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Some applications of CHEVIE to the theory of algebraic groups

MEINOLF GECK

ABSTRACT.
The computer algebra system CHEVIE is designed to facilitate computations with various combinatorial structures arising in Lie theory, like finite
Coxeter groups and Hecke algebras. We discuss some recent examples where CHEVIE has been helpful in the theory of algebraic groups, in
questions related to unipotent classes, the Springer correspondence and Lusztig families.

1. INTRODUCTION

CHEVIE [21] is a computer algebra project which was initiated about 20 years ago and has been further developed
ever since; general information can be found on the webpage

http://www.math.rwth-aachen.de/˜CHEVIE

which also contains links to various extensions and updates of CHEVIE. The aim of CHEVIE is two-fold: firstly, it
makes vast amounts of explicit data concerning Coxeter groups, Hecke algebras and groups of Lie type systematically
available in electronic form; secondly, it provides tools, pre-defined functions and a programming environment (via
its implementation in GAP [57] and MAPLE [9]) for performing symbolic calculations with these data. Through this
combination, it has been helpful in a variety of applications; this help typically consists of:

• explicitly verifying certain properties (usually in the large groups of exceptional type) in the course of a case–
by–case argument, or

• producing evidence in support of hypotheses and, conversely, searching for counter-examples, or
• performing experiments which may lead eventually to new theoretical insights (a conjecture, a theorem, a

technique required in a proof, . . .),
or a combination of these. While the scope of CHEVIE is gradually expanding, the original design has been par-
ticularly suited to algorithmic questions arising from Lusztig’s work [41], [47] on Hecke algebras and characters of
reductive groups over finite fields.

The purpose of this article is to present selected examples of this interplay between theory and experimentation.
The choice of examples is, of course, influenced by the author’s own preferences. For quite some time now, algorith-
mic methods are well-established in various aspects of Lie theory (see, e.g., [2], [12], [33]), so another author—even
another author from the CHEVIE project itself!—may easily come up with a completely different set of examples and
applications.

A finite Coxeter group W can be described by a presentation with generators and defining relations, or by its
action on a root system in some Euclidean space. Thus, they are particulary suitable for the application of algorithmic
methods. In Section 2, we consider the conjugacy classes of W , especially questions related to elements of minimal
length in the various classes—which is one of the areas where CHEVIE has been extremely helpful from its very
beginnings; see [26], [25]. By recent work of Lusztig [51], this plays a role in the construction of a remarkable map
from conjugacy classes in a finite Weyl group to the unipotent classes in a corresponding algebraic group; this will
be explained in Section 3.

In Section 4, we shall consider certain standard operations in the character ring of W , like tensoring with the sign
character and induction from parabolic subgroups—an area where one can use the full power of the highly efficient
GAP functionality for character tables of finite groups. These operations are the combinatorial counter-part of a
number of constructions related to unipotent classes in algebraic groups and Lusztig’s families of representations.

Finally, in Section 5, we consider the problem of computing the Green functions of a finite group of Lie type. These
functions provide a substantial piece of information towards the determination of the whole character table of such
a group. The algorithm described by Shoji [60] and Lusztig [43, §24] is now known to work without any restriction
on the characteristic, and we explain how this can be turned into an efficient GAP program. A remarkable formula
combining Green functions, character values of Hecke algebras and Fourier matrices is used in Lusztig’s work [51]
(mentioned above) to deal with groups of exceptional type—a highlight in the applications of CHEVIE.

While most of the content of these notes is drawn from existing sources, there are a few items which are new; see,
for example, the general existence result for excellent elements in the conjugacy classes of finite Coxeter groups in
Section 2 and the characterisation of the a-function in Section 4. We also mention our presentation of the algorithmic
questions around the computation of Green functions and Lusztig’s results [51] in Section 5; in particular, we develop
in somewhat more detail the fact that the Fq-rational points in the intersections of Bruhat cells with unipotent classes
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can be counted by “polynomials in q”. This, and the experimental results in [23], lead us to conjecture the existence
of a natural map from the conjugacy classes of W to the Lusztig families of W ; see Remark 5.14.

We assume that the reader has some familiarity with the general theory of (finite) Coxeter groups, the character
theory of finite groups, and basic notions about algebraic groups; see, for example, [8], [27], [16]. The manual of the
GAP part of CHEVIE (available online in GAP or on the above webpage) may actually be a good place to start to
read about the algorithmic theory of Coxeter groups.

