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Some properties of the symbol algebras

DIANA SAVIN, CRISTINA FLAUT and CAMELIA CIOBANU

ABSTRACT.
In this paper, we obtain some properties of the symbol algebras, starting from their connections with the quaternion and cyclic algebras over a
field Kp,where K is an algebraic number field, p is a prime in K and Kp is the completion of K with respect to p− adic valuation, in the case
when K = Q (ε), ε3 = 1, ε 6= 1.

1. INTRODUCTION

Symbol algebras have many applications in number theory (class field theory), as can be seen in [4], [6], [7].
Since they are a natural generalization of the quaternion algebras, in this paper we find some interesting example of
split quaternion algebras and non division symbol algebras and we give a necessary and sufficient condition for a

Kv−cyclic central simple algebra A =

(
α, β

K, ε

)
to be a division algebra.

First, we recall some definitions in the theory of associative algebras.
Let A 6= 0 be an algebra over the field K. If the equations ax = b, ya = b, ∀a, b ∈ A, a 6= 0, have unique solutions,

then the algebra A is called a division algebra. If A is a finite-dimensional algebra, then A is a division algebra if and
only if A is without zero divisors (x 6= 0, y 6= 0⇒ xy 6= 0) (see [9]).

Let K be a field with charK 6= 2. Let HK (α, β) be a quaternion algebra with basis {1, e1, e2, e3} and the multipli-
cation given by

· 1 e1 e2 e3
1 1 e1 e2 e3
e1 e1 α e3 αe2
e2 e2 −e3 β − βe1
e3 e3 −αe2 βe1 −αβ

Each element x ∈ HK (α, β) has the form x = x0 · 1 + x1e2 + x2e2 + x3e3,with xi ∈ K, i = 0, 1, 2, 3. For a ∈
HK (α, β) , a = a0 + a1e1 + a2e2 + a3e3, the element ā = a0− a1e1− a2e2− a3e3 is called the conjugate of the element
a.

Let a ∈ HK (α, β) . We have that t (a) · 1 = a+ a ∈ K, n (a) · 1 = aa ∈ K and these are called the trace, respectively,
the norm of the element a ∈ A. It follows that (a+ a) a = a2 + aa=a2 + n (a) · 1 and a2 − t (a) a + n (a) = 0,∀a ∈ A,
therefore the generalized quaternion algebras are quadratic. We remark that n (a) = a20 − αa21 − βa22 + αβa23 .

The generalized quaternion algebras is a division algebra if and only if for x ∈ HK (α, β) we have n (x) = 0 only
for x = 0. Otherwise, the algebra HK (α, β) is a split algebra.

An important invariant for a quaternion algebra HK (α, β) is the associated conic, denoted C (α, β) . The associated
conic is the projective plane curve defined by the homogeneous equation αx2 + βy2 = z2.

Let K be an algebraic number field. By a prime of K we mean a class of equivalent valuations of K. Recall that
the finite primes of K are in one-to-one correspondence with the primes ideals of the ring of integers of K, and the
infinite primes are in correspondence with the embedding of K into the field of complex numbers C. If v is a prime
of K, we denote with Kv the completion of K with respect to the v-adic valuation.

Proposition 1.1. ([4, pp. 7]) The quaternion algebra HK (α, β) is split if and only if the conic C (α, β) has a rational points
over K( i.e. if there are x0, y0, z0 ∈ K such that αx20 + βy20 = z20).

A natural generalization of the quaternion algebra is the symbol algebra, also known as a power norm residue algebra.
J. Milnor, in his book Introduction to Algebraic K-Theory, calls it the symbol algebra because of its connection with the
K−theory and with the Steinberg symbols (see [8]).

A symbol algebra is a unitary associative algebra over a field K with ζ ∈ K, ζn = 1, ζ a primitive root, generated by

the elements x, y which satisfy the relations xn = α, yn = β and yx = ζxy. This algebra is denoted
(
α, β

K, ζ

)
.

Obviously, for n = 2 we obtain the algebra HK (α, β) .
The quaternion generalized algebras and symbol algebras are central simple algebras.
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Proposition 1.2. ([8, pp. 237]) If K is an algebraic number field and A is a central simple K− algebra, then the dimension of
A over K is a square.

