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The degree of approximation by certain linear positive operators

ZBIGNIEW WALCZAK

ABSTRACT.
We consider certain linear positive operators Bn in polynomial weighted spaces and study approximation properties of these operators, including
theorems on the degree of approximation.

1. INTRODUCTION

In the paper [19] we studied approximation problems for functions f ∈ Cp and Szasz-Mirakyan type operators

(1.1) An(f ; r;x) := e−(nx+1)r
∞∑
k=0

(nx+ 1)rk

k!
f

(
k

n(nx+ 1)r−1

)
,

x ∈ R0 := [0,+∞), r ∈ R2 := [2,+∞), n ∈ N := {1, 2, . . . },where Cp with some fixed p ∈ N0 := {0, 1, 2, . . . } is a
polynomial weighted space generated by the weight function

(1.2) w0(x) := 1, wp(x) := (1 + xp)−1, if p ≥ 1,

i.e., Cp is the set of all real-valued functions f , continuous on R0 and such that wpf is uniformly continuous and
bounded on R0. The norm in Cp is defined by the formula

(1.3) ‖f‖p ≡ ‖f (·) ‖p := sup
x∈R0

wp(x) |f(x)|.

In [19] there were proved theorems on the degree of approximation of f ∈ Cp by the operators An defined by (1.1).

Theorem 1.1. Let p ∈ N0 and r ∈ R2 be fixed numbers. Then there exists M1 ≡ M1(p, r) such that for every f ∈ Cp and
n ∈ N we have

(1.4) ‖An(f ; r; ·)− f(·)‖p ≤M1ω1

(
f ;Cp;

1

n

)
,

where ω1 is the modulus of continuity defined by the formula

(1.5) ω1(f ;Cp; t) := sup
0≤h≤t

‖∆hf(·)‖p, t ∈ R0,

where ∆hf(x) := f(x+ h)− f(x), for x, h ∈ R0.

The operators (1.1) are related to the well-known Szasz-Mirakyan operators

(1.6) Sn(f ;x) := e−nx
∞∑
k=0

(nx)
k

k!
f

(
k

n

)
,

x ∈ R0, n ∈ N. In [2] it was proved that if f ∈ Cp, p ∈ N0, then for the Szasz-Mirakyan operators Sn one has the
following inequality

wp(x)|Sn(f ;x)− f(x)| ≤M2ω2

(
f ;Cp;

√
x

n

)
, x ∈ R0, n ∈ N0,

where M2 = const. > 0 and ω2 is the modulus of smoothness defined by the formula

ω2(f ;Cp; t) := sup
0≤h≤t

‖∆2
hf(·)‖p, t ∈ R0,

where ∆2
hf(x) := f(x)− 2f(x+ h) + f(x+ 2h).

Theorem 1.1 shows that the operators An give a better degree of approximation of functions f ∈ Cp than the
Szasz-Mirakyan operators Sn. We can observe that the degree of approximation of f byAn is independent on r ∈ R2.

In [15-16, 18, 20] were examined similar approximation problems for certain modified Szasz-Mirakyan operators
Sn.

The degree of approximation given in Theorem 1.1 and in [15-16, 18, 20, 21] can be improved by a certain modifi-
cation of formula (1.1).

In this paper we introduce certain linear positive operators and study their approximation properties.
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Recently in many papers various modifications of Sn were introduced and examined. We refer the readers to A.
Ciupa [3-5], P. Gupta and V. Gupta [7], V. Gupta [8], N. Ispir and C. Atakut [1], [13], V. Gupta, V. Vasishtha and M. K.
Gupta [11], S. Guo, C. Li, Y. Sun, G. Yand, S. Yue [12]. Their results improve other related results in the literature.

In this paper we shall denote byMk(α, β), k = 1, 2, . . . , the suitable positive constants or functions depending only
on indicated parameters α, β. To this end, let Cp be the space given above and let f ∈ C2

p := {f ∈ Cp : f ′, f ′′ ∈ Cp},
where f ′, f ′′ are the derivatives of f .

