.32)
dyi

dt
(t) +N i

j (x (t) , y (t))
dxj

dt
(t) = 0.

III) a h-path of v satisfying in addition
dxi

dt
= yi will be called h-integral curve of v and is solution for:

(4.33)


dxi

dt
(t) = yi (t)

dyi

dt
(t) +N i

j

(
x (t) ,

dx

dt

)
dxj

dt
(t) = 0

.

With respect to Proposition 3.5 comparing (4.30) and (4.33) it results via (3.12):

Proposition 4.7. A h-integral curve of v is an integral curve of S (v).

With respect to Proposition 3.6 there is no relation between integral curves of S and vS in the general case. But in
the homogeneous case (3.20)− (3.21) we get:

Proposition 4.8. If S is a spray then an integral curve of S is a h-integral curve of vS .

5. THE METRIZABILITY PROBLEM

5.1. The general problem of metric pairs. Let us fix a semispray S =
(
Gi
)

and a nonlinear connection N =
(
N i

j

)
.

Recall that, after (3.18), S produces a nonlinear connection
c

N=

(
c

N
i

j=
∂Gi

∂yj

)
, c from canonic. Following [3] let us

consider:

Definition 5.8. The dynamical derivative associated to the pair (S,N) is the map
SN

∇ : V (M)→ V (M) given by:

(5.34)
SN

∇ X =
SN

∇
(
Xi ∂

∂yi

)
:=
(
S
(
Xi
)

+N i
jX

j
) ∂

∂yi
.

Properties:

I)
SN

∇
(

∂
∂yi

)
= N j

i
∂

∂yj ,

II)
SN

∇ (X + Y ) =
SN

∇ X+
SN

∇ Y ,

III)
SN

∇ (fX) = S (f)X + f
SN

∇ X .

It’s easy to extend the action of
SN

∇ to general vertical tensor fields by requiring to preserve the tensor product.

More precisely, we will extend
SN

∇ to a special class of tensor fields:

Definition 5.9. A d-tensor field (d from distinguished) on M is a tensor field whose change of components, under a

change of canonical coordinates (x, y)→ (x̃, ỹ) on M , involves only factors of type
∂x̃

∂x
and (or)

∂x

∂x̃
.

Example 5.2. i)
(

δ

δxi

)
and

(
∂

∂yi

)
are components of d-tensor fields of (1, 0)-type.

ii)
(
dxi
)

and
(
δyi
)

are components of d-tensor fields of (0, 1)-type,
iii)
(
Gi
)

are not components of a d-tensor field since a change of coordinates implies:

2G̃i = 2
∂̃xi

∂xj
Gj − ∂ỹi

∂xj
yj

but it results that given two semisprays
1

S and
2

S their difference X =
2

S −
1

S is a vertical vector field.
iv)
(
N i

j

)
are not components of a d-tensor field since a change of coordinates implies:

∂x̃j

∂xk
Nk

i = Ñ j
k

∂x̃k

∂xi
+
∂ỹj

∂xi
.

It follows that given two nonlinear connections
1

N and
2

N their difference F =
2

N −
1

N=

(
F i
j =

2

N
i

j −
1

N
i

j

)
is a d-tensor

field of (1, 1)-type.
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Definition 5.10. A metric on M is a Riemannian metric g on the vertical distribution: g = gij (x, y) δyi ⊗ δyj .

It results that (gij) are the components of a d-tensor field of (0, 2)-type with the properties:

1) gij = g

(
∂

∂yi
,
∂

∂yj

)
,

2) (symmetry) gij = gji,
3) (nondegeneration) det (gij) > 0.

From the last property we derive the existence of g−1 = gab (x, y)
∂

∂ya
⊗

∂

∂yb
which is a d-tensor field of (2, 0)-type.

Definition 5.11. The dynamical derivative of metric g is
SN

∇ g : V (M)× V (M)→ V (M) given by:

(5.35)
SN

∇ g(X,Y ) = S(g(X,Y ))− g(
SN

∇ X,Y )− g(X,
SN

∇ Y ).