This is not meant to be a comprehensive survey about applications of CHEVIE. The interested reader may consult
the bibliography for further reading; see, for example, Achar–Aubert [1], Bellamy [3], Casselman [10], Gomi [28], He
[30], Himstedt–Huang [31], Lusztig [48], Reeder [56], to mention but a few from a variety of topics. Finally, Michel’s
development version [55] of CHEVIE contains a wealth of material around complex reflection groups and “Spetses”
[7], a subject that we do not touch upon at all.

2. CONJUGACY CLASSES OF FINITE COXETER GROUPS

Let W be a finite Coxeter group, with generating set S and corresponding length function l : W → Z>0. In
CHEVIE, such a group is realised as a GAP permutation group via its action on the underlying root system; this
provides highly efficient ways of performing computations with the elements of W (multiplication, length function,
reduced expressions, . . .); see [21, §2.2].

We shall now explain some results on conjugacy classes which have been found and established through experi-
ments with CHEVIE.

Let Cl(W ) be the set of all conjugacy classes of W . For C ∈ Cl(W ), let

dC := min{l(w) | w ∈ C} and Cmin := {w ∈ C | l(w) = dC}.

Thus, Cmin is the set of elements of minimal length in C. For any subset I ⊆ S, letWI ⊆W be the parabolic subgroup
generated by I . We say that C ∈ Cl(W ) is cuspidal if C ∩WI = ∅ for all proper subsets I $ S. (These classes may also
be called anisotropic or elliptic.) One can show that C is cuspidal if and only if Cmin ∩WI = ∅ for all proper subsets
I $ S; see [27, 3.1.12].

Let w,w′ ∈ W . We write w → w′ if there are sequences of elements w = y0, y1, . . . , yn = w′ in W and generators
s1, . . . , sn ∈ S such that, for each i ∈ {1, . . . , n}, we have yi = siyi−1si and l(yi) 6 l(yi−1). This is a pre-order relation
on W . Let↔ denote the associated equivalence relation, that is, we have y ↔ w if and only if y → w and w → y. The
equivalence classes are called the cyclic shift classes of W ; see [27, 3.2.3]. Note that all elements in a fixed cyclic shift
class have the same length. Clearly, every conjugacy class of W is a union of (several, in general) cyclic shift classes.

Proposition 2.1 (See [27, 3.2.7]). Let C ∈ Cl(W ) be cuspidal. Then the elements of Cmin form a single cyclic shift class.

The proof of this result essentially relies on computer calculations, performed originally in [26]; see also [21, §3.2],
[27, §3.3].

Using the concept of cuspidal classes, we obtain a full classification of the conjugacy classes of W . To state the
following result, let us denote by I(W,S) the set of all pairs (I, C ′) where I ⊆ S and C ′ ∈ Cl(WI) is cuspidal (in
WI ). Given two such pairs (I1, C

′
1) and (I2, C

′
2), we write (I1, C

′
1) ∼ (I2, C

′
2) if there exists some x ∈ W such that

I2 = xI1x
−1 and C ′2 = xC ′1x

−1.

Theorem 2.2 (Classification of Cl(W ), [27, 3.2.12]). Let C ∈ Cl(W ). Then the pairs (I, C ′), where I ⊆ S is the set of
generators involved in a reduced expression of some w ∈ Cmin and C ′ is the conjugacy class of w in WI , form an equivalence
class in I(W,S). Furthermore, we obtain a bijection

Cl(W )
1−1−→ I(W,S)/ ∼

by sending C ∈ Cl(W ) to the equivalence class of pairs (I, C ′) as above.

(Again, the proof heavily relies on computer calculations.)
The above two results combined show that many properties about conjugacy classes of W in general can be re-

duced to the study of suitable elements in cuspidal classes of W . Following recent work of Lusztig [51], we will now
discuss some special properties of the elements of minimal length in the classes of W . Let

T := {wsw−1 | w ∈W, s ∈ S}

be the set of reflections in W .

Lemma 2.3. Let t ∈ T . Then t can be written in the form t = ysy−1 where y ∈W and s ∈ S are such that l(t) = 2l(y) + 1.

