Affine legendrians and co-legendrians

MARCELA POPESCU

ABSTRACT.

The aim of the paper is to define and to study legendrians and their dual objects, co-legendrians, as generalizations of lagrangians and affine hamiltonians. The structure of closed legendrians, Helmholtz conditions and some properties related to their Euler-Lagrange equations, Hamilton equations and energy form are studied. A duality between hyperregular legendrians and co-legendrians (including their Euler-Lagrange and Hamilton equations) is found.

1. INTRODUCTION

A lagrangian system is generally defined by a lagrangian $L:TM \to IR$. When the lagrangian is not globally defined, a lagrangian system can be also considered, using a closed 1–form. Hereby, for a given closed 1–form ω on the manifold TM, using the Poincaré Lemma, then $\omega = dL$ only locally. If the coomological class of ω is not zero, then it does not exist a global L such that $\omega = dL$. In this case, one say that ω defines a lagrangian system.

The Euler-Lagrange equations of a lagrangian system defined by the lagrangian L have the well-known local form $\frac{d}{dt}\frac{\partial L}{\partial y^{i}} - \frac{\partial L}{\partial x^{i}} = 0.$ These equations comes from a variational condition imposed to the action of L on curves in M. If

the lagrangian system is defined by a closed 1–form $\omega = \omega_{(0)i} dx^i + \omega_{(1)i} dy^i$, then the Euler-Lagrange equations have

the local form $\frac{d}{dt}\omega_{(1)i} - \omega_{(0)i} = 0.$

A non-lagrangian system is generally given by a lagrangian L and a vertical 1-form $f = f_i(x^j, y^j)dx^i$ on TM (called an *exterior force* [1, 2]). The dynamical equations of the non-lagrangian system have the local form $\frac{d}{dt}\frac{\partial L}{\partial y^i} - \frac{\partial L}{\partial x^i} = f_i$.

More generally, one can consider a non-lagrangian system defined by a closed form $\omega \in \mathcal{X}^*(TM)$ and a vertical 1-form f. The non-lagrangian system is equivalently given by a 1-form $\bar{\omega} \in \mathcal{X}^*(TM)$, that has the local form $\bar{\omega} =$ $\omega_i^{(0)} dx^i + (\omega_i^{(1)} + f_i) dy^i$ and is generally not closed.

In the hyperregular case there is a duality between lagrangian and hamiltonian systems, and also between nonlagrangian and non-hamiltonian systems.

Therefore, a hamiltonian system is generally defined by a hamiltonian $H: T^*M \to \mathbb{R}$. More generally, a hamiltonian system can be defoned by a closed 1-form ω' on the manifold T^*M . In this case the existence of H such that $\omega' = dH$ is only locally.

The Hamilton equations of a hamiltonian system defined by a hamiltonian H have the well-known local form $dx^i \ \partial H \ dp_i \ \partial H$

$$\overline{dt} = \overline{\partial p_i}, \ \overline{dt} = -\overline{\partial x^i}$$

A non-hamiltonian system is generally defined by a hamiltonian H and a vertical 1-form $g = g_i(x^j, p_j)dx^i$ on T^*M

(see, for example, [6, 7]). The dynamical equations of the non-hamiltonian system are $\frac{dx^i}{dt} = \frac{\partial H}{\partial p_i}, \frac{dp_i}{dt} = -\frac{\partial H}{\partial x^i} + g_i$. More generally, one can consider a non-hamiltonian system defined by a closed form $\omega \in \mathcal{X}^*(T^*M)$ and a vertical 1-form g as above. The non-hamiltonian system is equivalently given by a 1-form $\bar{\omega}' \in \mathcal{X}^*(T^*M)$ given locally by $\bar{\omega}' = \bar{\omega}_i^{(0)} dx^i + (\bar{\omega}^{(1)i} - g^i) dp_i$. Let us observe that, in general, $\bar{\omega}'$ is not closed.

The aim of the paper is to consider legendians as extensions of the lagrangian and non-lagrangian systems and also co-legendrians as extensions of hamiltonian and non-hamiltonian systems. The extensions are performed considering affine bundles and anchors on affine bundles. Some particular examples of legendrians are given in [4], in the case of higher order tangent spaces of a manifold.

Legendrians and co-legendrians on an affine bundle are defined in the second section. A duality between them in the hyperregular case is studied. The Helmholtz conditions and the structures of a closed affine legendrian (Proposition 2.1) and of a closed affine co-legendrian (Proposition 2.2) are given.

Legendrians and co-legendrians on affine anchored bundles are studied in the third section. The Helmholtz conditions are revised in the anchored case (Proposition 3.5). The Euler-Lagrange equations of a legendrian and the Hamilton equations of a co-legendrian are considered and some relations between these equations (Proposition 3.1) are proved. The energy form is defined and it is used to find relations between the solutions of Euler-Lagrange and Hamilton equations of two dual legendrians (Theorem 3.2).

Received: 03.02.2009; In revised form: 04.06.2009; Accepted: 27.08.2009

²⁰⁰⁰ Mathematics Subject Classification. 53B40, 53C60, 53C15, 70G45.

Key words and phrases. Legendrians and co-legendrians, non-lagrangian and non-hamiltonian systems, Legendre and co-Legendre maps, Euler-Lagrange and Hamilton equations.

Marcela Popescu

2. LEGENDRIANS AND CO-LEGENDRIANS ON AFFINE BUNDLES

Let $E \xrightarrow{\pi} M$ be an affine bundle, i.e. a local trivial fibration with the fiber type a real and finite dimensional affine space A, such that the structure functions are affine transformations. The change rules of local coordinates (x^i, y^{α}) on E, adapted to the affine structure, have the form

(2.1)
$$x^{i'} = x^{i'}(x^j), y^{\alpha'} = g^{\alpha'}_{\alpha}(x^j)y^{\alpha'} + v^{\alpha'}(x^j).$$

A section in the affine bundle E is a differentiable map $M \xrightarrow{s} E$ such that $\pi \circ s = id_M$ and its local components change according to the rule $s^{\alpha'}(x^{i'}) = g^{\alpha'}_{\alpha}(x^j)s^{\alpha}(x^j) + v^{\alpha'}(x^j)$. Using a suitable partition of unity on the base M, it can be easily proved that always there is a (global) section $s : M \to E$.

Notice that a vector bundle is a particular affine bundle and to an affine bundle $E \xrightarrow{\pi} M$ one can associate a vector bundle $\bar{E} \xrightarrow{\pi} M$; using local coordinates, if (2.1) are change rules of coordinates on E, then $x^{i'} = x^{i'}(x^j)$, $\bar{y}^{\alpha'} = g^{\alpha'}_{\alpha}(x^j)\bar{y}^{\alpha}$ are those on \bar{E} .

