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On the stability roughness of discrete dynamical systems in
infinite-dimensional spaces

B. SASU

ABSTRACT.
The aim of this paper is to provide new methods concerning the study of stability radius of discrete dynamical systems in infinite-dimensional
spaces. We study the stability roughness of a discrete dynamical system subjected to general structured perturbations. We determine a lower
bound for the stability radius in terms of the norm of the input-output operators acting between two Banach sequence spaces which are invariant
under translations.

1. INTRODUCTION

Exponential stability is one of the most important properties of evolution equations which became in recent years
an intensively studied subject (see [2]–[8], [14]–[18], [23]). A significant class of evolution equations with various
applications in chaos, population dynamics, economics and biology is represented by the discrete dynamical systems
(see [5]–[8] and the references therein).

In the last few years many research studies were focused on the asymptotic properties of discrete-time systems
and to their applications in control theory (see [2]–[23]). In this context, the roughness of asymptotic properties had
a central role. Roughly speaking the radius related with an asymptotic behavior estimates the size of the smallest
perturbation in the presence of which the system ”loses” the initial qualitative property (see [2]–[4], [14], [16], [17],
[21], [23]). It is well known that the concept of stability radius was introduced by Hinrichsen, Ilchman and Pritchard
in their works (see [2]–[4]) and led to various studies of exponential stability of linear systems in the presence of
multi-structured feedback type perturbations (see [2]–[4], [14], [16], [17], [23]). The concept of dichotomy radius was
recently studied in [19] and [21].

The aim of this paper is to present a new study concerning the roughness of the exponential stability of discrete
dynamical systems. We continue the line of the study begun in [17], but we propose a distinct and more general
perspective on the stability radius of discrete dynamical systems. We consider as main tool in our theory the use of
input-output operators acting on Banach sequence spaces which are invariant under translations and contain at least
a characteristic function of a singleton.

First, we deduce a characterization for uniform exponential stability of discrete dynamical systems in terms of
Banach sequence spaces in terms of the solution of an input-output control system. After that, we associate with a
discrete dynamical system (A) the perturbed system (A + BPC) corresponding to a general feedback–type pertur-
bation and introduce the stability radius rstab(A,B,C). We point out some new situations and we obtain various
and very general lower bounds for rstab(A,B,C) in terms of the norm of the input-output operators between Ba-
nach sequence spaces which belong to a certain class. The main results generalize the previous estimations from the
literature and also extend the applicability area to any discrete dynamical system in infinite-dimensional spaces.

2. BANACH SEQUENCE SPACES

In this section, for the sake of clarity, we will recall some basic definitions and properties of Banach sequences
spaces. These spaces are often used in interpolation theory (see [1] and the references therein).

Let Z denote the set of the integers, let N denote the set of all non negative integers, let R denote the set of all real
numbers and let S(N,R) be the linear space of all sequences s : N → R. Let N∗ = N \ {0}. For every set A ⊂ N we
denote by χA the characteristic function of the set A. For every s ∈ S(N,R) we consider the sequence s+ : N → R
defined by s+(0) = 0 and s+(n) = s(n− 1), for all n ∈ N∗.

Definition 2.1. A linear space B ⊂ S(N,R) is called normed sequence space if there is a mapping | · |B : B → R+ such
that:

(i) |s|B = 0 if and only if s = 0;
(ii) |αs|B = |α| |s|B , for all (α, s) ∈ R×B;
(iii) |s+ γ|B ≤ |s|B + |γ|B , for all s, γ ∈ B;
(iv) if |s(j)| ≤ |γ(j)|, for all j ∈ N and γ ∈ B, then s ∈ B and |s|B ≤ |γ|B .

If, moreover, (B, | · |B) is complete, then B is called Banach sequence space.
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Definition 2.2. A Banach sequence space (B, | · |B) is called invariant under translations if for every s ∈ B the sequence
s+ ∈ B and |s+|B = |s|B .

In what follows we denote by Q(N) the class of all Banach sequence spacesB which are invariant under translations
and χ{0} ∈ B.

