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Affine legendrians and co-legendrians

MARCELA POPESCU

ABSTRACT.
The aim of the paper is to define and to study legendrians and their dual objects, co-legendrians, as generalizations of lagrangians and affine
hamiltonians. The structure of closed legendrians, Helmholtz conditions and some properties related to their Euler-Lagrange equations, Hamilton
equations and energy form are studied. A duality between hyperregular legendrians and co-legendrians (including their Euler-Lagrange and
Hamilton equations) is found.

1. INTRODUCTION

A lagrangian system is generally defined by a lagrangian L : TM → IR. When the lagrangian is not globally
defined, a lagrangian system can be also considered, using a closed 1–form. Hereby, for a given closed 1–form ω on
the manifold TM , using the Poincaré Lemma, then ω = dL only locally. If the coomological class of ω is not zero,
then it does not exist a global L such that ω = dL. In this case, one say that ω defines a lagrangian system.

The Euler-Lagrange equations of a lagrangian system defined by the lagrangian L have the well-known local form
d

dt

∂L

∂yi
− ∂L

∂xi
= 0.These equations comes from a variational condition imposed to the action of L on curves in M . If

the lagrangian system is defined by a closed 1–form ω = ω(0)idx
i+ ω(1)idy

i, then the Euler-Lagrange equations have

the local form
d

dt
ω(1)i − ω(0)i = 0.

A non-lagrangian system is generally given by a lagrangianL and a vertical 1-form f = fi(x
j , yj)dxi on TM (called

an exterior force [1, 2]). The dynamical equations of the non-lagrangian system have the local form
d

dt

∂L

∂yi
− ∂L

∂xi
= fi.

More generally, one can consider a non-lagrangian system defined by a closed form ω ∈ X ∗(TM) and a vertical
1-form f . The non-lagrangian system is equivalently given by a 1-form ω̄ ∈ X ∗(TM), that has the local form ω̄ =

ω
(0)
i dxi + (ω

(1)
i + fi)dy

i and is generally not closed.
In the hyperregular case there is a duality between lagrangian and hamiltonian systems, and also between non-

lagrangian and non-hamiltonian systems.
Therefore, a hamiltonian system is generally defined by a hamiltonian H : T ∗M → IR. More generally, a hamil-

tonian system can be defoned by a closed 1-form ω′ on the manifold T ∗M . In this case the existence of H such that
ω′ = dH is only locally.

The Hamilton equations of a hamiltonian system defined by a hamiltonian H have the well-known local form
dxi

dt
=
∂H

∂pi
,
dpi
dt

= −∂H
∂xi

.

A non-hamiltonian system is generally defined by a hamiltonianH and a vertical 1-form g = gi(x
j , pj)dx

i on T ∗M

(see, for example, [6, 7]). The dynamical equations of the non-hamiltonian system are
dxi

dt
=
∂H

∂pi
,
dpi
dt

= −∂H
∂xi

+ gi.

More generally, one can consider a non-hamiltonian system defined by a closed form ω ∈ X ∗(T ∗M) and a vertical
1-form g as above. The non-hamiltonian system is equivalently given by a 1-form ω̄′ ∈ X ∗(T ∗M) given locally by
ω̄′ = ω̄

(0)
i dxi+ (ω̄(1)i− gi)dpi. Let us observe that, in general, ω̄′ is not closed.

The aim of the paper is to consider legendians as extensions of the lagrangian and non-lagrangian systems and also
co-legendrians as extensions of hamiltonian and non-hamiltonian systems. The extensions are performed considering
affine bundles and anchors on affine bundles. Some particular examples of legendrians are given in [4], in the case of
higher order tangent spaces of a manifold.

Legendrians and co-legendrians on an affine bundle are defined in the second section. A duality between them in
the hyperregular case is studied. The Helmholtz conditions and the structures of a closed affine legendrian (Proposi-
tion 2.1) and of a closed affine co-legendrian (Proposition 2.2) are given.

Legendrians and co-legendrians on affine anchored bundles are studied in the third section. The Helmholtz con-
ditions are revised in the anchored case (Proposition 3.5). The Euler-Lagrange equations of a legendrian and the
Hamilton equations of a co-legendrian are considered and some relations between these equations (Proposition 3.1)
are proved. The energy form is defined and it is used to find relations between the solutions of Euler-Lagrange and
Hamilton equations of two dual legendrians (Theorem 3.2).
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2. LEGENDRIANS AND CO-LEGENDRIANS ON AFFINE BUNDLES

Let E π→ M be an affine bundle, i.e. a local trivial fibration with the fiber type a real and finite dimensional affine
space A, such that the structure functions are affine transformations. The change rules of local coordinates (xi, yα)
on E, adapted to the affine structure, have the form

(2.1) xi
′

= xi
′
(xj), yα

′
= gα

′

α (xj)yα
′
+ vα

′
(xj).