We say that a differential form on E, $\omega \in \mathcal{X}^*(E)$, is a *legendrian* on E and a (differentiable) map $L : E \to \mathbb{R}$ is a *lagrangian* on E. Considering an open submanifold $\tilde{E} \subset E$ (usually one consider that \tilde{E} is E less the image of a section $s_0 : M \to E$), we can assume that ω restricts to $\omega : \tilde{E} \to T^*\tilde{E}$ that is differentiable on \tilde{E} and it is only continuous on E; similarly for a lagrangian. An example of a legendrian is the differential dL of a lagrangian L.

A top legendrian $\tilde{\omega}$ on \tilde{E} is a linear 1-form on the fibers of the vertical bundle $VE \to E$. Notice that $\tilde{\omega}$ is not a differential form on E. The action of a differential denoted by d_v can be given on differential forms defined on the fibers of the vertical bundle VE. We say that $\tilde{\omega}$ is *v*-closed if $d_v\tilde{\omega} = 0$. Using local coordinates, $\tilde{\omega} = \omega_\alpha (x^j, y^\beta) dy^\alpha$ and $d_v\tilde{\omega} = \frac{1}{2} \left(\frac{\partial \omega_\alpha}{\partial y^\beta} - \frac{\partial \omega_\beta}{\partial y^\alpha} \right) dy^\alpha \wedge dy^\beta$. It is obviously that a *legendrian* ω defines a top legendrian $\tilde{\omega}$ (if $\omega = \omega_{(0)i} dx^i + \omega_{(0)\alpha} dy^\alpha$, then $\tilde{\omega} = \omega_{(0)\alpha} dy^\alpha$, where dy^α in ω and $\tilde{\omega}$ have different meanings); if $\tilde{\omega}$ is v-closed, then we say that ω is a top closed legendrian. If a legendrian ω has a null top legendrian, one say that ω is a *semi-basic1-form related to* E. In

this case ω has a local form $\omega = \omega_i(x^j, y^{\alpha})dx^i$ and the local functions (ω_i) change according to the rule $\omega_i = \frac{\partial x^{i'}}{\partial x^i}\omega_{i'}$.

Proposition 2.1. If ω is a closed legendrian, then there is a lagrangian $L : E \to \mathbb{R}$ and a closed form $\theta' \in \mathcal{X}^*(M)$ such that $\omega = dL + \pi^* \theta'$, where $\pi : E \to M$ is the canonical projection. If ω is a top closed legendrian, then there is a lagrangian $L : E \to \mathbb{R}$ and a semi-basic1-form θ related to E such that $\omega = dL + \theta$.

Proof. If ω is closed, then according to Poincaré lemma, ω is locally exact. Thus locally, for each open set $U \subset E$ in an open cover \mathcal{U} of E, there is a function $L_U : U \to \mathbb{R}$ (a local lagrangian) such that $\omega = dL_U$. We can take U such that $U' = \pi(U) \subset M$ is open and $\{U' = \pi(U)\}$ is an open cover \mathcal{U}' of M. Let $\{\varphi'_{U'}\}$ be a partition of unity on M, which is subordinated to \mathcal{U}' . The family $\{\varphi_U = (\pi^* \varphi'_{U'})|_U; U \in \mathcal{U}\} \subset \mathcal{F}(E)$ is a partition of unity on E, subordinate to the cover \mathcal{U} . Thus $L = \sum_{U \in \mathcal{U}} \varphi_U L_U \in \mathcal{F}(E)$ is a global defined lagrangian. One can prove that the form $\omega - dL$ is closed and it has the local form $\omega - dL = \theta_i dx^i$. Since ω is closed, it follows that $\theta_i = \theta_i(x^i)$, thus there is a global closed

1-form $\theta' \in \mathcal{X}^*(M)$ such that $\omega - dL = \pi^* \theta'$.

Let ω be a top closed legendrian. We can perform a similar construction as in the case of a closed lagrangian. We can take local lagrangians $\{L_U\}$ suct that dL_U have the same top legendrians as ω , a partition of unity that glues together all these in $L = \sum_{U \in \mathcal{U}} \varphi_U L_U \in \mathcal{F}(E)$, thus $\theta = \omega - dL$ has a null top legendrian, i.e. θ is a semi-basic1-form. \Box

In the case of an affine space *A* at least two duals can be considered for *A*:

- (1) The dual vector space \bar{A}^* , where \bar{A} is the vector space that is a model for A and
- (2) The affine dual space $A^{\dagger} = \{ \omega : A \to \mathbb{R}, \omega \text{ is an affine map} \}.$

Both duals \bar{A}^* and A^{\dagger} are vector spaces, but $\dim \bar{A}^* = \dim A = \dim A^{\dagger} - 1$. They are related by the exact sequence of vector spaces:

(2.2)
$$0 \to I\!\!R \xrightarrow{j} \mathcal{A}^{\dagger} \xrightarrow{\pi} \bar{A}^* \to 0,$$

where *j* is the inclusion that associates to 1 a constant but not vanishing affine map and π is the linear map induced on vectors.

In order to construct a duality lagrangian - hamiltonian, it is preferably to choose the affine dual.

Thus, if (E, π, M) is an affine bundle, we denote by $(\bar{E}, \bar{\pi}, M)$ the associated vector bundle and by $(E^{\dagger}, \pi^{\dagger}, M)$ the associated affine bundle that has as fibers the affine duals of the fibers of E. The vector bundle map π in (2.2) induces an epimorphism of vector bundles $\Pi : E^{\dagger} \to \bar{E}^{*}$ that can be viewed as a projection of an affine bundle with a one dimensional fiber. A section $h : \bar{E}^{*} \to E^{\dagger}$ of this affine bundle is, by definition, an *affine hamiltonian* on E. Let us give the local form of an affine hamiltonian. Let us consider local coordinates (x^{i}, y^{α}) on E that change according to formulas (2.1), coordinates (x^{i}, z_{α}) on \bar{E}^{*} , such that $z_{\alpha} = g_{\alpha}^{\alpha'} z_{\alpha'}$, and coordinates $(x^{i}, z_{\alpha}, \omega)$ on E^{\dagger} , such that ω change according to the rule $\omega' = \omega + v^{\alpha'} z_{\alpha'}$. Thus an affine hamiltonian has the local form $(x^{i}, z_{\alpha}) \xrightarrow{h} (x^{i}, z_{\alpha}, H_{0}(x^{i}, z_{\alpha}))$.