Proof. Since t has order 2, we can apply the argument in the proof of [27, 3.2.10]. This shows that there exists a subset
J ⊆ S and an element y ∈ W such that t = ywJy

−1 where wJ is the longest element in WJ ; furthermore, wJ is
central in WJ and l(t) = 2l(y) + l(wJ). It follows that t has |J | eigenvalues equal to −1 in the standard reflection
representation ofW . Since t is a reflection, this forces that |J | = 1. So we have wJ = s for some s ∈ S, as required. �
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Definition 2.4 (Lusztig [51, 2.1]). Let C ∈ Cl(W ); suppose that C corresponds to a pair (I, C ′) as in Theorem 2.2. An
element w ∈ Cmin is called excellent if there exist reflections t1, . . . , tr ∈ T , where r = |I|, such that

w = t1 · · · tr and l(w) = l(t1) + · · ·+ l(tr).

Thus, using Lemma 2.3, an excellent element w ∈ Cmin admits a reduced expression of the form

w = (s11s
1
2 · · · s1q1s

1
q1+1s

1
q1 · · · s

1
2s1)(s21s

2
2 · · · s2q2s

2
q2+1s

2
q2 · · · s

2
2s

2
2)·

. . . · (sr1sr2 · · · srqrs
r
qr+1s

r
qr · · · s

r
2s
r
1),

where sji ∈ S for all i, j and l(w) =
∑

16j6r(2qj + 1), as in [51, 2.1(a)].

Some examples are already mentioned in [51, 2.1]. In particular, these show that, for a given class C ∈ Cl(W ),
there can exist elements in Cmin which are not excellent. Lusztig also establishes the existence of excellent elements
in all conjugacy classes of finite Weyl groups, except when there is a component of type E7 or E8. Here we complete
the picture by the following slightly stronger result, valid for all finite Coxeter groups.

Proposition 2.5. Let C ∈ Cl(W ); suppose that C corresponds to a pair (I, C ′) as in Theorem 2.2. Then, for some element
w ∈ Cmin, there exist reflections t1, . . . , tr ∈ T , where r = |I|, with the following properties:

(a) We have w = t1 · · · tr and l(w) = l(t1) + · · ·+ l(tr); thus, w is excellent.
(b) There exist subsets ∅ = J0 ⊆ J1 ⊆ . . . ⊆ Jr ⊆ S such that, for 1 6 i 6 r, the reflection ti lies in WJi and is a

distinguished coset representative with respect to WJi−1 , that is, we have l(sti) > l(ti) for all s ∈ Ji−1.

Proof. By standard reduction arguments, we can assume that (W,S) is irreducible. It will also be sufficient to deal
with the case where C is a cuspidal class. Now we consider the various types of irreducible finite Coxeter groups.

First assume that W is of type I2(m) where m > 3. Denote the two generators of W by s1, s2. The cuspidal
classes of W are described in [27, Exp. 3.2.8]; representatives of minimal length are given by wi = (s1s2)i where
1 6 i 6 bm/2c. We see that the decomposition wi = (s1)(s2s1 · · · s1s2) (where the second factor has length 2i − 1)
satisfies the conditions (a) and (b).

If W is of type An−1, then there is only one cuspidal class C, namely, that containing the Coxeter elements. Fur-
thermore, Cmin consists precisely of the Coxeter elements; see [27, 3.1.16]. Clearly, a reduced expression for a Coxeter
element is a decomposition as a product of reflections which satisfies (a) and (b).

Next assume that W is of type Bn or Dn, where we use the following labelling of the generators of W :

Bn s s s p p p st s1 s2 sn−1 Dn ss��HHs s p p p su

s1

s2 s3 sn−1

The cuspidal classes ofW are parametrized by the partitions of n (with an even number of non-zero parts in typeDn);
see [25, §2.2] or [27, §3.4]. Let Cα ∈ Cl(W ) be the cuspidal class corresponding to the partition α. A representative of
minimal length in Cα is given as follows. For 1 6 i 6 n− 1, we set

ŝi :=

{
sisi−1 . . . s1ts1 . . . si−1si in type Bn,
sisi−1 . . . s2us1s2 . . . si−1si in type Dn.

For i = 0 we set ŝ0 := t (in type Bn) and ŝ0 := 1 (in type Dn). Given m > 0 and d > 1, we define a “negative block”
of length d and starting at m by

b−(m, d) := ŝmsm+1sm+2 · · · sm+d−1.

Now let 1 6 α1 6 α2 6 . . . 6 αh be the non-zero parts of α (where h is even if we are in type Dn). Let mi =
α1 + · · ·+ αi−1 for i > 1, where m1 = 0. Then we have

wα := b−(m1, α1)b−(m2, α2) · · · b−(mh, αh) ∈ Cαmin.