A section in the affine bundle E is a differentiable map M
s→ E such that π ◦ s = idM and its local components

change according to the rule sα
′
(xi
′
) = gα

′

α (xj)sα(xj) + vα
′
(xj). Using a suitable partition of unity on the base M , it

can be easily proved that always there is a (global) section s : M → E.
Notice that a vector bundle is a particular affine bundle and to an affine bundle E π→ M one can associate a

vector bundle Ē π̄→ M ; using local coordinates, if (2.1) are change rules of coordinates on E, then xi
′

= xi
′
(xj),

ȳα
′

= gα
′

α (xj)ȳα are those on Ē.
We say that a differential form on E, ω ∈ X ∗(E), is a legendrian on E and a (differentiable) map L : E → IR is

a lagrangian on E. Considering an open submanifold Ẽ ⊂ E (usually one consider that Ẽ is E less the image of
a section s0 : M → E), we can assume that ω restricts to ω : Ẽ → T ∗Ẽ that is differentiable on Ẽ and it is only
continuous on E; similarly for a lagrangian. An example of a legendrian is the differential dL of a lagrangian L.

A top legendrian ω̃ on E is a linear 1-form on the fibers of the vertical bundle V E → E. Notice that ω̃ is not a
differential form on E. The action of a differential denoted by dv can be given on differential forms defined on the
fibers of the vertical bundle V E. We say that ω̃ is v-closed if dvω̃ = 0. Using local coordinates, ω̃ = ωα(xj , yβ)dyα and

dvω̃ =
1

2

(
∂ωα
∂yβ

− ∂ωβ
∂yα

)
dyα ∧ dyβ . It is obviously that a legendrian ω defines a top legendrian ω̃ (if ω = ω(0)idx

i +

ω(0)αdy
α, then ω̃ = ω(0)αdy

α, where dyα in ω and ω̃ have different meanings); if ω̃ is v-closed, then we say that ω is a
top closed legendrian. If a legendrian ω has a null top legendrian, one say that ω is a semi-basic1-form related to E. In

this case ω has a local form ω = ωi(x
j , yα)dxi and the local functions (ωi) change according to the rule ωi =

∂xi
′

∂xi
ωi′ .

Proposition 2.1. If ω is a closed legendrian, then there is a lagrangian L : E → IR and a closed form θ′ ∈ X ∗(M) such
that ω = dL + π∗θ′, where π : E → M is the canonical projection. If ω is a top closed legendrian, then there is a lagrangian
L : E → IR and a semi-basic1-form θ related to E such that ω = dL+ θ.

Proof. If ω is closed, then according to Poincaré lemma, ω is locally exact. Thus locally, for each open set U ⊂ E in an
open cover U of E, there is a function LU : U → IR (a local lagrangian) such that ω = dLU . We can take U such that
U ′ = π(U) ⊂ M is open and {U ′ = π(U)} is an open cover U ′ of M . Let {ϕ′U ′} be a partition of unity on M , which
is subordinated to U ′. The family {ϕU = (π∗ϕ′U ′)|U ; U ∈ U} ⊂ F(E) is a partition of unity on E, subordinate to the
cover U . Thus L =

∑
U∈U

ϕULU ∈ F(E) is a global defined lagrangian. One can prove that the form ω − dL is closed

and it has the local form ω − dL = θidx
i. Since ω is closed, it follows that θi = θi(x

i), thus there is a global closed
1-form θ′ ∈ X ∗(M) such that ω − dL = π∗θ′.

Let ω be a top closed legendrian. We can perform a similar construction as in the case of a closed lagrangian.
We can take local lagrangians {LU} suct that dLU have the same top legendrians as ω, a partition of unity that glues
together all these in L =

∑
U∈U

ϕULU ∈ F(E), thus θ = ω−dL has a null top legendrian, i.e. θ is a semi-basic1-form. �

In the case of an affine space A at least two duals can be considered for A:
(1) The dual vector space Ā∗, where Ā is the vector space that is a model for A and
(2) The affine dual space A† = {ω : A→ IR, ω is an affine map}.

Both duals Ā∗ and A† are vector spaces, but dim Ā∗ = dimA = dimA† − 1. They are related by the exact sequence
of vector spaces:

(2.2) 0→ IR
j→ A† π→ Ā∗ → 0,

where j is the inclusion that associates to 1 a constant but not vanishing affine map and π is the linear map induced
on vectors.