Notice that the local functions H_0 change according to the rules

(2.3)
$$H'_0 = H_0 + v^{\alpha'} z_{\alpha'}$$

The change rules of some local coordinates $(x^i, y^{\alpha}, p_i, z_{\alpha})$ on T^*E are: (2.4) $x^{i'} = x^{i'}(x^i), y^{\alpha'} = g^{\alpha'}_{\alpha}y^{\alpha} + v^{\alpha'},$

$$p_{i'}\frac{\partial x^{i'}}{\partial x^i} + \left(\frac{\partial g_{\alpha}^{\alpha'}}{\partial x^i}y^{\alpha} + \frac{\partial v^{\alpha'}}{\partial x^i}\right)z_{\alpha'} = p_i, g_{\alpha}^{\alpha'}z_{\alpha'} = z_{\alpha},$$

It follows that there is a map $\pi' : T^*E \to \overline{E}^*$, given in local coordinates by $(x^i, y^{\alpha}, p_i, z_{\alpha}) \xrightarrow{\pi'} (x^i, z_{\alpha})$ and this map is the canonical projection of an affine bundle.

Using relation (2.3) one can deduce that the local definition $(x^i, z_\alpha) \rightarrow \left(x^i, \frac{\partial H_0}{\partial z_\alpha}\right)$ gives a global bundle map (in general, not affine) $\mathcal{H}: E \rightarrow \bar{E}^*$, called the *Legendre map* of *h*. One can also verify by a straightforward computation that the local definition

(2.5)
$$(x^i, z_{\alpha}) \to \left(x^i, \frac{\partial H_0}{\partial z_{\alpha}}, -\frac{\partial H_0}{\partial x^i}, z_{\alpha}\right)$$

gives a global map $Dh : \overline{E}^* \to T^*E$ that play the role of a differential of h, as well as an extension of the Legendre map of h. In the case when $h = H_0 : T^*M \to I\!\!R$ is a classical hamiltonian, then Dh can be obtained as a composition of the following maps: first $\begin{pmatrix} x^i, z_i \end{pmatrix} \stackrel{dH_0}{\to} (x^i, z_i, \frac{\partial H_0}{\partial x^i}, \frac{\partial H_0}{\partial z_i})$ is the differential $d : T^*M \to T^*T^*M$ of H_0 , then $\# : T^*T^*M \to TT^*M, (x^i, z_i, X^i, Z^i) \stackrel{\#}{\to} (x^i, z_i, -Z^i, X^i)$ is the canonical anchor defined by the canonical symplectic structure on T^*M and $\tau : TT^*M \to T^*TM, (x^i, z_i, Z^i, X^i) \to (x^i, Z^i, X^i, z_i)$ is the canonical flip; finnaly $D = \tau \circ \# \circ d$. This decomposition of D is not possible to be made in the general affine case.

The existence of *Dh* suggests to define an *affine co-legendrian* on *E* as a section $\eta : \overline{E}^* \to T^*E$ of the affine bundle defined by π' . Using local coordinates, η has the local form

(2.6)
$$(x^i, z_{\alpha}) \xrightarrow{\eta} (x^i, \eta^{\alpha}(x^i, z_{\alpha}), \eta_i(x^i, z_{\alpha}), z_{\alpha})$$

The change rules of the local functions (η^{α}, η_i) can be deduced from the second and the third relations (2.4).

Let us consider the induced affine bundle $\bar{\pi}_0^* E \xrightarrow{\bar{\pi}'} \bar{E}^*$, over the base \bar{E}^* , where $\bar{\pi}_0 : \bar{E}^* \to M$ is the canonical projection. A *top affine co-legendrian* is a section $\bar{\eta} : \bar{E}^* \to \bar{\pi}_0^* E$ in this bundle. To give a top affine co-legendrian $\bar{\eta}$ is equivalently to give a fibered manifold map $\mathcal{L}^* : \bar{E}^* \to E$, called a *co-Legendre map*.

An affine co-legendrian $\eta: \bar{E}^* \to T^*E$ defines a top affine co-legendrian $\bar{\eta}$ with the co-Legendre map $\mathcal{L}^* = \pi'' \circ \eta$, where $\pi'': T^*E \to E$ is the canonical projection. The *co-Legendre map* of η is the co-Legendre map of $\bar{\eta}$. Using local coordinates, if η has the local form (2.6), then $\bar{\eta}$ and \mathcal{L}^* have the local forms $(x^i, z_\alpha) \xrightarrow{\bar{\eta}} (x^i, z_\alpha, \eta^\alpha(x^i, z_\alpha))$ and $(x^i, z_\alpha) \xrightarrow{\mathcal{L}^*} (x^i, \eta^\alpha(x^i, z_\alpha))$ respectively. The *v*-curvature of the top affine co-legendrian $\bar{\eta}: \bar{E}^* \to \bar{\pi}_0^*E$ is the section $r: \bar{E}^* \to \wedge^2 \bar{\pi}^* \bar{E}^*$ in the vector bundle

The *v*-curvature of the top affine co-legendrian $\bar{\eta}: \bar{E}^* \to \bar{\pi}_0^* E$ is the section $r: \bar{E}^* \to \wedge^2 \bar{\pi}^* \bar{E}^*$ in the vector bundle $\wedge^2 \bar{\pi}^* \bar{E}^* = \bar{\pi}^* \bar{E}^* \wedge \bar{\pi}^* \bar{E}^* \to \bar{E}^*$, defined by $r = d_v \eta^\alpha \wedge dz_\alpha = \frac{1}{2} \left(\frac{\partial \eta^\alpha}{\partial z_\beta} - \frac{\partial \eta^\beta}{\partial z_\alpha} \right) dz_\alpha \wedge dz_\beta$, where $d_v f = \frac{\partial f}{\partial z_\alpha} dz_\alpha$. It is easy to see that r vanishes iff $\frac{\partial \eta^\alpha}{\partial z_\beta} = \frac{\partial \eta^\beta}{\partial z_\alpha}$, thus iff there is a local function $f: U \to I\!\!R$, $U \subset \bar{E}^*$, such that $\eta^\alpha = \frac{\partial f}{\partial z_\alpha}$.

We say that $\bar{\eta}$ is:

: *v*-closed if it has a null curvature and

: *exact* if there is an affine hamiltonian h such that $\bar{\eta}$ is the top affine co-legendrian of Dh.

If $\bar{\eta}$ is closed, then it has a null curvature, thus it is locally exact, as remarked above.