Note that wα = t1 · · · tn where t1 = ŝ0 and ti ∈ {si−1, ŝi−1} for i > 2.
Now, in type Bn, each ŝi is a reflection. It easily follows that wα is excellent (as already noticed by Lusztig [51,

2.2(a)]) and the additional requirements in (b) are satisfied. The situation is slightly more complicated in type Dn,
since ŝi is not a reflection for i > 1. Lusztig [51, 2.3] already verified that wα is excellent but the expression for wα as
a product of reflections described by Lusztig does not satisfy the conditions in (b). We need to somewhat modify wα
in order to make sure that (b) holds. This is done as follows. Since now h is even, we can write

wα = (b1b2)(b3b4) · · · (bh−1bh) where bi := b−(mi, αi) for all i.

By [25, 2.2] (see also the proof of [25, Lemma 2.6(b)]), the factors b2, . . . , bh all commute with each other. On the other
hand, note that m1 = 0 and so b1 = b−(m1, α1) = s1s2 · · · sα1−1. In this case, we have b1bi = bib̃1 and b̃1bi = bib1 for
any i > 2, where b̃1 := us2 . . . sαi−1. Since h is even, this yields

wα = b1(b3b4) · · · (bh−1bh)b2 = (bh−1bh) · · · (b3b4)(b1b2).

Since every element in W is conjugate to its inverse (see [27, 3.2.14]), we obtain

w′α := w−1α = (b1b2)−1(b3b4)−1 · · · (bh−1bh)−1 ∈ Cαmin.
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TABLE 1. Excellent elements in types H3, H4, F4, E6, E7

F4 dC excellent w ∈ Cmin

F4 4 (4)(3)(2)(1)

B4 6 (2)(4)(323)(1)

F4(a1) 8 (3)(4)(323)(121)

D4 10 (2)(323)(43234)(1)

C3 +A1 10 (1)(4)(3)(2132132)

D4(a1) 12 (3)(2)(43234)(12321)

A3 + Ã1 14 (2)(323)(43234)(12321)

A2 + Ã2 16 (2)(1)(4)(3213234321323)

4A1 24 (2)(323)(43234)·
·(123214321324321)

E6 dC excellent w ∈ Cmin

E6 6 (1)(4)(2)(3)(6)(5)

E6(a1) 8 (1)(4)(3)(242)(5)(6)

E6(a2) 12 (3)(1)(5)(6)(34543)(242)

A5 +A1 14 (1)(2)(3)(6)(5)(423454234)

3A2 24 (1)(2)(3)(5)(6)·
·(4315423456542314354)

H3 dC excellent w ∈ Cmin

6 3 (1)(2)(3)

8 5 (1)(212)(3)

9 9 (1)(212)(32123)

10 15 (1)(3)(2121321213212)

H4 dC excellent w ∈ Cmin

11 4 (1)(2)(3)(4)
14 6 (1)(212)(3)(4)

15 8 (1)(2)(32123)(4)

17 10 (1)(212)(32123)(4)
18 12 (2)(1)(2123212)(343)

19 14 (3)(2)(12132121321)(4)

21 16 (1)(3)(2121321213212)(4)
22 16 (1)(212)(32123)(4321234)

23 18 (1)(212)(1321213)(4321234)

24 20 (1)(2)(12132121321)(4321234)
25 22 (1)(3)(2121321213212)(4321234)

26 24 (1)(2)(4)(321213212343212132123)

27 26 (2)(4)(121)(321213212343212132123)
28 28 (1)(4)(212)(32121321432121321432123)

29 30 (4)(3)(2)(123212132143212132124321213)
30 36 (3)(2)(12132121321)(43212132123432121321234)

31 38 (1)(3)(2121321213212)(43212132123432121321234)

32 40 (1)(3)(4)(2132123432121321234321213212343212132)
33 48 (1)(4)(212)(3212132123432121321234321213212343212132123)

34 60 (1)(3)(2121321213212)·
·(432121321234321213212343212132123432121321234)

E7 dC excellent w ∈ Cmin

E7 7 (7)(6)(5)(4)(3)(1)(2)

E7(a1) 9 (4)(7)(6)(5)(242)(3)(1)
E7(a2) 11 (5)(4)(7)(565)(242)(3)(1)

E7(a3) 13 (3)(5)(7)(6)(454)(23423)(1)