2. APPROXIMATION OF FUNCTIONS OF ONE VARIABLE

We introduce the following

Definition 2.1. Let p ∈ N0 be a fixed number. For functions f ∈ Cp we define the operators

(2.7) Bn(f ;x) := e−(nx)
3
∞∑
k=0

(nx)3k

k!
f

(
k

n((nx)2 + n−1)

)
, x ∈ R0, n ∈ N.

Similarly to An, the operator Bn is linear and positive. We shall prove that Bn is an operator from the space Cp
into Cp for every fixed p ∈ N0. From (2.7) we derive the following formulas

(2.8) Bn(1;x) = 1,

Bn(t;x) =
x3

x2 + n−3
,

Bn(t2;x) = (x2 + n−3)−2
[
x6 +

x3

n3

]
,

Bn(t3;x) = (x2 + n−3)−3
[
x9 +

3x6

n3
+
x3

n6

]
,

for all n ∈ N and x ∈ R0.
From formulas (2.7), (2.8) and Bn(tk;x), 1 ≤ k ≤ 3, given above we obtain

Lemma 2.1. For all x ∈ R0 and n ∈ N we have

Bn(t− x;x) = − x

n3(x2 + n−3)
,

Bn((t− x)2;x) =
x3 + n−3x2

n3(x2 + n−3)2
,

Bn((t− x)3;x) =
x3 − 3x4 − n−3x3

n6(x2 + n−3)3
.

Next we shall prove

Lemma 2.2. Let s ∈ N be a fixed number. Then there exist coefficients αs,j , depending only on s, j such that

(2.9) Bn(ts;x) = (x2 + n−3)−s
s∑
j=1

αs,jx
3j

n3(s−j)

for all n ∈ N and x ∈ R0. Moreover, αs,1 = αs,s = 1 for j = 1, 2 . . . , s.

Proof. We shall use mathematical induction for s. The formula (2.9) for 1 ≤ s ≤ 3 is given above. Let (2.9) hold for
f(x) = xj , 1 ≤ j ≤ s, with fixed s ∈ N . We shall prove (2.9) for f(x) = xs+1. From (2.7) and (2.8) it follows that

Bn(ts+1;x) = e−(nx)
3
∞∑
k=0

(nx)3k

k!

(
k

n((nx)2 + n−1)

)s+1

=

x3

x2 + n−3
e−(nx)

3
∞∑
k=0

(nx)3k

k!

(
k + 1

n((nx)2 + n−1)

)s
=

=
x3

x2 + n−3
n−3s(x2 + n−3)−se−(nx)

3
∞∑
k=0

(nx)3k

k!

s∑
µ=0

(
s
µ

)
kµ.

Consequently

Bn(ts+1;x) =
x3

x2 + n−3

s∑
µ=0

(
s
µ

)
n3(µ−s)(x2 + n−3)µ−sBn(tµ;x).
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By our assumption we get

Bn(ts+1;x) =
x3

x2 + n−3

n−3s(x2 + n−3)−s +

s∑
µ=1

(
s
µ

)
n3(µ−s)(x2 + n−3)−s

µ∑
j=1

αµ,jx
3j

n3(µ−j)


= (x2 + n−3)

−(s+1)

n−3sx3 +

s∑
µ=1

(
s
µ

)
n3(µ−s)

µ∑
j=1

αµ,jx
3(j+1)

n3(µ−j)


= (x2 + n−3)

−(s+1)

n−3sx3 +

s∑
j=1

s∑
µ=j

(
s
µ

)
αµ,jx

3(j+1)

n3(s−j)


= (x2 + n−3)

−(s+1)

n−3sx3 +

s+1∑
j=2

x3j

n3(s+1−j)

s∑
µ=j−1

(
s
µ

)
αµ,j−1


= (x2 + n−3)−(s+1)

s+1∑
j=1

αs+1,jx
3j

n3(s+1−j) ,

where αs+1,1 = αs+1,s+1 = 1, which proves (2.9) for f(x) = xs+1. �

Lemma 2.3. Let p ∈ N0 be a fixed number. Then there exists a positive constantM3 ≡M3(p), depending only on the parameter
p such that

(2.10) ‖Bn(1/wp(t); ·)‖p ≤M3, n ∈ N.