The curvature of an affine co-legendrian $\eta: \bar{E}^* \to T^*\bar{E}$ is the section $R: \bar{E}^* \to \wedge^2 T^*\bar{E}^*$ in the vector bundle $\wedge^2 T^*\bar{E}^* = T^*\bar{E}^* \wedge T^*\bar{E}^* \to \bar{E}^*$, defined by $R = d\eta^{\alpha} \wedge dz_{\alpha} - d\eta_i \wedge dx^i = \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\alpha} \wedge dz_{\beta} - \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\alpha} \wedge dz_{\beta} - \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\alpha} \wedge dz_{\beta} - \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\alpha} \wedge dz_{\beta} - \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\beta}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\beta}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\beta}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\beta}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\beta}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\beta}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\beta}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\beta}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\beta}} \right) dz_{\beta} + \frac{1}{2} \left(\frac{\partial \eta^{\beta}}{\partial z_{\beta}$

$$\frac{1}{2} \left(\frac{\partial \eta_i}{\partial x^j} - \frac{\partial \eta_j}{\partial x^i} \right) dx^i \wedge dx^j + \left(\frac{\partial \eta^{\alpha}}{\partial x^i} + \frac{\partial \eta_i}{\partial z_{\alpha}} \right) dz_{\alpha} \wedge dx^i.$$
 It follows that R vanishes iff

(2.7)
$$\frac{\partial \eta_i}{\partial x^j} - \frac{\partial \eta_j}{\partial x^i} = 0, \frac{\partial \eta^{\alpha}}{\partial x^i} + \frac{\partial \eta_i}{\partial z_{\alpha}} = 0, \frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} = 0.$$

thus iff there is a local function $f: U \to \mathbb{R}$, $U \subset \overline{E}^*$, such that $\eta^{\alpha} = \frac{\partial f}{\partial z_{\alpha}}$ and $\eta_i = -\frac{\partial f}{\partial x^i}$. We say that η is:

- : *closed* if it has a null curvature and
- : *exact* if there is an affine hamiltonian such that $\eta = Dh$.

Marcela Popescu

If η is closed, then using the remark above there is a local f such that $\eta^{\alpha} = \frac{\partial f}{\partial z_{\alpha}}$ and $\eta_i = \frac{\partial f}{\partial x^i}$, thus η is locally exact.

We call relations (2.7) as *Helmholtz conditions* for an affine co-legendrian η and the local functions $\eta_{ij} = \frac{\partial \eta_i}{\partial x^j} - \frac{\partial \eta_j}{\partial x^i}$,

 $\eta_i^{\alpha} = \frac{\partial \eta^{\alpha}}{\partial x^i} + \frac{\partial \eta_i}{\partial z_{\alpha}}, \quad \eta^{\alpha\beta} = \frac{\partial \eta^{\alpha}}{\partial z_{\beta}} - \frac{\partial \eta^{\beta}}{\partial z_{\alpha}} \text{ as Helmholtz coefficients.}$

We say that η is *top closed* if its associated top affine hamiltonian \bar{h} is v-closed.

A semi-basic1-form related to \bar{E}^* is a section $\theta^i: \bar{E}^* \to \bar{\pi}_0^*TM$ in the vector bundle $\bar{\pi}_0^*TM \to \bar{E}^*$, where $\bar{\pi}_0: \bar{E}^* \to M$ is the canonical projection. For example, if $\theta \in \mathcal{X}^*(M)$, then $\bar{\pi}_0^*\theta$ is a semi-basic1-form related to \bar{E}^* . If $h: \bar{E}^* \to E^{\dagger}$ is an affine hamiltonian and $\theta: \bar{E}^* \to \bar{\pi}_0^*TM$ is a semi-basic1-form related to \bar{E}^* , then one can consider the sum $\eta + \theta$, defined as follows. If η and θ have the local forms (2.6) and $(x^i, z_\alpha) \xrightarrow{\theta'} (x^i, \theta_i(x^i, z_\alpha))$ respectively, then $(x^i, z_\alpha) \xrightarrow{\eta + \theta} (x^i, \eta^\alpha, \eta_i + \theta_i, z_\alpha)$.

Proposition 2.2. If η is a closed affine co-legendrian, then there is an affine hamiltonian $h : \bar{E}^* \to E^{\dagger}$ and a closed form $\theta' \in \mathcal{X}^*(M)$ such that $\eta = Dh + \bar{\pi}_0^* \theta'$. If η is a top closed affine co-legendrian, then there is an affine hamiltonian $h : \bar{E}^* \to E^{\dagger}$ and a semi-basic1-form θ related to \bar{E}^* such that $\eta = Dh + \theta$.

Proof. Let $\bar{\pi} : \bar{E}^* \to M$ be the canonical projection. Since η is closed, using equations (2.7), one can prove that η is locally exact. Thus for each open set $U \subset \bar{E}^*$ in an open cover \mathcal{U} of \bar{E}^* , there is a section $H_U : U \to U \times \mathbb{R}$, $u \xrightarrow{H_U} (u, H_{0U})$ (a local affine hamiltonian) such that $\eta = dH_U$. We can take U such that $U' = \bar{\pi}(U) \subset M$ is open and $\{U' = \bar{\pi}(U)\}$ is an open cover \mathcal{U}' of M. Let $\{\varphi'_{U'}\}$ be a partition of unity on M, which is subordinated to \mathcal{U}' . The family $\{\varphi_U = (\bar{\pi}^* \varphi'_{U'})|_U; U \in \mathcal{U}\} \subset \mathcal{F}(E)$ is a partition of unity on E, subordinate to the cover \mathcal{U} . The expression $H_0 = \sum_{U \in \mathcal{U}} \varphi_U H_{0U} \in \mathcal{F}(E)$ defines a global affine hamiltonian h. The form $\eta - Dh$ is closed and has the local form $\omega - Dh = \theta_i dx^i$. From the vanishing curvatures of ω it follows easily that $\theta_i = \theta_i(x^i)$ comes from a global closed

 $\omega - Dh = \theta_i ax^i$. From the vanishing curvatures of ω it follows easily that $\theta_i = \theta_i(x^i)$ comes from a global closed 1-form $\theta' \in \mathcal{X}^*(M)$, i.e. $\omega - d\eta = \pi^* \theta'$.

Let η be a co-legendrian that is top closed. We can performe a similar construction as in the case of a closed co-legendrian. We can take local affine hamiltonians $\{H_{0U}\}$ that have the same top legendrians as η , a partition of unity that glues together all these in $h = \sum_{U \in \mathcal{U}} \varphi_U H_{0U} \in \mathcal{F}(E)$, thus $\theta = \eta - Dh$ has a null top legendrian, i.e. θ is a semi-basic1-form.

Notice that comparing with the proof of Proposition 2.1, the proof above uses that the partition of unity gives a convex hull of local sections in the affine bundle $\Pi : E^{\dagger} \to \overline{E}^*$, instead of real functions, and the difference $\eta - Dh$ is no longer an affine hamiltonian, but a vertical 1-form related to \overline{E}^* .

We say that a top affine co-legendrian $\bar{\eta}$ is *hyperregular* if its co-Legendre map \mathcal{L}^* is a diffeomorphism. The inverse of \mathcal{L} defines the Legendre map of a top affine legendrian $\bar{\omega}$, that we call the *inverse* of $\bar{\eta}$. We say that a co-legendrian is *hyperregular* if its associated top co-legendrian is hyperregular.