Example 2.1. (Orlicz sequence spaces) Let ϕ : R+ → [0,∞] be a nondecreasing left continuous function which is not
identically 0 or ∞ on (0,∞). The Young function associated with ϕ is Yϕ(t) =

∫ t
0
ϕ(s) ds, for all t ≥ 0. For every

s ∈ S(N,R), let Mϕ(s) :=
∞∑
k=0

Yϕ(|s(k)|). Then `ϕ(N,R) := {s ∈ S(N,R) : ∃c > 0 such that Mϕ(cs) < ∞} is a Banach

space with respect to the norm |s|ϕ := inf{c > 0 : Mϕ(s/c) ≤ 1}. The space `ϕ(N,R) is called the Orlicz sequence space
associated to ϕ. It is easy to see that Oϕ ∈ Q(N).

Let p ∈ [1,∞). Immediate examples of Orlicz sequence spaces are the `p(N,R)-spaces with respect to the norm
||s||p = (

∑∞
k=0 ||s(k)||p)1/p, which are obtained for ϕ(t) = ptp−1.

Example 2.2. The linear space `∞(N,R) = {s ∈ S(N,R) : sup
n∈N
|s(n)| <∞} is a Banach space with respect to the norm

||s||∞ := sup
n∈N
|s(n)| and `∞(N,R) ∈ Q(N). If c0(N,R) = {s ∈ S(N,R) : lim

n→∞
s(n) = 0}, then c0(N,R) is a closed linear

subspace of `∞(N,R).

Remark 2.1. If B ∈ Q(N), then the following properties hold:
(i) for every A ⊂ N, χA ∈ B;
(ii) for every s ∈ B and every j ∈ N the sequence

sj : N→ R, sj(n) =

{
s(n− j) , n ≥ j

0 , n < j

belongs to B and |sj |B = |s|B ;
(iii) `1(N,R) ⊂ B ⊂ `∞(N,R) (see e.g. [17], Lemma 2.1).

Lemma 2.1. Let B ∈ Q(N) and let ν > 0. Then, for every s ∈ B, the sequence

qs : N→ R+, qs(n) =

n∑
k=0

e−ν(n−k)s(k)

belongs to B.

Proof. Let s ∈ B. Using the notations from Remark 2.1 (ii) we have that

|qs(n)| ≤
∞∑
k=0

e−ν(n−k)|s(k)| =
n∑
j=0

e−νj |sj(n)| ≤
∞∑
j=0

e−νj |sj(n)|, ∀n ∈ N.

This implies that qs ∈ B and |qs|B ≤ [1/(1− e−ν)] |s|B . �

Notation Let (X, || · ||) be a real or complex Banach space. For every Banach sequence space B ∈ Q(N) we denote
by B(N, X) the space of all sequences s : N→ X with the property that the mapping Ns : N→ R+, Ns(m) = ||s(m)||
belongs to B. B(N, X) is a Banach space with respect to the norm ||s||B(N,X) := |Ns|B .

3. PRELIMINARY RESULTS

Let X be a real or complex Banach space and let L(X) be the Banach algebra of all bounded linear operators on
X . Throughout this paper, the norm on X and on L(X) will be denoted by || · ||. The linear space of all sequences
s : N→ X will be denoted by S(N, X).

Let (A(n))n∈N ⊂ L(X). We consider the discrete dynamical system

(A) x(n+ 1) = A(n)x(n), n ∈ N
where x ∈ S(N, X).

Denoting by ∆ = {(m,n) ∈ N × N : m ≥ n ≥ 0} we have that the evolution operator Φ = {Φ(m,n)}(m,n)∈∆

associated with the system (A) has the expression

Φ(m,n) =

{
A(m− 1) . . . A(n), m > n

Id, m = n

where Id denotes the identity operator on X .

Remark 3.2. Φ(m, k)Φ(k, n) = Φ(m,n), for all (m, k), (k, n) ∈ ∆.

Definition 3.3. The system (A) is said to be uniformly exponentially stable if there are K, ν > 0 such that

||Φ(m,n)|| ≤ Ke−ν(m−n), ∀(m,n) ∈ ∆.
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In what follows, we associate to the system (A) the input-output control system

(SA)

{
x(n+ 1) = A(n)x(n) + s(n+ 1), n ∈ N
x(0) = s(0)

where s, x ∈ S(N, X).

Remark 3.3. For every s ∈ S(N, X) the corresponding solution of the system (SA) is given by

xs(n) =

n∑
k=0

Φ(n, k)s(k), ∀n ∈ N.