Moreover, for every f ∈ Cp we have

(2.11) ‖Bn(f ; ·)‖p ≤M3‖f‖p, n ∈ N.

The formula (2.7) and inequality (2.11) show that Bn, n ∈ N , is a positive linear operator from the space Cp into Cp, for
every p ∈ N0.

Proof. From (2.7) we get

(2.12) Bn(f ; 0) = f(0) for n ∈ N.

The inequality (2.10) is obvious for p = 0 by (1.2), (1.3) and (2.8). Let p ∈ N . By (1.2) and (2.7)-(2.9) we have

wp(x)Bn(1/wp(t);x) = wp(x) {1 +Bn(tp;x)} =
1

1 + xp
+

+
1

(1 + xp)(x2 + n−3)p

p∑
j=1

αp,jx
3j

n3(p−j)
.

Let x ∈ [1,+∞). We remark that

wp(x)Bn(1/wp(t);x) ≤ 1 +
x3p

(1 + xp)(x2)p

p∑
j=1

αp,j
n3(p−j)

≤M3(p).

For x ∈ (0, 1) we have

1

(x2 + n−3)p

p∑
j=1

αp,jx
3j

n3(p−j)
≤

p∑
j=1

αp,j

(
x2

x2+n−3

)j
(x2 + n−3)p−jn3(p−j)

≤
p∑
j=1

αp,j
(n−3)p−jn3(p−j)

≤
p∑
j=1

αp,j .

Therefore the proof of inequality (2.10) is completed.
The formulas (2.7)-(2.8) and (1.2) imply

‖Bn(f(t); ·)‖p ≤ ‖f‖p‖Bn(1/wp(t); ·)‖p, n ∈ N,

for every f ∈ Cp. Applying (2.10), we obtain (2.11). �

Lemma 2.4. Let p ∈ N0 be fixed number. Then there exists a positive function M4(p, x) which does not depend on n such that

(2.13) wp(x)Bn

(
(t− x)2

wp(t)
;x

)
≤ M4(p, x)

n3
for all n ∈ N, x > 0.
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Proof. The formulas given in Lemma 2.1 and (1.2), (1.3) imply (2.13) for p = 0.
By (1.2) and (2.10) we have

Bn
(
(t− x)2/wp(t);x

)
= Bn

(
(t− x)2;x

)
+Bn

(
tp(t− x)2;x

)
,

for p, n ∈ N . If p = 1, then by the equality we get

Bn
(
(t− x)2/w1(t);x

)
= Bn

(
(t− x)2;x

)
+Bn

(
t(t− x)2;x

)
=

= Bn
(
(t− x)3;x

)
+ (1 + x)Bn

(
(t− x)2;x

)
,

which by (1.2), (1.3) and Lemma 2.1 yields (2.13) for p = 1.
Let p ≥ 2. Applying Lemma 2.2, we get

wp(x)Bn
(
tp(t− x)2;x

)
= wp(x)

{
Bn
(
tp+2;x

)
− 2xBn

(
tp+1;x

)
+ x2Bn (tp;x)

}
=

= wp(x)

(x2 + n−3)−(p+2)

p+2∑
j=1

αp+2,jx
3j

n3(p+2−j) − 2x(x2 + n−3)−(p+1)

p+1∑
j=1

αp+1,jx
3j

n3(p+1−j) +

+x2(x2 + n−3)−p
p∑
j=1

αp,jx
3j

n3(p−j)

 =

= wp(x)

 x3p+2

n6(x2 + n−3)p+2
+ (x2 + n−3)−(p+2)

p+1∑
j=1

αp+2,jx
3j

n3(p+2−j)

−2x(x2 + n−3)−(p+1)

p∑
j=1

αp+1,jx
3j

n3(p+1−j) +x2(x2 + n−3)−p
p−1∑
j=1

αp,jx
3j

n3(p−j)

 ,

which by (1.2) implies

wp(x)Bn
(
tp(t− x)2;x

)
≤ M4(p, x)

n3
, n ∈ N.