Analogous definitions can be considered for legendrians. A top affine legendrian $\bar{\omega}$ defines the *Legendre map*, that is a fibered manifold map $E \xrightarrow{\mathcal{L}} \bar{E}^*$. Then that $\bar{\omega}$ is *hyperregular* if \mathcal{L} is a diffeomorphism. The inverse of \mathcal{L} defines the co-Legendre map of a top affine co-legendrian $\bar{\eta}$, that we call the *inverse* of $\bar{\omega}$. A legendrian is *hyperregular* if its associated top legendrian is hyperregular.

We define below a duality between hyperregular affine legendrians and hyperregular affine co-legendrians on *E*, that in particular gives a duality between hyperregular lagrangians and hyperregular affine hamiltonians.

Let $\omega : E \to \overline{T^*E}$ be a hyperregular affine legendrian and $\mathcal{L} : E \to \overline{E^*}$ be its Legendre map. We define the (hyperregular) affine co-legendrian $\eta : \overline{E^*} \to T^*E$ as the composition $\overline{E^*} \stackrel{\mathcal{L}^{-1}}{\to} E \stackrel{\omega}{\to} T^*E$. Using local coordinates $\omega = \omega_{(0)i}(x^j, y^{\alpha})dx^i + \omega_{(1)\alpha}(x^j, y^{\alpha})dy^{\alpha}$ and $\tilde{\omega} = \omega_{(1)\alpha}(x^j, y^{\alpha})dy^{\alpha}$. Let $\tilde{\eta} = \eta^{\alpha}(x^j, z_{\beta})dz_{\alpha}$ be the top co-legendrian that is inverse to the top legendrian $\tilde{\omega}$; it reads $\omega_{(1)\alpha}(x^j, \eta^{\alpha}(x^j, z_b)) = z_{\alpha}$. Then $\eta_{(0)i}(x^j, z_b) = \omega_{(0)i}(x^j, \eta^{\alpha}(x^j, z_b))$ and $\eta = \eta_{(0)i}dx^i + \eta^{\alpha}dz_{\alpha}$.

By duality, if $\eta : \overline{E}^* \to T^*E$ is a hyperregular co-legendrian and $\tilde{\eta}$ its associated top co-legendrian, then one can consider its dual legendrian $\omega : E \to T^*E$ as the composition $E \stackrel{(\mathcal{L}^*)^{-1}}{\to} \overline{E}^* \stackrel{\eta}{\to} T^*E$, i.e. $\omega = \eta \circ (\mathcal{L}^*)^{-1}$. Using local coordinates, $\eta = \eta_{(0)i} dx^i + \eta^{\alpha} dz_{\alpha}$ and $\tilde{\eta} = \eta^{\alpha}(x^j, z_b) dz_{\alpha}$. Let $\tilde{\omega} = \omega_{(1)\alpha}(x^j, y^{\alpha}) dy^{\alpha}$ be the top legendrian that is inverse to the top co-legendrian $\tilde{\eta}$. Then $\omega_{(0)i}(x^j, y^b) = \eta_{(0)i}(x^j, \omega_{(1)\alpha}(x^j, y^b))$ and $\omega = \omega_{(0)i} dx^i + \omega_{(1)\alpha} dy^{\alpha}$.

We can associate with a legendrian $\omega = \omega_{(0)i}(x^j, y^\alpha)dx^i + \omega_{(1)\alpha}(x^j, y^\alpha)dy^\alpha$ its Helmholtz conditions:

(2.8)
$$\frac{\partial\omega_{(0)i}}{\partial x^{j}} - \frac{\partial\omega_{(0)j}}{\partial x^{i}} = 0, \\ \frac{\partial\omega_{(0)i}}{\partial y^{\alpha}} - \frac{\partial\omega_{(1)\alpha}}{\partial x^{i}} = 0, \\ \frac{\partial\omega_{(1)\alpha}}{\partial y^{\beta}} - \frac{\partial\omega_{(1)\beta}}{\partial y^{\alpha}} = 0$$

that come from the condition $d\omega = 0$, i.e. ω be closed. As in the case of a co-legendrian, one can call the local functions that are local components of $d\omega$ as *local Helmholtz coefficiens*.

218

If $L: E \to \mathbb{R}$ is a lagrangian, then it is obsiously that $\omega = dL$ is a legendrian that satisfy the Helmholtz conditions. One say that L is hyperregular if dL is a hyperegular legendrian. The validity of the following assertions are simple consequences of the definition, provided that *L* is hyperregular:

: the dual co-legendrian η of dL verify the Helmholtz conditions (2.7),

- : $\eta = Dh$ comes from an affine hamiltonian $h : \overline{E}^* \to E^{\dagger}$ and
- : η is hyperregular (i.e. its associate co-legendrian *Dh* given by (2.5) is hyperregular).

3. LEGENDRIANS ON ANCHORED AFFINE BUNDLES

In order to have some Hamilton equations of a co-legendrian and some Lagrange equations of a legendrian, we suppose that the affine bundle has an affine anchor. It is the case of higher order legendrians of a manifold [4].

If $E \xrightarrow{\pi} M$ is an affine bundle, an affine map $\rho: E \to TM$ is called an *affine anchor* on *E*, or simply an *anchor*, when no confusion is possible. Using local coordinates, ρ has the form $(x^i, y^{\alpha}) \xrightarrow{\rho} (x^i, \rho^j(x^i, y^{\alpha}))$ and the anchor has the local form:

(3.9)
$$\rho^i(x^i, y^\alpha) = y^\alpha D^i_\alpha(x^j) + E^i(x)$$

A special case is the higher tangent space T^kM , for $k \ge 2$, when $T^kM \xrightarrow{\pi_k} T^{k-1}M$ is an affine bundle and there is a inclusion map $h_k : T^kM \to TT^{k-1}M$ that is an affine bundle map, thus an (affine) anchor. We study this case in a subsequent paper.

If $E \xrightarrow{\pi} M$ is a vector bundle and $\rho: E \to TM$ is a vector bundle map, then the anchor is linear and its local form is $\rho^i(x^i, y^\alpha) = y^\alpha D^i_\alpha(x^j)$. For example, when E = TM, then $\rho = id_{TM}$ is an anchor. An other example is when $E \xrightarrow{\pi} M$ is an integrable distribution of constant rank on M, and the anchor ρ is the inclusion.

Any affine anchor $\rho : E \to TM$ induces a bundle map $\rho^* : T^*M \to \overline{E}^*$, which we call a *co-anchor*. Using coordinates and (3.9), then $\rho^*(x^i, p_i) = (x^i, p_i D^i_{\alpha})$.