Definition 3.4. Let U, V ∈ Q(N). We say that the system (SA) is (U(N, X), V (N, X))-stable if for every s ∈ U(N, X)
the corresponding solution xs belongs to V (N, X).

Theorem 3.1. Let V ∈ Q(N). Then, the system (A) is uniformly exponentially stable if and only if the system (SA) is
(V (N, X), V (N, X))-stable.

Proof. Necessity. Let K, ν > 0 be given by Definition 3.3. Let s ∈ V (N, X). Then, from Lemma 2.1 we have that the
sequence

αs : N→ R+, αs(n) =

n∑
k=0

e−ν(n−k)||s(k)||

belongs to V . Observing that ||xs(n)|| ≤ Kαs(n), for all n ∈ N, we obtain that xs ∈ V (N, X).
Sufficiency. If V = `1(N,R) then from Theorem 2.2 in [17], we obtain that the system (A) is uniformly exponentially

stable. If `1(N,R) & V , then according to Theorem 2.4 in [17], we have that the system (A) is uniformly exponentially
stable. �

4. STABILITY RADIUS OF DISCRETE DYNAMICAL SYSTEMS

In this section we obtain a very general lower bound for the stability radius of a discrete dynamical system in
terms of the norm of certain input-output operators acting on Banach sequence spaces.

If Z is a Banach space, then we denote by S(N, Z) the linear space of all sequences s : N → Z. If Z,W are
Banach spaces we denote by L(Z,W ) the Banach space of all bounded linear operators H : Z → W and we set
L(Z,Z) =: L(Z).

We consider the linear space `∞(N,L(Z,W )) := {T : N → L(Z,W ) : sup
n∈N
||T (n)|| < ∞}, which is a Banach space

with respect to the norm
||T ||∞ := sup

n∈N
||T (n)||.

Let X be a Banach space and let A ∈ `∞(N,L(X)). We consider the discrete dynamical system

(A) x(n+ 1) = A(n)x(n), n ∈ N
where x ∈ S(N, X).

For every D ∈ `∞(N,L(X)) we consider the perturbed system

(A+D) z(n+ 1) = [A(n) +D(n)]z(n), n ∈ N
where z ∈ S(N, X).

Remark 4.4. The evolution operator associated with the system (A+D) has the expression

ΦD(m,n) = Φ(m,n) +

m∑
k=n+1

Φ(m, k)D(k − 1)ΦD(k − 1, n)

for every m,n ∈ N with m > n.

In what follows we suppose that the system (A) is uniformly exponentially stable. The main question is how large
may be the norm of the perturbation D ∈ `∞(N,L(X)) such that the perturbed system (A + D) remains uniformly
exponentially stable.

In this context, it makes sense to introduce:

Definition 4.5. The number

rstab(A) := sup{r > 0 : ∀D ∈ `∞(N,L(X)) with ||D||∞ < r ⇒ (A+D) is

uniformly exponentially stable}
is called the stability radius of the system (A).

In what follows, we analyze a more complex situation: when the system (A) is subjected to a very general pertur-
bation structure.

Let U, Y be two Banach spaces. Let B ∈ `∞(N,L(U,X)) and C ∈ `∞(N,L(X,Y )).
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Definition 4.6. The number

rstab(A;B,C) := sup{r > 0 : ∀P ∈ `∞(N,L(Y,U)) with ||P ||∞ < r ⇒ (A+BPC) is

uniformly exponentially stable }
is called the stability radius of the system (A) subjected to the perturbation structure (B,C).

Remark 4.5. In the particular case U = Y = X and B(n) = C(n) = Id, for all n ∈ N, then

rstab(A;B,C) = rstab(A)

In this context, in what follows our purpose is to obtain a very general lower bound for rstab(A;B,C).
We consider the class V(N) of all Banach sequence spaces B ∈ Q(N) with the property that if s ∈ S(N, X) and

sup
n∈N
|s χ{0,...,n}|B <∞

then s ∈ B.

Remark 4.6. The class of Orlicz sequence spaces is a subclass of V(N).