The main notion of this subsection is:

Definition 5.12. The pair (S,N) is called metric with respect to g if:

(5.36)
SN

∇ g = 0.

The aim of this subsection is to detect all nonlinear connections which together with S form a metric pair for a
given g. In order to answer at this question, a look at example 5.2 iv) gives necessary a study of two operators, called
Obata in the following, acting on the space of d-tensor fields of (1, 1)-type:

(5.37) Oij
kl =

1

2

(
δikδ

j
l − g

ijgkl

)
,

∗
O

ij

kl=
1

2

(
δikδ

j
l + gijgkl

)
.

The Obata operators are supplementary projectors:

(5.38) Oia
bj

∗
O

bk

la=
∗
O

ia

bj O
bk
la = 0, Oia

bjO
bk
la = Oik

lj ,
∗
O

ia

bj

∗
O

bk

la=
∗
O

ik

lj

and tensorial equations involving these operators has solutions as follows:

Proposition 5.9. The system of equations:

(5.39)
∗
O

ia

bj

(
Xb

ak

)
= Ai

jk,
(
Oia

bj(Xb
ak) = Ai

jk

)
with X as unknown has solutions if and only if:

(5.40) Oia
bj

(
Ab

ak

)
= 0,

(
∗
O

ia

bj

(
Ab

ak

)
= 0

)
and then, the general solution is:

(5.41) Xi
jk = Ai

jk +Oia
bj

(
Y b
ak

)
,

(
Xi

jk = Ai
jk+

∗
O

ia

bj

(
Y b
ak

))
with Y an arbitrary d-tensor field of (1, 1)-type.

We are ready for one of the main results of this paper which is a natural generalization of Theorem 2.4 from [3]:

Theorem 5.1. Set S and g. The familyN (S, g) of all nonlinear connections N =
(
N i

j

)
such that (S,N) is metric with respect

to g is given by:

(5.42) N i
j =

1

2

c

N
i

j −
1

2
giagjb

c

N
b

a +
1

2
giaS (gaj) +Oia

bj

(
Xb

a

)
with X =

(
Xb

a

)
an arbitrary d-tensor field of (1, 1)-type. It follows that N (S, g) is a C∞(M)-affine module over the C∞(M)-

module of d-tensor fields of (1, 1)-type.

Proof. We search
(
N i

j

)
of the form:

(5.43) N i
j =

c

N
i

j +F i
j

with
(
F i
j

)
a d-tensor field of (1, 1)-type to be determined. The local expression of equation (5.36) is:

(5.44) S (guv)− gumNm
v − gmvN

m
u = 0

and inserting (5.43) in (5.44) gives:

S (guv)− gum
c

N
m

v −gmv

c

N
m

u = gumF
m
v + gmvF

m
u .

Multiplying the last relation with gku yields:

(5.45) gkuS (guv)−
c

N
k

v −gkugmv

c

N
m

u = F k
v + gkugmvF

m
u = 2

∗
O

kb

av (F a
b ) .
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Let us verify condition (5.40):

Okb
av

(
gamS (gmb)−

c

N
a

b −gamgbl
c

N
l

m

)
=

= gkmS (gmv)−
c

N
k

v −gkmgvl
c

N
l

m −gkmS (gmv) + gkmgvl
c

N
l

m +
c

N
k

v= 0.

It follows:

F i
j =

1

2
gimS (gmj)−

1

2

c

N
i

j −
1

2
giagjb

c

N
b

a +Oib
aj (Xa

b )

and returning to (5.43) gives the conclusion. �

In the spray case the equation (5.42) admits a simplification in writing:

Proposition 5.10. Fix a spray S and a metric g. The family N (S, g) is:

(5.46) N i
j =

1

2

c

N
i

j −
1

2
giagjb

c

N
b

a +
1

2
giaym

δgaj
δxm

+Oia
bj

(
Xb

a

)
.

