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Note on Omega Polynomial

M. V. DIUDEA AND A. ILIĆ

ABSTRACT.
Omega polynomial, counting opposite edge strips ops, was proposed by Diudea to describe cycle-containing molecular structures, particularly
those associated with nanostructures. In this paper, some theoretical aspects are evidenced and particular cases are illustrated.

1. INTRODUCTION

A counting polynomial can be written as:

(1.1) P (G, x) =
∑
k

m(G, k) · xk

with the exponents showing the extent of partitions p(G), ∪p(G) = P (G) of a graph property P (G), while the coeffi-
cients m(G, k) are related to the number of partitions of extent k.

In the Mathematical Chemistry literature, counting polynomials have been introduced by Hosoya in [15] and [16]:
Z(G, x) counts independent edge sets while H(G, x) (initially called Wiener and later Hosoya [21] and [14]) counts
the distances in the graph. Hosoya next proposed the sextet polynomial [18]–[17] for counting the resonant rings in
a benzenoid molecule. More about polynomials the reader can find in [7].

Some distance-related properties can be expressed in polynomial form, with coefficients calculable from the layer
and shell matrices [2]–[9]. These matrices are built up according to the vertex distance partitions of a graph, as pro-
vided by the TOPOCLUJ software package [26]. Nice results have been obtained in the evaluation of the coefficients
of Hosoya H(G, x) polynomial by using the layer of counting LC matrix.

2. DEFINITIONS

Let G(V,E) be a connected bipartite graph, with the vertex set V (G) and edge set E(G). Two edges e = (x, y) and
f = (u, v) of G are codistant e co f if they obey the relation [1], [19] :

(2.2) d(v, x) = d(v, y) + 1 = d(u, x) + 1 = d(u, y)

If ”co” is an equivalence relation in G, then the set of edges C(G) = {f ∈ E(G)‖f co e} is called an orthogonal cut
oc of G and E(G) is the union of disjoint orthogonal cuts: E(G) = C1 ∪ C2 ∪ . . . ∪ Ck, Ci ∩ Cj = ∅ for i 6= j.

It is easily seen that ”co” is a Θ relation, (Djoković-Winkler relation [13], [27]) and G is a co-graph if and only if it is
a partial cube, a result due to Klavžar [20]. In a plane bipartite graph, an edge e is in the relation Θ with any opposite
edge f if the faces of the plane graph are isometric. Then an orthogonal cut oc with respect to a given edge is the
smallest subset of edges closed under this relation and C(e) is precisely a Θ-class of G. A partial cube is always a
bipartite graph, but the reciprocal is not true.

A set of opposite or topologically parallel edges within the same face/ring eventually forming a strip of adja-
cent faces, is called an opposite edge strip ops, which is a quasi-ortogonal cut qoc (i.e., the transitivity relation is not
necessarily obeyed) [5].

By definition, an ops starts/ends in either (1) one even face/ring or (2) two edges of odd-fold faces/rings; in case
(1), the ops is a cycle while in case (2) it is a path. In case of open structures, the open (or infinite) faces are equivalent
to the odd faces [5].

Proposition 2.1. Let G be a planar graph that represents a polyhedron with exactly k odd faces fodd, insulated from each other.
The family of ops strips contains a number of ops paths which is exactly half of the number of odd face edges eodd/2.

Proof. Consider an even face feven. If an edge e belongs to an ops, then the opposite edge e′ must also be in the same
ops. Since the number of faces is finite, the ops ends, that means either a cycle is closed, or arrived at an odd face edge
eodd. Therefore, every ops path must have the ends in two edges belonging to either different odd faces (most often)
or to the same odd face. Finally, by a simple counting argument, the number of ops paths is np = eodd/2. The number
eodd is even, because the sum of all face sizes equals twice the number of edges. �

Corollary 2.1. In a planar bipartite graph, representing a polyhedron, all ops strips are cycles.
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Let m(G, s) be the number of ops of length s (i.e., the number of cut-off edges); for the sake of simplicity, m(G, s)
can be written as m. The Omega polynomial is defined as [5]:

(2.3) Ω(G, x) =
∑
s

m(G, s) · xs.