As in the previous section, we associate with the system (A) the input-output control system

(SA)

{
x(n+ 1) = A(n)x(n) + s(n+ 1), n ∈ N
x(0) = s(0)

where s, x ∈ S(N, X).
Let V ∈ V(N). Since (A) is uniformly exponentially stable, according to Theorem 3.1 we have that the system (SA)

is (V (N, X), V (N, X))-stable.
For every u ∈ V (N, U) we consider the sequence

su : N→ X, su(n) = B(n)u(n).

From
||su(n)|| ≤ ||B(n)|| ||u(n)|| ≤ ||B||∞ ||u(n)||, ∀n ∈ N

since u ∈ V (N, U) we obtain that su ∈ V (N, X). Using the invariance to translations of V (N, X) we have that the
sequence

ϕu : N→ X, ϕu(n) =

{
B(n− 1)u(n− 1), n ∈ N∗

0, n = 0

belongs to V (N, X). Then, from the (V (N, X), V (N, X))-stability of the system (SA), we obtain that

xu : N→ X, xu(n) =


n∑
k=1

Φ(n, k)B(k − 1)u(k − 1), n ∈ N∗

0, n = 0
(4.1)

belongs to V (N, X).
We consider the system

(SB,CA )

 x(n+ 1) = A(n)x(n) +B(n)u(n), n ∈ N
x(0) = 0
y(n) = C(n)x(n), n ∈ N

with u ∈ V (N, U).
According to (4.1) we have that for every u ∈ V (N, U) the solution xu ∈ V (N, X). From

||yu(n)|| ≤ ||C||∞ ||xu(n)||, ∀n ∈ N

we deduce that yu ∈ V (N, Y ). So, for every input u ∈ V (N, U) the corresponding solution yu of the system (SB,CA )
has the property that yu ∈ V (N, Y ). Then, it makes sense to consider the input-output operator

ΓV : V (N, U)→ V (N, Y ), ΓV (u) = yu.

It is easy to observe that ΓV is a closed linear operator, so it is bounded.
In what follows we suppose that there is c > 0 such that

||C(n)y|| ≥ c ||y||, ∀(n, y) ∈ N× Y. (4.2)

Theorem 4.2. If ||P ||∞ < (1/||ΓV ||), then for every (n, x) ∈ N×X , the sequence

sn,x : N→ X, sn,x(k) =

{
ΦBPC(k, n)x, k ≥ n

0, k < n

belongs to V (N, X).
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Proof. Let K, ν > 0 be such that ||Φ(m,n)|| ≤ Ke−ν(m−n), for all (m,n) ∈ ∆. Let (n, x) ∈ N×X . For every h ∈ N, we
consider the sequences

γ : N→ X, γ(k) = χ{0,...,n+h}(k)C(k)sn,x(k)

u : N→ U, u(k) = P (k)γ(k).

Since u has finite support, we have that u ∈ V (N, U). Using Remark 4.4, for every k ∈ {n+ 1, . . . , n+h}we have that

γ(k) = C(k)Φ(k, n)x+ C(k)

k∑
j=n+1

Φ(k, j)(BPC)(j − 1)ΦBPC(j − 1, k)x =

= C(k)Φ(k, n)x+ C(k)

k∑
j=1

Φ(k, j)B(j − 1)u(j − 1) =

= C(k)Φ(k, n)x+ (ΓV u)(k)

which implies that

||γ(k)|| ≤ ||C||∞ Ke−ν(k−n)||x||+ ||(ΓV u)(k)|| (4.3)

for all k ∈ {n+ 1, . . . , n+ h}. Observing that γ(n) = C(n)x, we deduce that (4.3) also holds for k = n.
We consider the sequence

eν : N→ R+, eν(k) =

{
e−ν(k−n), k ≥ n

0, k < n
.