In order to construct a duality lagrangian - hamiltonian, it is preferably to choose the affine dual.
Thus, if (E, π,M) is an affine bundle, we denote by (Ē, π̄,M) the associated vector bundle and by (E†, π†,M) the

associated affine bundle that has as fibers the affine duals of the fibers of E. The vector bundle map π in (2.2) induces
an epimorphism of vector bundles Π : E† → Ē∗ that can be viewed as a projection of an affine bundle with a one
dimensional fiber. A section h : Ē∗ → E† of this affine bundle is, by definition, an affine hamiltonian on E. Let us
give the local form of an affine hamiltonian. Let us consider local coordinates (xi, yα) on E that change according to
formulas (2.1), coordinates (xi, zα) on Ē∗, such that zα = gα

′

α zα′ , and coordinates (xi, zα, ω) on E†, such that ω change

according to the rule ω′ = ω + vα
′
zα′ . Thus an affine hamiltonian has the local form (xi, zα)

h→ (xi, zα, H0(xi, zα)).
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Notice that the local functions H0 change according to the rules

(2.3) H ′0 = H0 + vα
′
zα′ .

The change rules of some local coordinates (xi, yα, pi, zα) on T ∗E are:

xi
′

= xi
′
(xi), yα

′
= gα

′

α y
α + vα

′
,(2.4)

pi′
∂xi

′

∂xi
+

(
∂gα

′

α

∂xi
yα +

∂vα
′

∂xi

)
zα′ = pi, g

α′

α zα′ = zα,

It follows that there is a map π′ : T ∗E → Ē∗, given in local coordinates by

(xi, yα, pi, zα)
π′→ (xi, zα) and this map is the canonical projection of an affine bundle.

Using relation (2.3) one can deduce that the local definition (xi, zα)→
(
xi,

∂H0

∂zα

)
gives a global bundle map (in

general, not affine) H:E → Ē∗, called the Legendre map of h. One can also verify by a straightforward computation
that the local definition

(2.5) (xi, zα)→
(
xi,

∂H0

∂zα
,−∂H0

∂xi
, zα

)
.

gives a global map Dh : Ē∗ → T ∗E that play the role of a differential of h, as well as an extension of the Legendre
map of h. In the case when h = H0 : T ∗M → IR is a classical hamiltonian, then Dh can be obtained as a composition

of the following maps: first
(
xi, zi)

dH0→ (xi, zi,
∂H0

∂xi
,
∂H0

∂zi

)
is the differential d : T ∗M → T ∗T ∗M of H0, then

# : T ∗T ∗M → TT ∗M , (xi, zi, X
i, Zi)

#→ (xi, zi,−Zi, Xi) is the canonical anchor defined by the canonical symplectic
structure on T ∗M and τ : TT ∗M → T ∗TM , (xi, zi, Z

i, Xi)→ (xi, Zi, Xi, zi) is the canonical flip; finnalyD = τ ◦#◦d.
This decomposition of D is not possible to be made in the general affine case.

The existence of Dh suggests to define an affine co-legendrian on E as a section η : Ē∗ → T ∗E of the affine bundle
defined by π′. Using local coordinates, η has the local form

(2.6) (xi, zα)
η→ (xi, ηα(xi, zα), ηi(x

i, zα), zα).

The change rules of the local functions (ηα, ηi) can be deduced from the second and the third relations (2.4).

Let us consider the induced affine bundle π̄∗0E
π̄′→ Ē∗, over the base Ē∗, where π̄0 : Ē∗ → M is the canonical

projection. A top affine co-legendrian is a section η̄ : Ē∗ → π̄∗0E in this bundle. To give a top affine co-legendrian η̄ is
equivalently to give a fibered manifold map L∗ : Ē∗ → E, called a co-Legendre map.

An affine co-legendrian η : Ē∗ → T ∗E defines a top affine co-legendrian η̄ with the co-Legendre map L∗ = π′′ ◦ η,
where π′′ : T ∗E → E is the canonical projection. The co-Legendre map of η is the co-Legendre map of η̄. Using
local coordinates, if η has the local form (2.6), then η̄ and L∗ have the local forms (xi, zα)

η̄→ (xi, zα, η
α(xi, zα)) and

(xi, zα)
L∗→ (xi, ηα(xi, zα)) respectively.