The first derivative (in x = 1) equals the number of edges in the graph:

(2.4) Ω′(G, x) =
∑
s

m · s = e = |E(G)|.

A topological index, called Cluj-Ilmenau [19] CI = CI(G), was defined on Omega polynomial:

(2.5) CI(G) = Ω′(G, 1)2 − (Ω′(G, 1)− Ω′′(G, 1)).

3. NUMBER OF OPS PATHS

In general, the odd faces can be non-insulated, with two extremes:
(1) The graph consists of all joined odd faces, like the Platonic solids (Tetrahedron T , Octahedron Oct, Icosa-

hedron Ico and Dodecahedron Do, excepting Cube C); its ops are all paths of length 1, and Ω(G, x) = ex1,
np = e, CI = e(e− 1), e being here the number of edges in G. It is also the case of a tree graph.

(2) A bipartite cycle-containing graph has a single ops; it is precisely a cycle (a Hamiltonian ops); np = 1,
Ω(G,X) = 1 ·Xs, CI(G) = s2 − (s + s(s− 1)) = 0. Examples will be given below.

(3) Most often, mixed cases appear; to evaluate np, according to the above proposition, some additional symbols
are needed.
Denote the number of odd/even face edges by eodd and eeven respectively. Next, the number of odd face
edges lying inside the contour of joined odd faces is denoted by eodd in while that of the contour by eodd ex.
The ”in”-type edges are counted like in Case 1 (i.e., all joined odd faces) while the ”ex”-type edges will give
account for the number of ops paths (as presented in the above proposition): npex = eodd ex/2. Thus, the total
number of ops paths is as follows:

(3.6) np(G) = eodd in + eodd ex/2.

The remaining Omega terms (if any) represent ops cycles, with the extreme case as in Case 2.

4. EXAMPLES

In this section, the above statements are illustrated.
Figure 1 presents a bipartite cycle-containing graph, showing a single ops, that is precisely a cycle ops.

FIGURE 1. A bipartite complete graph K2,8; Ω(G,X) = 1X16; CI(G) = 0; Hamiltonian ops.

Platonic objects show all odd faces, except the Cube. Table 1 presents the Omega polynomial, which shows a
single term, at exponent unity, meaning all the path ops are internal (see above). The ring polynomial R(G,X) is also
given in tables, and CI index, as well.

TABLE 1. Omega and Ring polynomials in Platonics

Structure Ring Omega CI

1 T 4X3 6X1 30
2 Oct 8X3 12X1 132
3 Do 12X5 30X1 870
4 Ico 20X3 30X1 870
5 C 6X4 3X4 96
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Some of the map operations [11]–[3], particularly the Leapfrog Le and Capra Ca, preserve the number of paths of
the patterns in their transforms; the only change is in the exponent (i.e., the length of ops), which is multiplied by 3
and 7, in case of Le and Ca, respectively (Table 2).

TABLE 2. Map operations’ transforms and Omega polynomial in Platonics

Graph Omega CI

1 Ca(T) 6X7 1470
2 Ca(Oct) 12X7 6468
3 Ca(Do,Ico) 30X7 42630
4 Le(T) 6X3 270
5 Ca(Le(T)) 6X21 13230
6 Q(T) 6X2 + 3X4 504
7 Ca(Q(T)) 6X14 + 3X28 24696

When Le is iterated n-times (Figure 2a), the number of terms in Omega polynomial increases, but the first term
preserves the original number of ops paths in the Platonic parent. If Ca is the second type operation (Figure 2b), it
multiplies the exponents by 7. Table 3 gives examples, while here we give formulas for Omega polynomial in iterated
Len(T ).

Ω(Len(T ), X) = a1 ·Xe1 + a2 ·Xe2

a1 = 6 a2 = 3 ·
(

3bn/2c − 1
)

=

{
3 · (3n/2 − 1) if n is even
3 · (3(n−1)/2 − 1) if n is odd

e2 = 2e1 e1 = 3b(n+1)/2c =

{
3n/2 if n is even
3(n+1)/2 if n is odd

The number of edges in Len(T ) is Ω′(Len(T ), 1) = 2 · 3n+1. Here, bxc denotes the integer part of a real number x.