Thus the proof is completed. �

Now we shall give approximation theorems for Bn.

Theorem 2.2. Let p ∈ N0 be a fixed number. Then there exists a positive function M5(p, x) which does not depend on n such
that for every f ∈ C2

p we have

(2.14) wp(x)|Bn(f ;x)− f(x)| ≤M5(p, x)
‖f ′‖p + ‖f ′′‖p

n3
, n ∈ N, x > 0.

Proof. For a fixed x > 0 and f ∈ C2
p we have

f(t) = f(x) + f ′(x)(t− x) +

∫ t

x

∫ s

x

f ′′(u)duds, t ∈ R0,

which yields

f(t) = f(x) + f ′(x)(t− x) +

∫ t

x

(t− u)f ′′(u)du, t ∈ R0.

From this and by (2.7) we deduce that

(2.15) Bn(f(t);x) = f(x) + f ′(x)Bn(t− x;x) +Bn

(∫ t

x

(t− u)f ′′(u)du;x

)
for n ∈ N . By (1.2) and (1.3) we can write∣∣∣∣∫ t

x

(t− u)f ′′(u)du

∣∣∣∣ ≤ ‖f ′′‖p( 1

wp(t)
+

1

wp(x)

)
(t− x)2.

Applying the above inequality and Lemma 2.1 and (2.12), we derive from (2.15)

wp(x) |Bn(f ;x)− f(x)| ≤ ‖f ′‖p
x

n3(x2 + n−3)
+

‖f ′′‖p
{
wp(x)Bn

(
(t− x)2

wp(t)
;x

)
+Bn

(
(t− x)2;x

)}
≤

≤M5(p, x)
‖f ′‖p + ‖f ′′‖p

n3
for n ∈ N.

Thus the proof of (2.14) is completed. �
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Theorem 2.3. Let p ∈ N0 be a fixed number. Then there exists a positive function M6(p, x) which does not depend on n such
that for every f ∈ Cp and n ∈ N we have

(2.16) wp(x)|Bn(f ;x)− f(x)| ≤M6(p, x)

{
1

n3/2
ω1

(
f ;Cp;

1

n3/2

)
+ ω2

(
f ;Cp;

1

n3/2

)}
.

Proof. Let x > 0. Similarly as in [2] we apply the Stieklov function of f ∈ Cp:

(2.17) fh(x) :=
4

h2

∫ h
2

0

∫ h
2

0

[f(x+ s+ t)− f(x+ 2(s+ t))]dsdt

for x ∈ R0, h > 0. From (2.17) we get

f ′h(x) =
1

h2

∫ h
2

0

[8∆h/2f(x+ s)− 2∆hf(x+ 2s)]ds,

f ′′h (x) =
1

h2

[
8∆2

h/2f(x)−∆2
hf(x)

]
.

Consequently

(2.18) ‖fh − f‖p ≤ ω2 (f, Cp;h, ) ,

(2.19) ‖f ′h‖p ≤ 5h−1ω1 (f, Cp;h)
wp(x)

wp(x+ h)

(2.20) ‖f ′′h ‖p ≤ 9h−2ω2 (f, Cp;h) ,

for h > 0. We see that fh ∈ C2
p if f ∈ Cp. Hence, for x > 0 and n ∈ N , we can write

wp(x) |Bn(f ;x)− f(x)| ≤ wp(x) {|Bn (f − fh;x)|+

+ |Bn (fh;x)− fh(x)|+ |fh(x)− f(x)|} := A1 +A2 +A3.

By (2.11) and (2.18) we have

A1 ≤M3(p) ‖f − fh‖p ≤M3(p)ω2 (f, Cp;h) , A3 ≤ ω2 (f, Cp;h) .

Applying Theorem 2.2 and (2.19) and (2.20), we get

A2 ≤M5(p, x)
‖f ′h‖p + ‖f ′′h ‖p

n3
≤

≤M6(p, x)

{
5

hn3
ω1 (f, Cp;h)

wp(x)

wp(x+ h)
+

9

h2n3
ω2 (f, Cp;h)

}
.