We say that a curve $\gamma : I \to E$, $I = (a,b) \subset \mathbb{R}$, is adapted to the anchor if $(\pi \circ \gamma)_* = \rho \circ \gamma$, where f_* denotes the

differential of f. Using local coordinates, γ has the form $t \xrightarrow{\gamma} (x^i(t), y^{\alpha}(t))$ and $\frac{dx^i}{dt} = \rho^i(x^i, y^{\alpha})$ on I. We associate the affine Hamilton equations with an affine co-legendrian η , as follows. A curve $\gamma : I \to E^*$ is a *fiber* solution of the affine Hamilton equations if the following conditions are fulfilled:

H1 The curve $\gamma_1 = \mathcal{L}^* \circ \gamma : I \to E$ is adapted to the anchor, i.e. $\rho \circ \gamma_1 = \frac{d(\pi \circ \gamma_1)}{dt}$, where $\pi : E \to M$ is the canonical projection. If γ has a local form $\gamma(t) = (x^i(t), z_\alpha(t))$, then $\gamma_1(t) = (x^i(t), h^\alpha(t))$, where $h^\alpha(t) = \eta^\alpha(x^i(t), z_\beta(t))$ and $\rho^i(x^i(t), h^\alpha(t)) = \frac{dx^i}{dt}$.

H2 There are some local functions $f_i: I \to I\!\!R$, $i = \overline{1, m}$, $m = \dim M$, such that $\frac{df_i}{dt} = \eta_i(x^j, f_i D^i_\alpha) - f_j \frac{\partial \rho^j}{\partial x^i}(x^j, h^\alpha)$. The *affine Hamilton equations* of η are:

(3.10)
$$\begin{cases} \frac{dx^{i}}{dt} = \rho^{i}(x^{i}(t), h^{\alpha}(t)), \\ \frac{df_{i}}{dt} = \eta_{i}(x^{j}, f_{i}D_{\alpha}^{i}) - f_{j}\frac{\partial\rho^{j}}{\partial x^{i}}(x^{j}, h^{\alpha}) \end{cases}$$

Notice that the local functions $\{f_i\}_{i=\overline{1,m}}$ define a curve $\gamma^*: I \to T^*M$, $t \to f_i dx^i_{|\gamma(t)}$ that we call a *base solution* of the affine Hamilton equations.

In the case when $\vec{E} = TM$ and $\rho = id_{TM}$, i.e. $\rho^i(x^j, y^j) = y^i$, the affine Hamilton equations takes the form

(3.11)
$$\begin{cases} \frac{dx^i}{dt} = \eta^i(x^i, p_i), \\ \frac{dp_i}{dt} = -\eta_{(0)i}(x^i, p_i), \end{cases}$$

which we call the *Hamilton equations* of η ; it is called in [6] a *classical system*. An other case is when $E = T^k M$ and the anchor $h_k: T^k M \to TT^{k-1} M$ is the inclusion. We study this situation in a subsequent paper.

We describe in that follows the solutions of the affine Hamilton equations of an affine co-legendrian, without imposing to the affine co-legendrian the hyperregularity condition. We define below the energy of an affine colegendrian on T^*M , such that the integral curves of its dual vector field are base solutions and also gives fiber solutions of the affine Hamilton equations.

We define the *energy form* of the affine co-legendrian η as the co-legendrian $\Omega \in \mathcal{X}^*(T^*M)$, given by: $\Omega_i(x^i, z_j) =$ $-\eta_i(x^j, p_i D^i_{\alpha}) + p_j \frac{\partial \rho^j}{\partial x^i}(x^j, h^{\alpha}), \ \Omega^i = \rho^i(x^i, h^{\alpha}), \ \text{where} \ h^{\alpha} = \eta^{\alpha}(x^i, p_i D^i_{\alpha}).$

Proposition 3.3. The co-legendrian Ω is well-defined.

Marcela Popescu

Proof. It suffices to prove that the change rule of local functions (Ω_i, Ω^i) is $\Omega^{i'} = \frac{\partial x^{i'}}{\partial x^i} \Omega^i$ and $\Omega_i = \frac{\partial x^{i'}}{\partial x^i} \Omega_{i'} + \frac{\partial z_{i'}}{\partial x^i} \Omega^{i'}$. The first relation is obvious fulfilled. For the second one, one use the change rules of all local functions and coordinates; by a straightforward computation one obtain the conclusion.

The canonical symplectic structure on the manifold T^*M gives an isomorphism of vector bundles $\Phi: T^*T^*M \to \Phi$ TT^*M .

Proposition 3.4. The integral curves of the vector field $\Phi \circ \Omega$ are base solutions of the Hamilton equations of the co-legendrian η . The co-anchor $\rho^*: T^*M \to \overline{E}^*$ sends base solutions into fiber-solutions.

Proof. The vector field $\Phi \circ \Omega$ has the local form $\Phi \circ \Omega = \Omega^i \frac{\partial}{\partial x^i} - \Omega_i \frac{\partial}{\partial p_i}$. Taking account into the definitions of Ω and of Hamilton equations of η , the conclusion follows.

Let us consider the Helmholtz coefficients $\eta^{\alpha\beta}$, η^{α}_i and η_{ij} of η . The following statement is obtained by a straightforward computation.

Proposition 3.5. For $z_{\alpha} = D_{\alpha}^{i} p_{i}$, we have the following relations between Helmholtz coefficients of Ω and those of η :

(3.12)
$$\begin{cases} \frac{d\Omega^{i}}{dp_{j}} - \frac{d\Omega^{j}}{dp_{i}} = D^{i}_{\alpha}D^{j}_{\beta}\eta^{\alpha\beta}, \\ \frac{d\Omega^{i}}{dx^{j}} - \frac{d\Omega_{j}}{dp_{i}} = D^{i}_{\alpha}\eta^{\alpha}_{j}, \\ \frac{d\Omega_{i}}{dx^{j}} - \frac{d\Omega_{j}}{dx^{i}} = \eta_{ij} + \eta^{\alpha}_{i}\frac{D^{k}_{\alpha}}{\partial x^{j}}p_{k} - \eta^{\alpha}_{j}\frac{D^{k}_{\alpha}}{\partial x^{i}}p_{k}. \end{cases}$$

A simple consequence is the following statement.

Proposition 3.6. Let η be top closed and the affine anchor ρ be injective. Then Ω is closed iff η is closed.

One can obtain also the following statement, by a straightforward computation.

Proposition 3.7. If η is exact (i.e. there is an affine hamiltonian h such that $\eta = Dh$), then Ω is exact (i.e. there is a hamiltonian \mathcal{E} on M, such that $\Omega = d\mathcal{E}$; \mathcal{E} is locally given by $\mathcal{E}(x^i, p_i) = p_i E^i(x^i) + H_0(x^i, p_i D^i_\alpha)$, where $(x^i, z_\alpha) \xrightarrow{h} (x^i, z_\alpha, H_0(x^i, z_\alpha))$ and $(x^i, y^{\alpha}) \xrightarrow{\rho} (x^i, y^{\alpha}D^i_{\alpha} + E^i)$ are the local forms of h and ρ respectively.