We have that eν ∈ `1(N,R), so, from Remark 2.1 we obtain that eν ∈ V . Since γ(k) = 0, for k < n and for k > n + h,
from (4.3) we have that

||γ(k)|| ≤ K||C||∞ ||x|| eν(k) + ||(ΓV u)(k)||, ∀k ∈ N

which implies that
||γ||V (N,Y ) ≤ K ||C||∞ ||x|| |eν |V + ||ΓV u||V (N,Y ). (4.4)

Let m = K ||C||∞ ||x||. Since ΓV is a bounded linear operator, we have that

||ΓV u||V (N,Y ) ≤ ||ΓV || ||u||V (N,U). (4.5)

From ||u(n)|| ≤ ||P (n)|| ||γ(n)||, for all n ∈ N, we have that

||u||V (N,U) ≤ ||P ||∞ ||γ||V (N,Y ). (4.6)

From relations (4.4)–(4.6) we deduce that

||γ||V (N,Y ) ≤
m |eν |V

1− ||ΓV || ||P ||∞
. (4.7)

Using (4.2) we have that
c ||χ{0,...,n+h}(k)sn,x(k)|| ≤ ||γ(k)||, ∀k ∈ N

which implies that

||χ{0,...,n+h}sn,x||V (N,X) ≤
1

c
||γ||V (N,Y ). (4.8)

From relations (4.7) and (4.8) it follows that

||χ{0,...,n+h}sn,x||V (N,X) ≤
m |eν |V

c− c||ΓV || ||P ||∞
. (4.9)

Since h ∈ N was arbitrary, from (4.9) we deduce that

sup
p∈N
||χ{0,...,p}sn,x||V (N,X) ≤

m |eν |V
c− c||ΓV || ||P ||∞

. (4.10)

Using the fact that V ∈ V(N) from (4.10) we conclude that sn,x ∈ V (N, X), for all (n, x) ∈ N×X . �

Theorem 4.3. The following estimation holds:

rstab(A;B,C) ≥ 1

||ΓV ||
.
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Proof. Let P ∈ `∞(N,L(Y,U)) with ||P ||∞ < (1/||ΓV ||). We consider the input-output control system

(SBPC)

{
z(n+ 1) = [A(n) + (BPC)(n)]z(n) + s(n+ 1), n ∈ N
z(0) = s(0)

with s ∈ V (N, X). For every s ∈ V (N, X) the corresponding solution is

zs(n) =

n∑
k=0

ΦBPC(n, j)s(j), ∀n ∈ N. (4.11)

In what follows, we prove that the system (SBPC) is (V (N, X), V (N, X))-stable.

Let s ∈ V (N, X). For every p ∈ N∗ let

sp : N→ X, sp(k) = χ{0,...,p}(k)s(k).

Denoting by

hp :=

p∑
j=0

ΦBPC(p, j)s(j)

from Theorem 4.2 we have that the sequence

sp,xp
: N→ X, sp,xp

(n) =

{
ΦBPC(n, p)hp, n ≥ p

0, n < p

belongs to V (N, X). Observing that zsp(n) = sp,xp
(n), for all n ≥ p and setting M := max{||zs(0)||, . . . , ||zs(p − 1)||}

we deduce that
||zsp(n)|| ≤M χ{0,...,p−1}(n) + ||sp,xp(n)||, ∀n ∈ N. (4.12)

From (4.12) it follows that zsp ∈ V (N, X). Let

γ : N→ Y, γ(n) = C(n)zsp(n).

From ||γ(n)|| ≤ ||C||∞ ||zsp(n)||, for all n ∈ N, we have that γ ∈ V (N, Y ).
For every n ∈ N∗, using Remark 4.4 we successively deduce that

γ(n) = C(n)

n∑
k=0

ΦBPC(n, k)sp(k) =

= C(n)sp(n) + C(n)

n−1∑
k=0

Φ(n, k)sp(k)+

+C(n)

n−1∑
k=0

n−1∑
j=k

Φ(n, j + 1)(BPC)(j)ΦBPC(j, k)sp(k)

 =

= C(n)

n∑
k=0

Φ(n, k)sp(k) + C(n)

n−1∑
j=0

j∑
k=0

Φ(n, j + 1)(BPC)(j)ΦBPC(j, k)sp(k)

 =

= C(n)

n∑
k=0

Φ(n, k)sp(k)+

+C(n)

n−1∑
j=0

Φ(n, j + 1)B(j)P (j)

(
C(j)

j∑
k=0

ΦBPC(j, k)sp(k)

) =

= C(n)

n∑
k=0

Φ(n, k)sp(k) + C(n)

n∑
j=1

Φ(n, j)B(j − 1)P (j − 1)γ(j − 1). (4.13)

Let

xsp : N→ X, xsp(n) =

n∑
k=0

Φ(n, k)sp(k)

and
ϕ : N→ U, ϕ(n) = P (n)γ(n).