Combining these and setting h = 1
n3/2 , for fixed n ∈ N , we obtain (2.16) for x > 0. �

From Theorem 2.2 and Theorem 2.3 we derive the following two corollaries:

Corollary 2.1. For f ∈ Cp, p ∈ N0, we have

lim
n→∞

Bn(f ;x) = f(x).

This convergence is uniform on every interval [x1, x2], x1 > 0.

Corollary 2.2. If f ∈ C2
p , p ∈ N0, then

|Bn(f ;x)− f(x)| = Ox(1/n3)

In a similar manner (see [21]), the Voronovskaya type theorem for Bn can be verified.

Theorem 2.4. Let f ∈ C2
p . Then

(2.21) lim
n→∞

n3 {Bn (f ;x)− f(x)} =
−f ′(x) + 1/2f ′′(x)

x

for every x > 0.
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3. APPROXIMATION OF FUNCTIONS OF TWO VARIABLES

Next, for given p, q ∈ N0, we define the weighted function

(3.22) wp,q(x, y) := wp(x)wq(y), (x, y) ∈ R2
0 := R0 ×R0,

and the weighted space Cp,q of all real-valued functions f continuous on R2
0 for which wp,qf is uniformly continuous

and bounded on R2
0 and the norm is defined by the formula

(3.23) ‖f‖p,q ≡ ‖f (·, ·) ‖p,q := sup
(x,y)∈R2

0

wp,q(x, y) |f(x, y)| .

The modulus of continuity of f ∈ Cp,q we define as usual by the formula

(3.24) ω1(f, Cp,q; t, s) := sup
0≤h≤t, 0≤δ≤s

‖∆h,δf(·, ·)‖p,q , t, s ≥ 0 ,

where ∆h,δf(x, y) := f(x + h, y + δ) − f(x, y) and (x + h, y + δ) ∈ R2
0. Moreover let C1

p,q be the set of all functions
f ∈ Cp,q whose first partial derivatives belong also to Cp,q . From (3.24) it follows that

lim
t,s→0+

ω1(f, Cp,q; t, s) = 0

for every f ∈ Cp,q , p, q ∈ N0. We introduce the following

Definition 3.2. For functions f ∈ Cp,q , p, q ∈ N0, we define operators

(3.25) Bm,n(f ;x, y) := e−((mx)
3+(ny)3)

×
∞∑
j=0

∞∑
k=0

(mx)3j

j!

(ny)3k

k!
f

(
j

m((mx)2 +m−1)
,

k

n((ny)2 + n−1)

)
for (x, y) ∈ R2

0, m,n ∈ N .

We deduce that Bm,n(f) are well-defined in every space Cp,q , p, q ∈ N0. Moreover we have

(3.26) Bm,n(1;x, y) = 1 for (x, y) ∈ R2
0, m, n ∈ N,

and if f ∈ Cp,q and f(x, y) = f1(x)f2(y) for all (x, y) ∈ R2
0, then

(3.27) Bm,n(f ;x, y) = Bm(f1;x)Bn(f2; y)

for all (x, y) ∈ R2
0 and m,n ∈ N .

Lemma 3.5. For fixed p, q ∈ N0 there exists a positive constant M7 ≡M7(p, q) such that

(3.28) ‖Bm,n (1/wp,q(t, z)·, ·)‖p,q ≤M7 for m,n ∈ N.

Moreover for every f ∈ Cp,q we have

(3.29) ‖Bm,n (f ; ·, ·)‖p,q ≤M7 ‖f‖p,q for m,n ∈ N.

The formula (3.25) and the inequality (3.29) show that Bm,n, m,n ∈ N , are linear positive operators from the space Cp,q into
Cp,q.

Proof. The inequality (3.28) follows immediately from (3.22), (3.27) and (2.10).
From (3.22) and (3.25) we get for f ∈ Cp,q

‖Bm,n(f)‖p,q ≤ ‖f‖p,q ‖Bm,n(1/wp,q)‖p,q , m, n ∈ N,

which by (3.28) implies (3.29). �

Now we shall give two theorems on the degree of approximation of functions by Bm,n defined by (3.25).