D6 +A1 15 (2)(3)(7)(6)(5)(423454234)(1)
A7 17 (2)(3)(6)(7)(565)(423454234)(1)

E7(a4) 21 (5)(6)(7)(45654)(2)(34543)(1234231)

D6(a2) +A1 23 (2)(3)(7)(6)(5)(423454234)(134565431)
A5 +A2 25 (3)(1)(2)(7)(6)(5)(4315423456542314354)

D4 + 3A1 31 (2)(3)(5)(7)(423454234)(65423456765423456)(1)

2A3 +A1 33 (3)(1)(2)(5)(7)(423454234)(1654234567654231456)
7A1 63 (2)(3)(5)(7)(423454234)·

·(65423456765423456)(134254316542345676542314354265431)

Finally, we verify that each product bibi+1 in the above expression can be written in a suitable way as a product of
reflections. First, we compute:

b1b2 = (s1s2 · · · sα1−1)(uα1
sα1+1 · · · sα1+α2−1)

= (s1 · · · sα1−1sα1
sα1−1 · · · s1)us2 · · · sα1

sα1+1 · · · sα1+α2−1.

Thus, we have (b1b2)−1 = t1 · · · tα1+α2
where

t1 = sα1+α2−1, t2 = sα1+α2−2, . . . , tα1+α2−2 = s2, tα1+α2−1 = u,

tα1+α2
= s1 · · · sα1−1sα1

sα1−1 · · · s1;

note that these are all reflections and m3 = α1 + α2. Note also that the generators in S which are involved in the
expression for tα1+α2

are the ones which already appeared in t1, . . . , tα1+α2−1, together with s1.
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Similarly, for i > 3, we find:

bibi+1 = (umismi+1 · · · smi+αi−1)(umi+αismi+αi+1 · · · smi+αi+αi+1−1)

= (umismi+1 · · · smi+αi−1smi+αismi+αi−1 · · · smi+1umi)·
· smi+1smi+2 · · · smi+αi+αi+1−1.

Thus, we have (bibi+1)−1 = tmi+1 · · · tmi+αi+αi+1
where

tmi+1 = smi+αi+αi+1−1, tmi+2 = smi+αi+αi+1−2,

. . . , tmi+αi+αi+1−1 = smi+1,

tmi+αi+αi+1
= umismi+1 · · · smi+αi−1smi+αismi+αi−1 · · · smi+1umi ;

note that these are all reflections and mi+2 = mi + αi + αi+1. Note also that the generators in S which are involved
in the expression for tmi+αi+αi+1 are the ones which already appeared in t1, . . . , tmi+αi+αi+1−1, together with smi .

Combining these formulae, we obtain an expression w′α = t1 · · · tn such that condition (a) holds by construction.
It is now also straightforward to verify that (b) holds. (This uses the above-mentioned information concerning the
generators in S which are involved in the expressions for the ti; we omit further details.) Thus, the assertion is proved
for W of type Bn and Dn.

Finally, in order to deal with the remaining groups of exceptional type, we use algorithmic methods and computer
programs written in CHEVIE. This involves the following steps. Let C ∈ Cl(W ). An element w ∈ Cmin is explicitly
specified in the tables in [27, App. B]. First we compute the whole set Cmin. By Proposition 2.1, this set is the cyclic
shift class containing w, and so it can be effectively computed using Algorithm G in [27, §3.2]. To procede, it will
be convenient to introduce the following notation. Given any element w ∈ W , we let J(w) be the set of all s ∈ S
which appear in a reduced expression for w. (It is well-known that this does not depend on the choice of the reduced
expression.) Then we say that w is pre-excellent if there exists a reflection t ∈ T such that l(wt) = l(w) − l(t) and
J(wt) $ J(w). These conditions can be effectively verified using the standard programs available in CHEVIE. Given
any subset X ⊆W , we define

X ′ := {w ∈ X | w pre-excellent},

X̂ := {wt | w ∈ X ′, t ∈ T such that l(wt) = l(w)− l(t) and J(wt) $ J(w)}.

Now we set C0 := Cmin and then define recursively Ci := Ĉi−1 for i = 1, 2, . . . , |S|. If the set Ĉ|S| is non-empty and
just contains the identity element then, clearly, the recursive procedure for reaching that set determines an element
in Cmin together with a decomposition w = t1 · · · tr as required in (a); furthermore, it yields subsets ∅ = J0 $ J1 $
. . . $ Jr ⊆W such that ti ∈WJi \WJi−1

for 1 6 i 6 r. Given such a decomposition, it is then also straightforward to
verify if the remaining conditions in (b) hold.