A natural problem is the variations ofN (S, g) to various changes of S and/or g. We treat here only the well-known
case of conformal transformations:

Corollary 5.5. Let f ∈ C∞(M), f > 0 everywhere on M . Then N (S, g) = N (S, fg) if and only if f is a first integral of S

i.e. yi
∂f

∂xi
= 2Gi

∂f

∂yi
.

5.2. Metrizability of nonlinear connections. Fix a nonlinear connectionN =
(
N i

j

)
and associate toN the semispray

(3.12) which we will denote S (N).

Definition 5.13. The nonlinear connection N is metric with respect to g if the pair (S (N) , N) is so.

Theorem 5.2. The nonlinear connection N is metric with respect to g if and only if for all i, j ∈ {1, . . . , n}:

(5.47)
∗
O

iv

uj

(
Nu

v + guagvbN
b
a + gum

∂gmv

∂yb
N b

ay
a

)
= gim

∂gmj

∂xa
ya.

Proof. From (5.42) it results that N is metric if:

∗
O

iv

uj

(
Nu

v + guagvbN
b
a + gum

∂gmv

∂yb
N b

ay
a

)
=
∗
O

iv

uj

(
gum

∂gmv

∂xa
ya
)

and a straightforward computation of the right-hand-side of last equation yields the conclusion. �

Example 5.3. Riemannian metrics: suppose g = g (x). The last relation becomes:

(5.48)
∗
O

iv

uj

(
Nu

v + guagvbN
b
a

)
= gim

∂gmj

∂xa
ya

which is equivalent with:

(5.49) N i
j + giagjbN

b
a = gim

∂gmj

∂xa
ya.

Let us consider that M is the tangent bundle TN and g is a Riemannian metric on N . The Levi-Civita connection
of g is a linear connection on M . A symmetric linear connection with coefficients

(
Γi
jk

)
yields a semispray S with:

(5.50) Gi =
1

2
Γi
jky

jyk.

The canonic nonlinear connection of this semispray has the coefficients:

(5.51) N i
j = Γi

jay
a.

Inserting (5.51) in (5.49) and neglecting ya gives:

(5.52) Γi
ja + giugjvΓv

ua = gim
∂gmj

∂xa
.

But multiplying last equation with gsi we get:

(5.53) gsiΓ
i
ja + gjiΓ

i
sa =

∂gsj
∂xa

which is the usual Christoffel process. So, we verified the condition (5.49) in the Riemannian setting.
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5.3. Metrizability of semisprays.

Definition 5.14. The semispray S is called metric with respect to g if the pair
(
S,

c

N
)

is metric with respect to g.

Inserting
c

N in the left-hand-side of (5.42) we get:

Theorem 5.3. The semispray S is metric with respect to g if and only if, for all
i, j ∈ {1, . . . , n}:

(5.54)
∗
O

iv

uj

(
c

N
u

v +guagvb
c

N
b

a −gumS (gmv)

)
= 0.

Corollary 5.6. The spray S is metric with respect to g if and only if, for all
i, j ∈ {1, . . . , n}:

(5.55)
∗
O

iv

uj

(
c

N
u

v +guagvb
c

N
b

a −gumya
δgmv

δxa

)
= 0.

Example 5.4. Euclidean metrics. Let us consider again M as the tangent bundle TN and g is a constant metric on N
i.e. gij does not depend of (x). The condition (5.54) is:

(5.56)
∗
O

iv

uj

(
c

N
u

v +guagvb
c

N
b

a

)
= 0

which means:

(5.57)
c

N
i

j +giagjb
c

N
b

a= 0.

If N = Rn and g is the usual Euclidean metric then (5.57) reads:

(5.58)
c

N
i

j +
c

N
j

i= 0

i.e. the matrix
(

c

N
i

j

)
belongs to o (n)=the Lie algebra of skew-symmetric matrices of order n. So, we arrive at the

well-known result that the orthogonal group O(n) is the structural group of the Euclidean geometry on Rn.
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