Theorem 3.5. Suppose that f ∈ C1
p,q with fixed p, q ∈ N0. Then there exists a positive function M8(p, q, x, y) which does not

depend on m,n such that for all m,n ∈ N , (x, y) ∈ R2
+ := (0,+∞)× (0,+∞)

(3.30) wp,q(x, y) |Bm,n(f ;x, y)− f(x, y)| ≤M8(p, q, x, y)

{
1

m3/2
‖f ′x‖p,q +

1

n3/2
‖f ′y‖p,q

}
.

Proof. Let (x, y) ∈ R2
+ be a fixed point. Then for f ∈ C1

p,q

f(t, z)− f(x, y) =

∫ t

x

f ′u(u, z)du+

∫ z

y

f ′v(x, v)dv, (t, z) ∈ R2
0.

Thus by (3.25)

(3.31) Bm,n(f(t, z);x, y)− f(x, y)

= Bm,n

(∫ t

x

f ′u(u, z)du;x, y

)
+Bm,n

(∫ z

y

f ′v(x, v)dv;x, y

)
.
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By (3.22)-(3.23) we have ∣∣∣∣∫ t

x

f ′u(u, z)du

∣∣∣∣ ≤ ‖f ′x‖p,q ∣∣∣∣∫ t

x

du

wp,q(u, z)

∣∣∣∣
≤ ‖f ′x‖p,q

(
1

wp,q(t, z)
+

1

wp,q(x, z)

)
|t− x|,

which by (3.22), (3.27) and (2.7)-(2.8) implies

wp,q(x, y)

∣∣∣∣Bm,n(∫ t

x

f ′u(u, z)du;x, y

)∣∣∣∣
≤ wp,q(x, y)Bm,n

(∣∣∣∣∫ t

x

f ′u(u, z)du

∣∣∣∣ ;x, y)
≤ ‖f ′x‖p,q wp,q(x, y)

{
Bm,n

(
|t− x|
wp,q(t, z)

;x, y

)
+Bm,n

(
|t− x|

wp,q(x, z)
;x, y

)}
≤ ‖f ′x‖p,q wq(y)Bn

(
1

wq(z)
; y

){
wp(x)Bm

(
|t− x|
wp(t)

;x

)
+Bm (|t− x|;x)

}
.

Applying the Hölder inequality and Lemma 2.1 and (2.12), we get

Bm (|t− x|;x) ≤
{
Bm((t− x)2;x)Bm(1;x)

} 1
2 ≤ M9(p, x)

m3/2
,

wp(x)Bm

(
|t− x|
wp(t)

;x

)
≤
{
wp(x)Bm

(
(t− x)2

wp(t)
;x

)} 1
2
{
wp(x)Bm

(
1

wp(t)
;x

)} 1
2

≤ M10(p, x)

m3/2

for x ∈ R0 and m ∈ N. Consequently

wp,q(x, y)

∣∣∣∣Bm,n(∫ t

x

f ′u(u, z)du;x, y

)∣∣∣∣ ≤ M11(p, q, x)

m3/2
‖f ′x‖p,q, m ∈ N.

Analogously we obtain

wp,q(x, y)

∣∣∣∣Bm,n(∫ z

y

f ′v(x, v)dv;x, y

)∣∣∣∣ ≤ M12(p, q, y)

n3/2
‖f ′y‖p,q, n ∈ N.

Combining these, we derive from (3.31)

wp,q(x, y) |Bm,n(f ;x, y)− f(x, y)| ≤M9(p, q, x, y)

{
1

m3/2
‖f ′x‖p,q +

1

n3/2
‖f ′y‖p,q

}
,

for all m,n ∈ N , where M9 = M9(p, q) = const. > 0. Thus the proof of (3.30) is completed. �

Theorem 3.6. Suppose that f ∈ Cp,q , p, q ∈ N0. Then there exists a positive function M13(p, q, x, y) which does not depend
on m,n such that

(3.32) wp,q(x, y) |Bm,n(f ;x, y)− f(x, y)| ≤M13(p, q, x, y)ω1

(
f, Cp,q;

1

m3/2
,

1

n3/2

)
, (x, y) ∈ R2

+,

for all m,n ∈ N .