The v-curvature of the top affine co-legendrian η̄ : Ē∗ → π̄∗0E is the section r : Ē∗ → ∧2π̄∗Ē∗ in the vector bundle

∧2π̄∗Ē∗ = π̄∗Ē∗ ∧ π̄∗Ē∗ → Ē∗ , defined by r = dvη
α ∧ dzα =

1

2

(
∂ηα

∂zβ
− ∂ηβ

∂zα

)
dzα ∧ dzβ , where dvf =

∂f

∂zα
dzα. It is

easy to see that r vanishes iff
∂ηα

∂zβ
=
∂ηβ

∂zα
, thus iff there is a local function f : U → IR, U ⊂ Ē∗, such that ηα =

∂f

∂zα
.

We say that η̄ is:
: v-closed if it has a null curvature and
: exact if there is an affine hamiltonian h such that η̄ is the top affine co-legendrian of Dh.

If η̄ is closed, then it has a null curvature, thus it is locally exact, as remarked above.
The curvature of an affine co-legendrian η : Ē∗ → T ∗E is the section R : Ē∗ → ∧2T ∗Ē∗ in the vector bun-

dle ∧2T ∗Ē∗ = T ∗Ē∗ ∧ T ∗Ē∗ → Ē∗ , defined by R = dηα ∧ dzα − dηi ∧ dxi =
1

2

(
∂ηα

∂zβ
− ∂ηβ

∂zα

)
dzα ∧ dzβ−

1

2

(
∂ηi
∂xj
− ∂ηj
∂xi

)
dxi ∧ dxj+

(
∂ηα

∂xi
+
∂ηi
∂zα

)
dzα ∧ dxi. It follows that R vanishes iff

(2.7)
∂ηi
∂xj
− ∂ηj
∂xi

= 0,
∂ηα

∂xi
+
∂ηi
∂zα

= 0,
∂ηα

∂zβ
− ∂ηβ

∂zα
= 0,

thus iff there is a local function f : U → IR, U ⊂ Ē∗, such that ηα =
∂f

∂zα
and ηi = − ∂f

∂xi
. We say that η is:

: closed if it has a null curvature and
: exact if there is an affine hamiltonian such that η = Dh.



218 Marcela Popescu

If η is closed, then using the remark above there is a local f such that ηα =
∂f

∂zα
and ηi =

∂f

∂xi
, thus η is locally

exact.
We call relations (2.7) as Helmholtz conditions for an affine co-legendrian η and the local functions ηij =

∂ηi
∂xj
− ∂ηj
∂xi

,

ηαi =
∂ηα

∂xi
+
∂ηi
∂zα

, ηαβ =
∂ηα

∂zβ
− ∂ηβ

∂zα
as Helmholtz coefficients.

We say that η is top closed if its associated top affine hamiltonian h̄ is v-closed.
A semi-basic1-form related to Ē∗ is a section θ′ : Ē∗ → π̄∗0TM in the vector bundle π̄∗0TM → Ē∗, where π̄0 : Ē∗ →M

is the canonical projection. For example, if θ ∈ X ∗(M), then π̄∗0θ is a semi-basic1-form related to Ē∗. If h : Ē∗ → E†

is an affine hamiltonian and θ : Ē∗ → π̄∗0TM is a semi-basic1-form related to Ē∗, then one can consider the sum

η + θ, defined as follows. If η and θ have the local forms (2.6) and (xi, zα)
θ′→ (xi, θi(x

i, zα)) respectively, then

(xi, zα)
η+θ→ (xi, ηα, ηi + θi, zα).

Proposition 2.2. If η is a closed affine co-legendrian, then there is an affine hamiltonian h : Ē∗ → E† and a closed form
θ′ ∈ X ∗(M) such that η = Dh+ π̄∗0θ

′. If η is a top closed affine co-legendrian, then there is an affine hamiltonian h : Ē∗ → E†

and a semi-basic1-form θ related to Ē∗ such that η = Dh+ θ.

Proof. Let π̄ : Ē∗ → M be the canonical projection. Since η is closed, using equations (2.7), one can prove that η
is locally exact. Thus for each open set U ⊂ Ē∗ in an open cover U of Ē∗, there is a section HU : U → U × IR,

u
HU→ (u,H0U ) (a local affine hamiltonian) such that η = dHU . We can take U such that U ′ = π̄(U) ⊂ M is open and
{U ′ = π̄(U)} is an open cover U ′ of M . Let {ϕ′U ′} be a partition of unity on M , which is subordinated to U ′. The
family {ϕU = (π̄∗ϕ′U ′)|U ; U ∈ U} ⊂ F(E) is a partition of unity on E, subordinate to the cover U . The expression
H0 =

∑
U∈U

ϕUH0U ∈ F(E) defines a global affine hamiltonian h. The form η − Dh is closed and has the local form

ω − Dh = θidx
i. From the vanishing curvatures of ω it follows easily that θi = θi(x

i) comes from a global closed
1-form θ′ ∈ X ∗(M), i.e. ω − dη = π∗θ′.