(a) Le3(T ); v = 108 (b) Ca(Le3(T )); v = 756

FIGURE 2. Non-chiral (a) and chiral (b) tetrahedral structures designed by iterated Len and (Len &
Ca) map operations

The next examples refer to cages having all joint f5-tuples, with only insulated even-fold faces (Table 4; Figure 3,
column a); in such cases, no pure even face edges eeven exist and the number of all ops paths is larger than the number
of all edges in G: np > e/2.

Finally, cages showing disjoint f5-tuples are considered (Table 6 and Figure 3, column b); they consist in all types
of edges, so the number of ops paths approaches that predicted for the insulated odd-fold edges: np = e/2. However,
there is one case (Table 5, entry 2) that shows also ops cycle, and this result is clearly recognized by the proposed
formula (3.6).

It is the place to remind that the number ”internal” ops paths, of length/exponent 1, can be used as a true topo-
logical index. In a previous paper [10], we denoted by np (number of fused pentagon), the coefficients of the term
at exponent 1 in Omega polynomial and correlated it with the strain energy in small fullerenes, in monovariate
regression, with excellent results.
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TABLE 3. Examples for Omega and Ring polynomials in iterated Len(T ) ended by Ca

Graph Omega CI Ring

Len(T )

1 6X3 270 4X3 + 4X6

2 6X3 + 6X6 2646 4X3 + 16X6

3 6X9 + 6X18 23814 4X3 + 52X6

4 6X9 + 24X18 227934 4X3 + 160X6

5 6X27 + 24X54 2051406 4X3 + 484X6

6 6X27 + 78X54 18900054 4X3 + 1456X6

Ca(Len(T ))

1 6X21 13230 -
2 6X21 + 6X42 129654 -
3 6X63 + 6X126 1166886 -
4 6X63 + 24X126 11168766 -
5 6X189 + 24X378 100518894 -
6 6X189 + 78X378 926102646 -
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Numerical computations have been done by our new software Nano-Studio [22].

5. FURTHER REMARKS

It is obvious that setting a larger maximum face size, some open faces will became normal faces and, if even, the
ops counting can continue, sometimes, up to all opposite edges in the graph will form a unique ops (case 2, above).

(a) S2(T ); v = 21 (b) Trs(Du(Med(Le(T )))); v = 40

(a) S2(Oct); v = 54 (b) Trs(Du(Med(Le(Do)))); v = 192

(a) Corazene; v = 96 (b) Trs(Du(Med(Le(Oct)))); v = 80

FIGURE 3. Cages with (a) joint f5-tuples and insulated feven (Table 4) and (b) disjoint f5-tuples (Table 5);
the cage in the right bottom corner shows 3 ops cycles (Table 5, entry 2).

A special case is that of paths ending in two odd edges of one and the same face; this could be called a pseudo ops
cycle, because e0 and en are not topologically parallel. Figure 4 illustrates two such cases: case (a), of which np count
uses odd-infinite faces and case (b) which gives different results if faces or rings are counted. For covering study, the
face-version is to be used while for network study the ring-version is needed. It is noteworthy to mention that the
ring-version of Omega counting polynomial is associated, in cyclic graphs, to the detour counting, as the maximal
length of ops is searched. Details of the ring-version polynomial will be presented in a future paper.

6. CONCLUSIONS

Omega polynomial was proposed by Diudea to describe polyhedral molecular structures, particularly those asso-
ciated with nanostructures. In this paper, some theoretical aspects, related to the type (and counting) of the opposite
edge strips, path or cycle, and particular cases were illustrated.
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bright contribution to the development of Mathematical Chemistry.

The second author (A. I.) is grateful to European Society of Mathematical Chemistry ESMC, for support in travel-
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Ω(G,X) = 1X3 + 3X4; CI = 168 Ω(G,X) = 2X2 + 2X3 + 2X4; CI = 266 (face)
R(G,X) = 2X3 + 3X4 + 2X6 Ω(G,X) = 2X1 + 4X4; CI = 258 (ring)
eex = 6 + 2ein = 8; np = 8/2 = 4 R(G,X) = 4X3 + 7X4; eex = 12; np = 12/2 = 6

FIGURE 4. Ops paths ending in two edges of the same odd face, to form a pseudo ops cycle
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FACULTY OF SCIENCES AND MATHEMATICS
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