Proof. We apply the Stieklov function fh,δ for f ∈ Cp,q

(3.33) fh,δ(x, y) :=
1

hδ

∫ h

0

du

∫ δ

0

f(x+ u, y + v)dv, (x, y) ∈ R2
0, h, δ > 0.

From (3.33) it follows that

fh,δ(x, y)− f(x, y) =
1

hδ

∫ h

0

du

∫ δ

0

∆u,vf(x, y)dv,

(fh,δ)
′
x(x, y) =

1

hδ

∫ δ

0

(∆h,vf(x, y)−∆0,vf(x, y)) dv,

(fh,δ)
′
y(x, y) =

1

hδ

∫ h

0

(∆u,δf(x, y)−∆u,0f(x, y)) du.

Thus

(3.34) ‖fh,δ − f‖p,q ≤ ω1 (f, Cp,q;h, δ) ,

(3.35)
∥∥(fh,δ)

′
x

∥∥
p,q
≤ 2h−1ω1 (f, Cp,q;h, δ) ,
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(3.36)
∥∥∥(fh,δ)

′
y

∥∥∥
p,q
≤ 2δ−1ω1 (f, Cp,q;h, δ) ,

for all h, δ > 0, which show that fh,δ ∈ C1
p,q if f ∈ Cp,q and h, δ > 0.

Now, for Bm,n defined by (3.25), we can write

wp,q(x, y) |Bm,n(f ;x, y)− f(x, y)|
≤ wp,q(x, y) {|Bm,n (f(t, z)− fh,δ(t, z);x, y)|+

+ |Bm,n (fh,δ(t, z);x, y)− fh,δ(x, y)|
+ |fh,δ(x, y)− f(x, y)|} := T1 + T2 + T3.

By (3.23), (3.29) and (3.34),
T1 ≤ ‖Bm,n (f − fh,δ; ·, ·)‖p,q ≤M3(p, q) ‖f − fh,δ‖p,q

≤M3(p, q)ω1 (f, Cp,q;h, δ) ,

T3 ≤ ω1 (f, Cp,q;h, δ) .

Applying Theorem 3.5 and (3.35) and (3.36), we get

T2 ≤M14(p, q, x, y)

{
1

m3/2

∥∥(fh,δ)
′
x

∥∥
p,q

+
1

n3/2

∥∥∥(fh,δ)
′
y

∥∥∥
p,q

}
≤ 2M14(p, q, x, y)ω1 (f, Cp,q;h, δ)

{
h−1

1

m3/2
+ δ−1

1

n3/2

}
.

Consequently there exists M15 ≡M15(p, q, x, y) such that

wp,q(x, y) |Bm,n(f ;x, y)− f(x, y)|

(3.37) ≤M15(p, q, x, y)ω (f, Cp,q;h, δ)

{
1 + h−1

1

m3/2
+ δ−1

1

n3/2

}
,

for m,n ∈ N and h, δ > 0. Now, for m,n ∈ N setting h = 1
m3/2 and δ = 1

n3/2 to (3.37), we obtain (3.32). �

From Theorem 3.6 follows

Corollary 3.3. Let f ∈ Cp,q , p, q ∈ N0. Then

(3.38) lim
m,n→∞

Bm,n(f ;x, y) = f(x, y).

Moreover (3.38) holds uniformly on every rectangle 0 < x ≤ x0, 0 < y ≤ y0.

Theorem 3.6 in our paper shows that operators Bm,n, m,n ∈ N , give a better degree of approximation of functions
f ∈ Cp,q than the classical Szasz-Mirakyan operator Sm,n (considered in [17] for continuous and bounded functions)
and some other known operators (for example, see [16, 20]).

Acknowledgments. The author is thankful to the reviewer for making valuable suggestions leading to a better
presentation of the paper.
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