Let η be a co-legendrian that is top closed. We can performe a similar construction as in the case of a closed
co-legendrian. We can take local affine hamiltonians {H0U} that have the same top legendrians as η, a partition of
unity that glues together all these in h =

∑
U∈U

ϕUH0U ∈ F(E), thus θ = η − Dh has a null top legendrian, i.e. θ is a

semi-basic1-form. �

Notice that comparing with the proof of Proposition 2.1, the proof above uses that the partition of unity gives a
convex hull of local sections in the affine bundle Π : E† → Ē∗, instead of real functions, and the difference η −Dh is
no longer an affine hamiltonian, but a vertical 1-form related to Ē∗.

We say that a top affine co-legendrian η̄ is hyperregular if its co-Legendre map L∗ is a diffeomorphism. The inverse
of L defines the Legendre map of a top affine legendrian ω̄, that we call the inverse of η̄. We say that a co-legendrian
is hyperregular if its associated top co-legendrian is hyperregular.

Analogous definitions can be considered for legendrians. A top affine legendrian ω̄ defines the Legendre map, that
is a fibered manifold map E

L→ Ē∗. Then that ω̄ is hyperregular if L is a diffeomorphism. The inverse of L defines
the co-Legendre map of a top affine co-legendrian η̄, that we call the inverse of ω̄. A legendrian is hyperregular if its
associated top legendrian is hyperregular.

We define below a duality between hyperregular affine legendrians and hyperregular affine co-legendrians on E,
that in particular gives a duality between hyperregular lagrangians and hyperregular affine hamiltonians.

Let ω : E → T ∗E be a hyperregular affine legendrian and L : E → Ē∗ be its Legendre map . We define the

(hyperregular) affine co-legendrian η : Ē∗ → T ∗E as the composition Ē∗
L−1

→ E
ω→ T ∗E. Using local coordinates

ω = ω(0)i(x
j , yα)dxi+ ω(1)α(xj , yα)dyα and ω̃ = ω(1)α(xj , yα)dyα. Let η̃ = ηα(xj , zβ)dzα be the top co-legendrian that

is inverse to the top legendrian ω̃; it reads ω(1)α(xj , ηα(xj , zb)) = zα. Then η(0)i(x
j , zb) = ω(0)i(x

j , ηα(xj , zb)) and
η = η(0)idx

i + ηαdzα.
By duality, if η : Ē∗ → T ∗E is a hyperregular co-legendrian and η̃ its associated top co-legendrian, then one can

consider its dual legendrian ω : E → T ∗E as the composition E
(L∗)−1

→ Ē∗
η→ T ∗E, i.e. ω = η ◦ (L∗)−1. Using local

coordinates, η = η(0)idx
i+ηαdzα and η̃ = ηα(xj , zb)dzα. Let ω̃ = ω(1)α(xj , yα)dyα be the top legendrian that is inverse

to the top co-legendrian η̃. Then ω(0)i(x
j , yb) = η(0)i(x

j , ω(1)α(xj , yb)) and ω = ω(0)idx
i+ ω(1)αdy

α.
We can associate with a legendrian ω = ω(0)i(x

j , yα)dxi+ ω(1)α(xj , yα)dyα its Helmholtz conditions:

(2.8)
∂ω(0)i

∂xj
−
∂ω(0)j

∂xi
= 0,

∂ω(0)i

∂yα
−
∂ω(1)α

∂xi
= 0,

∂ω(1)α

∂yβ
−
∂ω(1)β

∂yα
= 0,

that come from the condition dω = 0, i.e. ω be closed. As in the case of a co-legendrian, one can call the local functions
that are local components of dω as local Helmholtz coefficiens.
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If L : E → IR is a lagrangian, then it is obsiously that ω = dL is a legendrian that satisfy the Helmholtz conditions.
One say that L is hyperregular if dL is a hyperegular legendrian. The validity of the following assertions are simple
consequences of the definition, provided that L is hyperregular:

: the dual co-legendrian η of dL verify the Helmholtz conditions (2.7),
: η = Dh comes from an affine hamiltonian h : Ē∗ → E† and
: η is hyperregular (i.e. its associate co-legendrian Dh given by (2.5) is hyperregular).

3. LEGENDRIANS ON ANCHORED AFFINE BUNDLES

In order to have some Hamilton equations of a co-legendrian and some Lagrange equations of a legendrian, we
suppose that the affine bundle has an affine anchor. It is the case of higher order legendrians of a manifold [4].