It turns out that this procedure is successful for all W of exceptional type. The results are given in Tables 1 and 2
(where we use the notation of [27, App. B]). �

We remark that condition (b) in Proposition 2.5 was essential in turning the question of the existence of excellent
elements for the large exceptional types into a feasible problem. In fact, the formulation of that condition itself was
found by experiments with CHEVIE in small rank examples.

3. BRUHAT DECOMPOSITION AND UNIPOTENT CLASSES

Following Lusztig [50], [51], the results and concepts discussed in the previous section can be seen to have a
geometric significance. Let k be an algebraic closure of the finite field Fp where p is a prime. Let G be a connected
reductive algebraic group over k. Let B ⊆ G be a Borel subgroup and T ⊆ G be a maximal torus contained in B. Let
W = NG(T )/T be the Weyl group of G, a finite Coxeter group. We have the Bruhat decomposition

G =
∐
w∈W

BẇB

where ẇ denotes a representative of w ∈ W in NG(T ). Let Guni be the unipotent variety of G. It is known [35] that
Guni is the union of finitely many conjugacy classes of G which are called the unipotent classes of G. We can now state:

Theorem 3.1 (Lusztig [51, 0.4]). Assume that p is good for G. Let C ∈ Cl(W ). Then there exists a unique unipotent class in
G, denoted by OC , with the following properties:

(a) We have OC ∩BẇB 6= ∅ for some w ∈ Cmin.
(b) Given any w′ ∈ Cmin and any unipotent class O′ we have O′ ∩ Bẇ′B = ∅, unless OC is contained in the Zariski

closure of O′.
Furthermore, the assignment C 7→ OC defines a surjective map from Cl(W ) to the set of unipotent classes of G.
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Recall that p is “good” for G if p is good for each simple factor involved in G; the conditions for the various simple
types are as follows.

An : no condition,
Bn, Cn, Dn : p 6= 2,

G2, F4, E6, E7 : p 6= 2, 3,
E8 : p 6= 2, 3, 5.

Remark 3.2. Let C ∈ Cl(W ) and O be a unipotent class in G. Let w,w′ ∈ Cmin. As pointed out in [51, 0.2], we have
the equivalence:

O ∩BẇB 6= ∅ ⇔ O ∩Bẇ′B 6= ∅.
(This follows from Remark 3.5 and Corollary 3.7 below.) Hence, in condition (a) of the theorem we have in fact
OC ∩BẇB 6= ∅ for all w ∈ Cmin.

The excellent elements in the conjugacy classes of W (see Definition 2.4) play a role in the proof of Theorem 3.1
for G of classical type. More generally, they enter the picture via the following conjecture which would provide an
alternative and more direct description of the map C 7→ OC .

Conjecture 3.3 (Lusztig [51, 4.7]). Let C ∈ Cl(W ) and w ∈ Cmin be excellent, with a decomposition w = t1 · · · tr as in
Definition 2.4. Define a corresponding unipotent element uw ∈ G as in [51, 2.4]. Then uw ∈ OC .

Example 3.4. Let Φ be the root system of G with respect to T and {αs | s ∈ S} ⊆ Φ be the system of simple roots
determined by B. Let Xα = {xα(ξ) | ξ ∈ k} ⊆ G be the root subgroup corresponding to α ∈ Φ. Now let s ∈ S
and C ∈ Cl(W ) be the conjugacy class containing s. Clearly, s is excellent. By the procedure in [51, 2.4], we obtain
the unipotent element us = x−αs(1) ∈ G; note that us ∈ BṡB. Then OC is the unipotent class containing us. (This
immediately follows from the reduction arguments in [51, 1.1], which show that we can assume without loss of
generality that W = 〈s〉 and, hence, G is a group of type A1.)

Remark 3.5. Let q be a power of p and F : G → G be the Frobenius map with respect to a split Fq-rational structure
on G, such that F (t) = tq for all t ∈ T . Then B and all unipotent classes of G are F -stable; furthermore, F acts as the
identity on W . For each w ∈W , we can choose ẇ ∈ NG(T ) such that F (ẇ) = ẇ. Given an F -stable subset M ⊆ G, we
write MF := {m ∈M | F (m) = m}. Then, for any w ∈W and any unipotent class O of G, we have the equivalence:

(a) O ∩BẇB 6= ∅ ⇔ |(O ∩BẇB)F | 6= 0 for q sufficiently large.