We call *E* the energy of *h*. The affine Hamilton equations have the following form in this case:

(3.13)
$$\begin{cases} \frac{dx^{i}}{dt} = \rho^{i}(x^{j}, h^{\alpha}), \\ \frac{dp_{i}}{dt} = -\frac{\partial H_{0}}{\partial x^{i}}(x^{j}, p_{i}D_{\alpha}^{i}) - p_{j}\frac{\partial \rho^{j}}{\partial x^{i}}(x^{j}, h^{\alpha}) \end{cases}$$

where $h^{\alpha} = \frac{\partial H_0}{\partial z_{\alpha}}(x^i, p_i D^i_{\alpha})$. Using Proposition 2.2, one obtain the following statement.

Proposition 3.8. Let $\eta = Dh + \bar{\pi}_0^* \theta'$ be a closed affine co-legendrian and \mathcal{E} be the energy of h. Then the energy form of η is $\Omega = d\mathcal{E} + \theta'$, thus Ω is a closed co-legendrian. Let $\eta = Dh + \theta$ be a top closed co-legendrian and \mathcal{E} be the energy of h. Then there is a semi-basic1-form θ_1 related to T^*M such that the energy form $\Omega = d\mathcal{E} + \theta_1$, thus Ω is a top closed co-legendrian.

In the case when $E \xrightarrow{\pi} M$ is a vector bundle and $\rho: E \to TM$ is a vector bundle map that the local form (3.9), we have $E^i = 0$. Then $\mathcal{E}(x^i, z_i) = H_0(x^i, z_i D^i_\alpha)$, $\mathcal{E} : T^*M \to \mathbb{R}$ is a hamiltonian on M and $H_0 : \overline{E}^* \to \mathbb{R}$ is a sub-hamiltonian on E.

The hamiltonian vector field $X_{\mathcal{E}}$ is defined according to the formula $d\mathcal{E} = i_{X_{\mathcal{E}}}\Omega$ and it has the local expression:

(3.14)
$$X_{\mathcal{E}} = \frac{\partial \mathcal{E}}{\partial p_i} \frac{\partial}{\partial x^i} - \frac{\partial \mathcal{E}}{\partial x^i} \frac{\partial}{\partial p_i}$$

Thus an integral curve of the vector field $X_{\mathcal{E}}$ is a solution of the well known Hamilton equations:

(3.15)
$$\begin{cases} \frac{dx^i}{dt} = \frac{\partial \mathcal{E}}{\partial p_i}, \\ \frac{dp_i}{dt} = -\frac{\partial \mathcal{E}}{\partial x^i}. \end{cases}$$

A straightforward calculation shows that $\frac{\partial \mathcal{E}}{\partial p_i} = E^i + D^i_{\alpha} h^{\alpha}$ and

$$\frac{\partial \mathcal{E}}{\partial x^{i}} = \frac{\partial H_{0}}{\partial x^{i}}(x^{i}, z_{\alpha}(x^{i}, p_{i})) + z_{j}\frac{\partial E^{j}}{\partial x^{i}}(x^{j}, h^{\alpha}) + z_{j}\frac{\partial D_{\alpha}^{j}}{\partial x^{i}}h^{\alpha}, \text{ where } z_{\alpha}(x^{i}, p_{i}) = p_{i}D_{\alpha}^{i} \text{ and } h^{\alpha}(x^{i}, p_{i}) = \frac{\partial H_{0}}{\partial \Omega_{\alpha}}(x^{i}, z_{\alpha}(x^{i}, p_{i})) + z_{\alpha}\frac{\partial E^{j}}{\partial x^{i}}(x^{j}, h^{\alpha}) + z_{\beta}\frac{\partial D_{\alpha}^{j}}{\partial x^{i}}h^{\alpha}, \text{ where } z_{\alpha}(x^{i}, p_{i}) = p_{i}D_{\alpha}^{i} \text{ and } h^{\alpha}(x^{i}, p_{i}) = \frac{\partial H_{0}}{\partial \Omega_{\alpha}}(x^{i}, z_{\alpha}(x^{i}, p_{i})) + z_{\beta}\frac{\partial E^{j}}{\partial x^{i}}(x^{j}, h^{\alpha}) + z_{\beta}\frac{\partial D_{\alpha}^{j}}{\partial x^{i}}h^{\alpha}, \text{ where } z_{\alpha}(x^{i}, p_{i}) = p_{i}D_{\alpha}^{i} \text{ and } h^{\alpha}(x^{i}, p_{i}) = \frac{\partial H_{0}}{\partial \Omega_{\alpha}}(x^{i}, z_{\alpha}(x^{i}, p_{i}))$$

Thus we obtain the following form of the affine Hamilton equations:

(3.16)
$$\begin{cases} \frac{dx^{i}}{dt} = \rho^{i}(x^{j}, h^{\alpha}), \\ \frac{dz_{i}}{dt} = -\frac{\partial H_{0}}{\partial x^{i}}(x^{j}, z_{\alpha}) - p_{j}\frac{\partial \rho^{j}}{\partial x^{i}}(x^{j}, h^{\alpha}) \end{cases}$$

Notice that the hamiltonian vector field of \mathcal{E} has the local form

$$X_{\mathcal{E}} = \rho^{i}(x^{j}, h^{\alpha}) \frac{\partial}{\partial x^{i}} - \left(\frac{\partial H_{0}}{\partial x^{i}}(x^{j}, z_{\alpha}) + p_{j} \frac{\partial \rho^{j}}{\partial x^{i}}(x^{j}, h^{\alpha})\right) \frac{\partial}{\partial p_{i}}.$$

Theorem 3.1. The integral curves of the hamiltonian vector field $X_{\mathcal{E}}$ define curves on \hat{E} which are solutions of the affine Hamilton equations (3.10) of H_0 .

Proof. By a straightforward calculus one verify that a solution $t \to (x^i(t), f_i(t))$ of (3.16) fulfills (3.10).

Let $\gamma : I \to T^*M$, I = [0, 1] be a curve, which has the local form $\gamma(t) = (x^i(t), z_i(t))$. We say that γ is *admissible* if for every $t \in I$ one have $\frac{dx^i}{dt} = \rho^i(x^j, h^\alpha)$.

If one regard $\mathcal{E} : T^*M \to \mathbb{R}$ as a hamiltonian on M, continuous on T^*M and differentiable on $\widetilde{T^*M}$, the *integral* action of \mathcal{E} on a curve $\gamma : I \to T^*M$, I = [0, 1], which has the local form $\gamma(t) = (x^i(t), z_i(t))$ is

$$I_{\mathcal{E}}(\gamma) = \int_0^1 \left[z_i \left(\frac{dx^i}{dt} - E^i \right) - H_0(x^i, z_\alpha) \right] dt$$

where $z_{\alpha} = D_{\alpha}^{i} z_{i}$. It is well-known that the singular curves of this action are solutions of the Hamilton equations; from first equation (3.16) it follows that these integral curves are adapted to the anchor. Considering the restriction of the action $I_{\mathcal{E}}$ on curves that are adapted to the anchor, it follows that the solutions of the Hamilton equations are critical curves for this action.