Since (A) is uniformly exponentially stable we have that xsp ∈ V (N, X). From ||ϕ(n)|| ≤ ||P ||∞ ||γ(n)||, for all n ∈ N,
we have that ϕ ∈ V (N, U) and

||ϕ||V (N,U) ≤ ||P ||∞ ||γ||V (N,Y ). (4.14)

Then, from (4.13) it follows that
γ(n) = C(n)xsp(n) + (ΓV ϕ)(n), ∀n ∈ N∗
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which implies that
||γ(n)|| ≤ ||C(n)xsp(n)||+ ||(ΓV ϕ)(n)||, ∀n ∈ N∗.

Since γ(0) = C(0)s(0) = C(0)xsp(0) we deduce that

||γ(n)|| ≤ ||C||∞ ||xsp(n)||+ ||(ΓV ϕ)(n)||, ∀n ∈ N. (4.15)

From (4.14) and (4.15) we have that

||γ||V (N,Y ) ≤ ||C||∞ ||xsp ||V (N,X) + ||ΓV || ||P ||∞ ||γ||V (N,Y ). (4.16)

From (4.2) we have that
c ||zsp(n)|| ≤ ||γ(n)||, ∀n ∈ N

which implies that
c ||zsp ||V (N,X) ≤ ||γ||V (N,Y ). (4.17)

From relations (4.16) and (4.17) we deduce that

||zsp ||V (N,X) ≤
||C||∞ ||xsp ||V (N,X)

c[1− ||ΓV || ||P ||∞]
. (4.18)

We observe that xsp(n) = xs(n), for n ∈ {0, . . . , p} and xsp(n) = Φ(n, p)xs(p), for n ≥ p. Then, denoting by

eν : N→ R, eν(n) =

{
e−ν(n−p), n ≥ p

0, n < p

we obtain that
||xsp(n)|| ≤ ||xs(n)||+ eν(n) ||xs(p)||, ∀n ∈ N.

This shows that
||xsp ||V (N,X) ≤ ||xs||V (N,X) + |eν |V ||xs(p)||. (4.19)

From
||xs(p)|| χ{p}(k) ≤ ||xs(k)||, ∀k ∈ N

using the invariance to translations of the space V we deduce that

||xs(p)|| |χ{p}|V = ||xs(p)|| |χ{0}|V ≤ ||xs||V (N,X). (4.20)

Setting λ := 1 + (|eν |V /|χ{0}|V ), from relations (4.19) and (4.20) it follows that

||xsp ||V (N,X) ≤ λ ||xs||V (N,X). (4.21)

Observing that
zsp(n) = zs(n), ∀n ∈ {0, . . . , p}

from relations (4.18) and (4.21) we obtain that

||zsχ{0,...,p}||V (N,X) ≤
λ ||C||∞ ||xs||V (N,X)

c[1− ||ΓV || ||P ||∞]

which implies that
sup
p∈N
||zs χ{0,...,p}||V (N,X) <∞.

Since V ∈ V(N) we deduce that zs ∈ V (N, X).

In conclusion, we have that (SBPC) is (V (N, X), V (N, X))-stable. By applying Theorem 3.1 we obtain the conclu-
sion. �

As a consequence of the above results we deduce

Theorem 4.4. The following estimation holds:

rstab(A;B,C) ≥ sup
V ∈V(N)

1

||ΓV ||
.

Corollary 4.1. For every p ∈ [1,∞], let Γp := Γ`p(N,R). The following estimation holds:

rstab(A;B,C) ≥ sup
p∈[1,∞]

1

||Γp||
.
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[16] Sasu, Adina Luminiţa and Sasu, B., A lower bound for the stability radius of time-varying systems, Proc. Amer. Math. Soc. 132 (2004), 3653-3659
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[22] Sasu, Adina Luminiţa and Sasu, B., Exponential trichotomy for variational difference equations, J. Differ. Equations Appl. 15 (2009), 693-718
[23] Wirth, F. and Hinrichsen, D., On stability radii of infinite dimensional time-varying discrete-time systems, IMA J. Math. Control Inform. 11 (1994),

253-276

WEST UNIVERSITY OF TIMIŞOARA
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