Definition 1.1. Let A be a central simple algebra of finite dimension n over K. The positive integer d =
√
n is called

the degree of the algebra A.

Theorem 1.1. (Weddeburn, [8, pp. 50]) Let A be a central simple algebra over the field K. There are n ∈ N∗ and a division
algebra D, K ⊆ D, such that A 'Mn (D). The division algebra D is unique up to an isomorphism.

Definition 1.2. With the notation of the above Theorem, the degree of the algebra D over K (as an algebra) is called
the index of the algebra A.

For some h ∈ N∗, the tensor product over the field K A⊗ ...⊗A (h− times) is isomorphic to a full matrix algebra
over K.

Definition 1.3. The smallest such an h is called the exponent of the algebra A.

Theorem 1.2. ([1]) The algebra A is a division algebra if and only if its index and its degree are the same.

Theorem 1.3. (Brauer-Hasse-Noether, [8]) Every central simple algebra over an algebraic number field is cyclic and its index
is equal to its exponent.

We shall use in the third section some results from the theory of algebraic number fields and we recall these here.

Theorem 1.4. ([1]) Let K ⊆ E be a cyclic extension of commutative fields of degree d. The cyclic K−algebra A =

(
α, β

K, ζ

)
has

the exponent d if and only if α /∈ NL/K (L∗), for each minimal subfield L of E over K.

Theorem 1.5. ([4]) Let K be a field such that ζ ∈ K, ζn = 1, ζ is a primitive root, and let α, β ∈ K∗. Then the following
statements are equivalent:

i) The cyclic algebra A =

(
α, β

K, ζ

)
is split.

ii) The element β is a norm from the extension K ⊆ K( n
√
α).

Theorem 1.6. ([1], [2], [6]) Let K be an algebraic number field, v be a prime of K and K ⊆ La Galois extension. Let w be a
prime of L lying above v such that Kv ⊆ Lw is a unramified extension of Kv of (residual) degree f . Let b = πmv · uv ∈ K∗

v ,
where πv denote a prime element in Kv and uv a unit in the ring of integers Ov,m ∈ Z. Then b ∈ NLw /Kv

(L∗
w) if and only if

f | m. In particular, every unit of Ov is the norm of a unit in Lw.

Theorem 1.7. ([2], [7]) Let K be an algebraic number field,e be an admissible modulus of K, v be a finite prime of K, v divides
e. Let K ⊆ L be a Galois extension. Let w be any prime of L lying above v. Then an element a ∈ NLw /Kv

(L∗
w) if and only if

the Artin symbol
(
LW /Kv

(a)

)
is the identity in the Galois group Gal (Lw /Kv), where (a) denotes the ideal generates by a in

the ring of integers Ov .

Theorem 1.8. ([6]) Let ζ be a primitive root of the unity of l− order, where lis a prime natural number and let A be the ring of
integers of the Kummer field Q(ζ, l

√
µ). A prime ideal P in the ring Z[ζ] is in A in one of the situations:

i) It is equal with the l−power of a prime ideal from A, if the l− power character
(
µ

P

)
l

= 0.

ii) It is a prime ideal in A, if
(
µ

P

)
l

= a rot of order l of unity, different from 1.

iii) It decomposes in l different prime ideals from A, if
(
µ

P

)
l

= 1.

Theorem 1.9. ([5], [6]) Let l be a natural number, l ≥ 3 and ζ be a primitive root of the unity of l-order. If p is a prime natural
number, l is not divisible with p and f is the smallest positive integer such that pf ≡ 1 mod l, then we have

pZ[ζ] = P1P2....Pr,

where r =
ϕ(l)

f
, ϕ is the Euler’s function and Pj , j = 1, ..., r are different prime ideals in the ring Z[ζ].

In the following, we consider the symbol algebra for n = 3 and K = Q (ε) or Qp (ε) , where ε is a primitive cubic
root of unity and p a prime number.
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2. SOME EXAMPLE OF QUATERNION AND SYMBOL ALGEBRAS

Proposition 2.3. For α = −1, β = p, p = 4k + 3, a prime number, K = Q, the algebra HQ (−1, p) is a division algebra.