We can consider, in particular, a (strict) concave hamiltonian h, i.e. that it has the property that the vertical hessian $\frac{\partial(-H_0)}{\partial\Omega_\alpha\partial\Omega_\beta}$ is (strict) positive defined. In this case the hessian is non-degenerate.

Proposition 3.9. Let $h : \overline{E}^* \to E^{\dagger}$ be a hyperregular affine sub-hamiltonian. Then there is a hyperregular sub-lagrangian $L : E \to \mathbb{R}$ on E defined by h.

Proof. We define the sub-lagrangian L by the local formula $L(x^i, y^{\alpha}) = L_{\alpha}(x^i, y^{\alpha})y^{\alpha} - H_0(x^i, L_{\gamma}(x^i, y^{\alpha}))$, where the affine sub-hamiltonian h has the local form $(z_{\alpha}) \xrightarrow{h} (z_{\alpha}, H_0(z_{\alpha}))$, \mathcal{L} is the inverse of the co-Legendre transformation (i.e. $\mathcal{L} = \mathcal{H}^{-1}$) having the local form $\mathcal{L}(x^i, y^{\alpha}) = (x^i, L_{\gamma}(x^i, y^{\alpha}))$.

Proposition 3.10. Let $L : E \to \mathbb{R}$ be a hyperregular sub-lagrangian. Then there is a hyperregular affine sub-hamiltonian $h : \overline{E}^* \to E^{\dagger}$ defined by L.

Proof. We define the affine sub-hamiltonian h by the local formula $(z_{\alpha}) \xrightarrow{h} (z_{\alpha}, H_0(z_{\alpha}))$, where $H_0 : \overline{E}^* \to \mathbb{R}$ is given by

$$H_0(x^i, z_\alpha) = z_\alpha H^\alpha(x^i, z_\alpha) - L(x^i, H^\gamma(x^i, z_\alpha)), \mathcal{H}$$

is the inverse of the Legendre transformation (i.e. $\mathcal{H} = \mathcal{L}^{-1}$) having the local form $\mathcal{H}(x^i, z_{\alpha}) = (x^i, H^{\gamma}(x^i, z_{\alpha}))$.

An affine hamiltonian and the lagrangian corresponding by Propositions 3.9 and 3.10 are called *dual* each to the other.

In that follows we define the Euler-Lagrange equations of a legendrian defined on an anchored affine bundle. Let us consider a legendrian on the affine bundle $E \xrightarrow{\pi} M$, i.e. a differentiable form $\omega \in \mathcal{X}^*(E)$. We suppose also that the anchor $\rho : E \to TM$ is affine, thus it has the local form (3.9).

We associate with ω the affine Euler-Lagrange equations, defined as follows. A curve $\gamma : I \to E$ is a *fiber solution* of the Euler-Lagrange equations if γ is adapted to the anchor and there are some local functions $f_i : I \to \mathbb{R}$, $i = \overline{1, m}$, $m = \dim M$, such that the *Euler-Lagrange equations* holds:

(3.17)
$$\begin{cases} \frac{df_i}{dt} = \omega_i(x^i, y^\alpha) - f_j \frac{\partial \rho^j}{\partial x^i}(x^i, y^\alpha) \\ f_i D^i_\alpha = \omega_\alpha(x^i, y^\alpha), \end{cases}$$

where γ has the local form $t \xrightarrow{\gamma} (x^i(t), y^{\alpha}(t))$. Notice that the local functions $\{f_i\}_{i=\overline{1,m}}$ define a curve $\gamma^* : I \to T^*M$, $t \to f_i dx^i_{1\gamma(t)}$, that we call a *base solution* of the Euler-Lagrange equations.

In the case when E = TM and $\rho = id_{TM}$, i.e. $\rho^i(x^j, y^j) = y^i$, then the affine Euler-Lagrange equations take the well-known form $\frac{d}{dt} \left(\frac{\partial L}{\partial y^i} \right) = \frac{\partial L}{\partial x^i} (x^i, y^\alpha)$ and $f_i(t) = \frac{\partial L}{\partial y^i} (x^i(t), y^\alpha(t))$.

We prove in the following that if ω is a hyperregular affine legendrian, then its affine Euler-Lagrange equations can be solved using the Hamilton equations of its dual affine co-legendrian.

Theorem 3.2. Let $\omega \in \mathcal{X}^*(E)$ be an affine legendrian that is hyperregular, η be its dual affine co-legendrian, Ω be its energy form and γ_0 be an integral curve of the vector field $\Phi \circ \Omega$. Then:

(1) The curve γ_0 is a base solution of the Hamilton equations of η and of the Euler-Lagrange equations of ω .

(2) The curve $\gamma = \rho^* \circ \gamma_0$ is a fiber solution of the Hamilton equations of η and the curve $\gamma_1 = \mathcal{L}^* \circ \gamma$ is a fiber solution of the Euler-Lagrange equations of ω that corresponds to γ .

Proof. Let $t \xrightarrow{\gamma_0} (x^i(t), f_i(t))$ be the local form of γ_0 . Then the local forms of γ and γ_1 are $t \xrightarrow{\gamma} D^i_{\alpha}(x^j)f_i$ and $t \xrightarrow{\gamma_1} y^{\alpha} = h^{\alpha}(x^i, D^i_{\alpha}f_i)$ respectively. Using the relations between ω and η and Proposition 3.4, the conclusion follows.

REFERENCES

[1] Birkhoff, G. D., Dynamical Systems, AMS Providence, 1927

- [2] Marle, C.-M., Various approaches to conservative and non-conservative nonholonomic systems, Reports on mathematical Physics, 42 (1998) 211-229
- [3] Marsden, J., Ratiu, T., Introduction to Mechanics and Symmetry, Secon Edition, Springer-Verlag New York, Inc., 1999
- [4] Popescu, Marcela and Popescu, P., From hamiltonians and lagrangians to legendrians, BSG Proceedings 13, The 5-th Conference of Balkan Society of Geometers, Balkan Press, 2006, Editor in chief C. Udriste, Vol. Ed. V. Balan, 115-122
- [5] Saunders, D., The Geometry of of Jet Bundles, Cambridge Univ. Press, New York, London, 1989
- [6] Tarasov, E. V., Stationary Solutions of Liouville Equations for Non-Hamiltonian Systems, Annals of Physics 316 (2005) 393-413
- [7] Tarasov, E. V., Phase-Space Metric for Non-Hamiltonian Systems, Journal of Physics A, 10/11 (2005) 2145-2155

UNIVERSITY OF CRAIOVA DEPARTMENT OF APPLIED MATHEMATICS A. I. CUZA 13, 200585, CRAIOVA, ROMANIA *E-mail address*: marcelacpopescu@yahoo.com