If E π→M is an affine bundle, an affine map ρ : E → TM is called an affine anchor on E, or simply an anchor, when
no confusion is possible. Using local coordinates, ρ has the form (xi, yα)

ρ→ (xi, ρj(xi, yα)) and the anchor has the
local form:

(3.9) ρi(xi, yα) = yαDi
α(xj) + Ei(x).

A special case is the higher tangent space T kM , for k ≥ 2, when T kM πk→ T k−1M is an affine bundle and there is
a inclusion map hk : T kM → TT k−1M that is an affine bundle map, thus an (affine) anchor. We study this case in a
subsequent paper.

If E π→M is a vector bundle and ρ : E → TM is a vector bundle map, then the anchor is linear and its local form is
ρi(xi, yα) = yαDi

α(xj). For example, when E = TM , then ρ = idTM is an anchor. An other example is when E π→M
is an integrable distribution of constant rank on M , and the anchor ρ is the inclusion.

Any affine anchor ρ : E → TM induces a bundle map ρ∗ : T ∗M → Ē∗, which we call a co-anchor. Using
coordinates and (3.9), then ρ∗(xi, pi) = (xi, piD

i
α).

We say that a curve γ : I → E, I = (a, b) ⊂ IR, is adapted to the anchor if (π ◦ γ)∗ = ρ ◦ γ, where f∗ denotes the

differential of f . Using local coordinates, γ has the form t
γ→ (xi(t), yα(t)) and

dxi

dt
= ρi(xi, yα) on I .

We associate the affine Hamilton equations with an affine co-legendrian η, as follows. A curve γ : I → E∗ is a fiber
solution of the affine Hamilton equations if the following conditions are fulfilled:

H1 The curve γ1 = L∗◦γ : I → E is adapted to the anchor, i.e. ρ◦γ1 =
d(π ◦ γ1)

dt
, where π : E →M is the canonical

projection. If γ has a local form γ(t) = (xi(t), zα(t)), then γ1(t) = (xi(t), hα(t)), where hα(t) = ηα(xi(t), zβ(t))

and ρi(xi(t), hα(t)) =
dxi

dt
.

H2 There are some local functions fi : I → IR, i = 1,m, m = dimM , such that
dfi
dt

= ηi(x
j , fiD

i
α)−fj

∂ρj

∂xi
(xj , hα).

The affine Hamilton equations of η are:

(3.10)


dxi

dt
=ρi(xi(t), hα(t)),

dfi
dt

= ηi(x
j , fiD

i
α)− fj

∂ρj

∂xi
(xj , hα).

Notice that the local functions {fi}i=1,m define a curve γ∗ : I → T ∗M , t → fidx
i
|γ(t) that we call a base solution of

the affine Hamilton equations.
In the case when E = TM and ρ = idTM , i.e. ρi(xj , yj) = yi, the affine Hamilton equations takes the form

(3.11)


dxi

dt
= ηi(xi, pi),

dpi
dt

= −η(0)i(x
i, pi),

which we call the Hamilton equations of η ; it is called in [6] a classical system. An other case is when E = T kM and the
anchor hk : T kM → TT k−1M is the inclusion. We study this situation in a subsequent paper.

We describe in that follows the solutions of the affine Hamilton equations of an affine co-legendrian, without
imposing to the affine co-legendrian the hyperregularity condition. We define below the energy of an affine co-
legendrian on T ∗M , such that the integral curves of its dual vector field are base solutions and also gives fiber
solutions of the affine Hamilton equations.

We define the energy form of the affine co-legendrian η as the co-legendrian Ω ∈ X ∗(T ∗M), given by: Ωi(x
i, zj) =

−ηi(xj , piDi
α)+ pj

∂ρj

∂xi
(xj , hα), Ωi = ρi(xi, hα), where hα = ηα(xi, piD

i
α).

Proposition 3.3. The co-legendrian Ω is well-defined.
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Proof. It suffices to prove that the change rule of local functions (Ωi,Ω
i) is Ωi′ =

∂xi
′

∂xi
Ωi and Ωi =

∂xi
′

∂xi
Ωi′ +

∂zi′

∂xi
Ωi
′
.

The first relation is obvious fulfilled. For the second one, one use the change rules of all local functions and coordi-
nates; by a straightforward computation one obtain the conclusion. �

The canonical symplectic structure on the manifold T ∗M gives an isomorphism of vector bundles Φ : T ∗T ∗M →
TT ∗M .

Proposition 3.4. The integral curves of the vector field Φ ◦Ω are base solutions of the Hamilton equations of the co-legendrian
η. The co-anchor ρ∗ : T ∗M → Ē∗ sends base solutions into fiber-solutions.