Hence, the conditions in Theorem 3.1 can be verified by working in the finite groups GF . (This remark already
appeared in [51, 1.2].)

Remark 3.6. The cardinalities on the right hand side of the equivalence in Remark 3.5 can be computed using the
representation theory of the finite group GF . Namely, consider the permutation module C[GF /BF ] for GF and let

Hq = EndCGF
(
C[GF /BF ]

)opp

be the corresponding Hecke algebra. (Here, “opp” denotes the opposite algebra; thus,Hq acts on the right on C[GF /BF ].)
For w ∈W , the linear map

Tw : C[GF /BF ]→ C[GF /BF ], xBF 7→
∑

yBF∈GF /BF

x−1y∈BF ẇBF

yBF ,

is contained in Hq . Furthermore, {Tw | w ∈ W} is a basis of Hq and the multiplication is given as follows, where
s ∈ S and w ∈W :

TsTw =

{
Tsw if l(sw) > l(w),

qTsw + (q − 1)Tw if l(sw) < l(w);

see, for example, [11, §67A], [27, §8.4]. Now C[GF /BF ] is a (CGF ,Hq)-bimodule. For any g ∈ GF and w ∈ W , one
easily finds using the defining formulae:

trace
(
(g, Tw),C[GF /BF ]

)
=
|CGF (g)|
|BF |

|Og ∩BF ẇBF |

where Og denotes the conjugacy class of g in GF . Now, for any irreducible representation V ∈ Irr(Hq) there is a
corresponding irreducible representation ρV ∈ IrrC(GF ), and this gives rise to a direct sum decomposition

(a) C[GF /BF ] ∼=
∑

V ∈Irr(Hq)

ρV ⊗ V

as (CGF ,Hq)-bimodules; see, for example, [11, §68B], [27, 8.4.4]. In combination with the previous discussion, this
yields the formula

(b) |Og ∩BF ẇBF | =
|BF |
|CGF (g)|

∑
V ∈Irr(Hq)

trace(g, ρV ) trace(Tw, V ),
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which already appeared in [50, 1.5(a)]. We shall illustrate the use of this formula in a small rank example below.
Some more sophisticated techniques for the evaluation of the right hand side of (b) will be discussed in Section 5.

Corollary 3.7 (Lusztig [50, 1.5], [51, 1.2]). Let O be a unipotent class in G.

(a) For a fixed g ∈ OF , the linear mapHq → C, Tw 7→ |Og ∩BF ẇBF |, is a trace function onHq .
(b) The linear mapHq → C, Tw 7→ |(O ∩BẇB)F |, is a trace function onHq .
(c) Let C ∈ Cl(W ) and w,w′ ∈ Cmin. Then |(O ∩BẇB)F | = |(O ∩Bẇ′B)F |.

Proof. (a) The formula in Remark 3.6(b) shows that the map Tw 7→ |Og ∩ BF ẇBF | is a C-linear combination of
characters ofHq and, hence, a trace function.

(b) First note that (BẇB)F = BF ẇBF . (This follows from the sharp form of the Bruhat decomposition; see [8,
2.5.13], [16, 1.7.2].) Now let u1, . . . , ud ∈ GF be representatives of the GF -conjugacy classes contained in OF . Then

|(O ∩BẇB)F | = |OF ∩BF ẇBF | =
∑

16i6d

|Oui ∩BF ẇBF |

= |BF |
∑

16i6d

|CGF (ui)|−1trace
(
(ui, Tw),C[GF /BF ]

)
.

So the assertion follows from (a).
(c) This is a general property of trace functions onHq ; see [27, 8.2.6]. �

Remark 3.8. Lusztig’s formulation [51, 0.4] of Theorem 3.1 looks somewhat different: Instead of using the intersec-
tions O ∩BẇB, he uses certain sub-varieties Bγw ⊆ G×G/B (where γ denotes O). However, we have

|(Bγw)F | =
∑
g∈γF

trace
(
(g, Tw),C[GF /BF ]

)
= |GF /BF | |(O ∩BẇB)F |

where the first equality holds by [51, 1.2] and the second by Remark 3.6 (see the proof of Corollary 3.7(b)). In com-
bination with Remark 3.5 we see that, indeed, the formulation of Theorem 3.1 is equivalent to Lusztig’s version
[51].