Proof. Let x ∈ HQ (−1, p), x = x0e0 + x1e1 + x2e2 + x3e3, xi ∈ Q, i = 0, 1, 2, 3 such that n (x) = 0. It results
x20 + x21 − px22 − px23 = 0, then p | (x20 + x21). Since p = 4k + 3 is a prime and p | (x20 + x21), we obtain that p | (x22 + x23),
and the powers of p in the factorization of x20+x21 and x22+x23 are even. We obtain a contradiction, therefore x = 0. �

Theorem 2.10. (Gauss) If p ≡ 1 mod 3, then there are integers a, b such that
4p = a2 + 27b2.

Proposition 2.4. If K = Q
(√

3
)
, then the quaternion algebra HK (−1, p) where

p ≡ 1 mod 3 is a split algebra.

Proof. Indeed, HK (−1, p) is a split algebra if and only if the associated conic −x2 + py2 = z2 has Q
(√

3
)
− rational

points. Using the Gauss’s theorem, there are a, b ∈ Z such that 4p = a2 + 27b2. Then for y0 = 1, z0 =
a

2
, x0 =

3
√

3b

2
,

the point
(

3
√

3b

2
, 1,

a

2

)
is a Q

(√
3
)
− rational point for the associated conic, and we use Proposition 1.1. �

From the Wedderburn theorem, we know that a finite dimensional simple algebraA over a fieldK is isomorphic to
a matrix algebraMn (D) , for D a division algebra. Let K = Q (ε) where ε is a cubic root of unity and let d = [D : K]

be the index of the algebra A. The algebra A =

(
α, β

K, ζ

)
is a central simple algebra of degree 3, hence d | 3.

For α = −1, β = 1, the algebra A is generated, for example, by the elements

X =

 −1 0 0
0 −ε 0
0 0 −ε2

 and Y =

 0 1 0
0 0 1
1 0 0

 ,

where X3 = −1I3, Y
3 = I3 and Y X = εXY (see [3]). We obtain that A ' Mn (Q (ε)). Therefore d = 1 and the

algebra A is not a division algebra.
We obtain the following proposition.

Proposition 2.5. The algebras A =

(
α, β

Q (ε) , ε

)
, for α, β ∈ {−1, 1} are not division algebras.

Proof. The algebra A has dimension 9, hence degree 3, with basis

B = {1, x, y, x2, y2, xy2, xy, x2y, x2y2}, x3 = a, y3 = b.

With the correspondence x→ X, y → Y, we have that A 'Mn (Q (ε)) , the index d = 1 6= 3, where 3 is the algebra’s
degree, then A is not a division algebra (we used Theorem 1.2). �

If the central simple algebra A is a division algebra, since has the degree three, it results that it is a cyclic algebra.
It results that there are the elements x ∈ A −K, α ∈ K such that x3 = α ∈ K. From the Noether-Skolem theorem,
it results that there is an element y ∈ A − K such that yxy−1 = εx. We have y3x = xy3 and y3y = yy3, then y3

commutes with the generators x, y, therefore y3 ∈ K = C(A), the centralizer of the algebra A. Hence, there is β ∈ K
such that y3 = β, and A =

(
α,β
K,ζ

)
'Mn (D) , with [D : K] = 3.

3. THE ALGEBRA A =

(
α, β

Kv, ε

)
We consider the case of the algebra A =

(
α, β

Kv, ε

)
where ε is a primitive cubic root of unity. We give a necessary

and sufficient condition for a Kv−cyclic central simple algebra A =

(
α, β

Kv, ε

)
to be a division algebra and finally

we find when β is a norm for the field Kv ( 3
√
α) , where Kv is the completion of the field K with respect the v-adic

valuation.
LetK be an algebraic number field and v be a prime (finite or infinite) of K such that ε ∈ Kv,where ε is a primitive

cubic root. We consider the Kv− central simple algebra A =

(
α, β

Kv, ε

)
, α, β ∈ K∗

v .