Proof. The vector field Φ ◦ Ω has the local form Φ ◦ Ω = Ωi
∂

∂xi
− Ωi

∂

∂pi
. Taking account into the definitions of Ω and

of Hamilton equations of η, the conclusion follows. �

Let us consider the Helmholtz coefficients ηαβ , ηαi and ηij of η. The following statement is obtained by a straight-
forward computation.

Proposition 3.5. For zα = Di
αpi, we have the following relations between Helmholtz coefficients of Ω and those of η:

(3.12)



dΩi

dpj
− dΩj

dpi
= Di

αD
j
βη

αβ ,

dΩi

dxj
− dΩj
dpi

= Di
αη

α
j ,

dΩi
dxj
− dΩj
dxi

= ηij + ηαi
Dk
α

∂xj
pk − ηαj

Dk
α

∂xi
pk.

A simple consequence is the following statement.

Proposition 3.6. Let η be top closed and the affine anchor ρ be injective. Then Ω is closed iff η is closed.

One can obtain also the following statement, by a straightforward computation.

Proposition 3.7. If η is exact (i.e. there is an affine hamiltonian h such that η = Dh), then Ω is exact (i.e. there is a hamiltonian
E on M , such that Ω = dE); E is locally given by E(xi, pi) = piE

i(xi)+ H0(xi, piD
i
α),where (xi, zα)

h→ (xi, zα, H0(xi, zα))

and (xi, yα)
ρ→ (xi, yαDi

α + Ei) are the local forms of h and ρ respectively.

We call E the energy of h. The affine Hamilton equations have the following form in this case:

(3.13)


dxi

dt
= ρi(xj , hα),

dpi
dt

= −∂H0

∂xi
(xj , piD

i
α)− pj

∂ρj

∂xi
(xj , hα),

where hα =
∂H0

∂zα
(xi, piD

i
α).

Using Proposition 2.2, one obtain the following statement.

Proposition 3.8. Let η = Dh + π̄∗0θ
′ be a closed affine co-legendrian and E be the energy of h. Then the energy form of η is

Ω = dE + θ′, thus Ω is a closed co-legendrian. Let η = Dh + θ be a top closed co-legendrian and E be the energy of h. Then
there is a semi-basic1-form θ1 related to T ∗M such that the energy form Ω = dE+θ1, thus Ω is a top closed co-legendrian.

In the case when E
π→ M is a vector bundle and ρ : E → TM is a vector bundle map that the local form (3.9),

we have Ei = 0. Then E(xi, zi) = H0(xi, ziD
i
α), E : T ∗M → IR is a hamiltonian on M and H0 : Ē∗ → IR is a

sub-hamiltonian on E.
The hamiltonian vector field XE is defined according to the formula dE = iXEΩ and it has the local expression:

(3.14) XE =
∂E
∂pi

∂

∂xi
− ∂E
∂xi

∂

∂pi
.

Thus an integral curve of the vector field XE is a solution of the well known Hamilton equations:

(3.15)


dxi

dt
=
∂E
∂pi

,

dpi
dt

= − ∂E
∂xi

.

A straightforward calculation shows that
∂E
∂pi

= Ei +Di
αh

α and

∂E
∂xi

=
∂H0

∂xi
(xi, zα(xi, pi))+ zj

∂Ej

∂xi
(xj , hα) + zj

∂Dj
α

∂xi
hα, where zα(xi, pi) = piD

i
α and hα(xi, pi) =

∂H0

∂Ωα
(xi, zα(xi, pi)).
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Thus we obtain the following form of the affine Hamilton equations:

(3.16)


dxi

dt
= ρi(xj , hα),

dzi
dt

= −∂H0

∂xi
(xj , zα)− pj

∂ρj

∂xi
(xj , hα).

Notice that the hamiltonian vector field of E has the local form

XE = ρi(xj , hα)
∂

∂xi
−
(
∂H0

∂xi
(xj , zα) + pj

∂ρj

∂xi
(xj , hα)

)
∂

∂pi
.

Theorem 3.1. The integral curves of the hamiltonian vector field XE define curves on Ê which are solutions of the affine
Hamilton equations (3.10) of H0.

Proof. By a straightforward calculus one verify that a solution t→ (xi(t), fi(t)) of (3.16) fulfills (3.10). �

Let γ : I → T ∗M , I = [0, 1] be a curve, which has the local form γ(t) = (xi(t), zi(t)). We say that γ is admissible if

for every t ∈ I one have
dxi

dt
= ρi(xj , hα).