Proposition 3.6. With the above notation, if L = K ( 3
√
α) , the following statement are equivalent:

i) The algebra A =

(
α, β

Kv, ε

)
is a division algebra.

ii) β /∈ NLw /Kv
(L∗

w) ,for each w a prime of L lying above v.
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Proof. We consider the cyclic extension of fields Kv ⊆ Lw and we apply the Theorems 1.2, 1.3, 1.4. We obtain that the

Kv−cyclic central simple algebra A =

(
α, β

Kv, ε

)
is a division algebra if and only if β /∈ NLw/Kv

(L∗
w). �

From the above proposition and the Theorem 1.5, result that a Kv−cyclic central simple algebra A =

(
α, β

Kv, ε

)
is

either split or a division algebra.

In the following, we will study the central simple algebra A =

(
α, p3l

Kp, ε

)
, where p is a prime natural number, p > 3,

l ∈ N∗, ε is a primitive cubic root of unity, K = Q (ε).

Proposition 3.7. Let p be a prime natural number, p ≡ 2 (mod 3) and let be given the Kp− algebra A =

(
α, p3l

Kp, ε

)
, where

l ∈ N∗, α ∈ K, K = Q (ε) . Let P be a prime ideal of the ring of integers of the field L = K ( 3
√
α) , lying above p. Then p3l is a

norm from L∗
P and the local Artin symbol

(
LP /Kp

p3l

)
is the identity.

Proof. Since p ≡ 2 (mod 3), from Theorem 1.9, we obtain that p is prime in the ring Z[ε]. It results that residual cubic(
α

p1Z[ε]

)
3

= 1 (from Theorem 1.8), we have that p is totally split in A, where A is the ring of integers of the field

L = K ( 3
√
α) : pA = P1P2P3, Pi ∈ Spec (A), i = 1, 3.

We denote with g the number of decomposition of the ideal pA in the extension K ⊂ L. It results g = 3 and
knowing that efg = [L : K] = 3, then f = e = 1. But [LP : Kp] = ef, therefore LP = Kp, for each P ∈ Spec (A) , P |

pA. In this case, we obtain that p is the norm of itself in the trivial extension of Kp and the Artin symbol
(
LP /Kp

(p3l)

)
is

the identity. �

Proposition 3.8. Let p be a prime natural number, p ≡ 1 (mod 3) and letKp1−algebraA =

(
α, p3l

Kp1 , ε

)
, where l ∈ N∗, α ∈ K,

K = Q (ε) and p1 is a prime element in Z[ε], p1 | p. Let P be a prime ideal in the ring of integers of the field L = K ( 3
√
α), lying

above p1. Then p3l ∈ NLP /Kp1
(L∗

P ) and the local Artin symbol
(
LP /Kp1

(p3l)

)
is the identity in the Galois groupGal (LP /Kp1).

Proof. From Theorem 1.9 and that Z[ε] is a principal ring, we have that the ideal pZ[ε] = p1Z[ε] · p2Z[ε], where p1, p2
are prime distinct elements in Z[ε].

We study the Kp1− algebra A =

(
α, p3l

Kp1 , ε

)
.

Case 1. If the cubic residual symbol
(

α

p1Z[ε]

)
3

is a root of unity different from 1, from Theorem 1.8, we obtain

that the ideal p1A ∈ Spec (A) ,where A is the ring of integers of the Kummer field K ( 3
√
α) . So that e = 1, g = 1 and

since efg = [K ( 3
√
α) : K] = 3, it results that f = 3, who obviously divides 3l. From Theorem 1.6, we obtain that

p3l ∈ NLP /Kp1
(L∗

P ) . Using Theorem 1.7 and Proposition 3.6, we have that the local Artin symbol
(
LP /Kp1

(p3l)

)
is the

identity in the Galois group Gal (LP /Kp1) and the algebra A =

(
α, p3l

Kp1 , ε

)
is not a division Kp1 algebra.

Case 2. If the cubic residual symbol
(

α

p1Z[ε]

)
3

=1, from Theorem 1.8, we obtain that p1A = P1P2P3, Pi ∈ Spec (A),

i = 1, 3, therefore g = 3. But efg = [K ( 3
√
α) : K] = 3, therefore e = f = 1. Since [LP : Kp1 ] = ef, we obtain that

LP = Kp1 for each P ∈ Spec (A) , p | p1A. In this case, we have that p1 is a norm of itself in the trivial extension of

Kp1 and the local Artin symbol
(
LP /Kp1

(p3l)

)
is the identity. �
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