If one regard E : T ∗M → IR as a hamiltonian on M , continuous on T ∗M and differentiable on T̃ ∗M , the integral
action of E on a curve γ : I → T ∗M , I = [0, 1], which has the local form γ(t) = (xi(t), zi(t)) is

IE(γ) =

∫ 1

0

[
zi

(
dxi

dt
− Ei

)
−H0(xi, zα)

]
dt,

where zα = Di
αzi. It is well-known that the singular curves of this action are solutions of the Hamilton equations;

from first equation (3.16) it follows that these integral curves are adapted to the anchor. Considering the restriction
of the action IE on curves that are adapted to the anchor, it follows that the solutions of the Hamilton equations are
critical curves for this action.

We can consider, in particular, a (strict) concave hamiltonian h, i.e. that it has the property that the vertical hessian
∂(−H0)

∂Ωα∂Ωβ
is (strict) positive defined. In this case the hessian is non-degenerate.

Proposition 3.9. Let h : Ē∗ → E† be a hyperregular affine sub-hamiltonian. Then there is a hyperregular sub-lagrangian
L : E → IR on E defined by h.

Proof. We define the sub-lagrangian L by the local formula L(xi, yα) = Lα(xi, yα)yα− H0(xi, Lγ(xi, yα)),where the

affine sub-hamiltonian h has the local form (zα)
h→ (zα, H0(zα)), L is the inverse of the co-Legendre transformation

(i.e. L = H−1) having the local form L(xi, yα) = (xi, Lγ(xi, yα)). �

Proposition 3.10. Let L : E → IR be a hyperregular sub-lagrangian. Then there is a hyperregular affine sub-hamiltonian
h : Ē∗ → E† defined by L.

Proof. We define the affine sub-hamiltonian h by the local formula (zα)
h→

(zα, H0(zα)), where H0 : Ē∗ → IR is given by

H0(xi, zα) = zαH
α(xi, zα)− L(xi, Hγ(xi, zα)),H

is the inverse of the Legendre transformation (i.e. H = L−1) having the local formH(xi, zα) = (xi, Hγ(xi, zα)). �

An affine hamiltonian and the lagrangian corresponding by Propositions 3.9 and 3.10 are called dual each to the
other.

In that follows we define the Euler-Lagrange equations of a legendrian defined on an anchored affine bundle. Let
us consider a legendrian on the affine bundle E π→M , i.e. a differentiable form ω ∈ X ∗(E). We suppose also that the
anchor ρ : E → TM is affine, thus it has the local form (3.9).

We associate with ω the affine Euler-Lagrange equations, defined as follows. A curve γ : I → E is a fiber solution
of the Euler-Lagrange equations if γ is adapted to the anchor and there are some local functions fi : I → IR, i = 1,m,
m = dimM , such that the Euler-Lagrange equations holds:

(3.17)


dfi
dt

= ωi(x
i, yα)− fj

∂ρj

∂xi
(xi, yα),

fiD
i
α = ωα(xi, yα),

where γ has the local form t
γ→ (xi(t), yα(t)). Notice that the local functions {fi}i=1,m define a curve γ∗ : I → T ∗M ,

t→ fidx
i
|γ(t), that we call a base solution of the Euler-Lagrange equations.

In the case when E = TM and ρ = idTM , i.e. ρi(xj , yj) = yi, then the affine Euler-Lagrange equations take the

well-known form
d

dt

(
∂L

∂yi

)
=
∂L

∂xi
(xi, yα) and fi(t) =

∂L

∂yi
(xi(t), yα(t)).
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We prove in the following that if ω is a hyperregular affine legendrian, then its affine Euler-Lagrange equations
can be solved using the Hamilton equations of its dual affine co-legendrian.

Theorem 3.2. Let ω ∈ X ∗(E) be an affine legendrian that is hyperregular, η be its dual affine co-legendrian, Ω be its energy
form and γ0 be an integral curve of the vector field Φ ◦ Ω. Then:

(1) The curve γ0 is a base solution of the Hamilton equations of η and of the Euler-Lagrange equations of ω.
(2) The curve γ = ρ∗ ◦ γ0 is a fiber solution of the Hamilton equations of η and the curve γ1 = L∗ ◦ γ is a fiber solution of

the Euler-Lagrange equations of ω that corresponds to γ.

Proof. Let t
γ0→ (xi(t), fi(t)) be the local form of γ0. Then the local forms of γ and γ1 are t

γ→ Di
α(xj)fi and t

γ1→ yα =
hα(xi, Di

αfi) respectively. Using the relations between ω and η and Proposition 3.4, the conclusion follows. �
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