Example 3.9. Let G = Sp4(k) where W is of type B2, with generators S = {s, t}. The algebra Hq has 5 irreducible
representations; their traces on basis elements Tw (w ∈ Cmin) are given as follows; see [27, Tab. 8.1, p. 270]:

T1 Tt Tstst Ts Tst
ind 1 q q4 q q2

σ 2 q − 1 −2q2 q − 1 0

sgn1 1 −1 q2 q −q
sgn2 1 q q2 −1 −q
sgn 1 −1 1 −1 1

Now assume that char(k) 6= 2. (Recall that 2 is a bad prime for type B2.) There are four unipotent classes in G which
we denote by Oµ where the subscript µ specifies the Jordan type of the elements in the class. For example, the class
O(211) consists of unipotent matrices with one Jordan block of size 2 and two blocks of size 1. The set OF(22) splits
into two classes in GF which we denote by O(22) and O′(22); each of the remaining classesOµ gives rise to exactly one
class in GF which we denote by Oµ. The values of the irreducible characters of GF corresponding to Irr(Hq) can be
extracted from Srinivasan’s table [66]:

O(1111) O(211) O(22) O′(22) O(4)

|CGF (u)| |GF | q4(q2 − 1) 2q3(q − 1) 2q3(q + 1) q2

ρind 1 1 1 1 1

ρσ
1
2q(q + 1)2 1

2q(q + 1) q 0 0

ρsgn1

1
2q(q

2 + 1) − 1
2q(q − 1) q 0 0

ρsgn2

1
2q(q

2 + 1) 1
2q(q + 1) 0 q 0

ρsgn q4 0 0 0 0

We now multiply the transpose of the character table of Hq with the above piece of Srinivasan’s matrix. By the
formula in Remark 3.6(b), this yields (up to a factor |CGF (u)|/|BF |) the matrix of cardinalities |Ou ∩ BF ẇBF | where
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u ∈ GF is unipotent and w ∈ Cmin for some C ∈ Cl(W ):

O(1111) O(211) O(22) O′(22) O(4)

1 |GF /BF | q2 + 2q + 1 3q + 1 q + 1 1

t 0 q3 + q2 q2 − q q2 + q q

stst 0 0 q4 − q3 q4 + q3 q4

s 0 0 2q2 0 q

st 0 0 0 0 q2

The closure relation among the unipotent classes is a linear order, in the sense that O $ O′ if and only if dimO <
dimO′. Thus, Theorem 3.1 yields the map

C1 7→ O(1111), Cs 7→ O(22), Ct 7→ O(211), Cst 7→ O(4), Cstst 7→ O(22)

where Cw denotes the conjugacy class of W containing w.
Now assume that char(k) = 2. We verify that, in this “bad” characteristic case, the assertions of Theorem 3.1

still hold. We use a similar convention for denoting unipotent classes as above; just note that, now, there are two
unipotent classes in G with elements of Jordan type (22), which we denote by O(22) and O∗(22). The values of the
irreducible characters ofGF corresponding to Irr(Hq) have been determined by Enomoto [13] (with some corrections
due to Lübeck):

O(1111) O(211) O∗(22) O(22) O(4) O′(4)
|CGF (u)| |GF | q4(q2 − 1) q4(q2 − 1) q4 2q2 2q2

ρind 1 1 1 1 1 1

ρσ
1
2q(q + 1)2 1

2q(q + 1) 1
2q(q + 1) q

2
q
2 − q2

ρsgn1

1
2q(q

2 + 1) − 1
2q(q − 1) 1

2q(q + 1) q
2 − q2

q
2

ρsgn2

1
2q(q

2 + 1)2 1
2q(q + 1) − 1

2q(q − 1) q
2 − q2

q
2

ρsgn q4 0 0 0 0 0

As before, this yields (up to a factor |CGF (u)|/|BF |) the matrix of cardinalities |Ou ∩ BF ẇBF | where u ∈ GF is
unipotent and w ∈ Cmin for some C ∈ Cl(W ):

O(1111) O(211) O∗(22) O(22) O(4) O′(4)
1 |GF /BF | q2 + 2q + 1 q2 + 2q + 1 2q + 1 1 1

t 0 q3 + q2 0 q2 q q

stst 0 0 0 q4 q4 − 2q3 q4 + 2q3

s 0 0 q3 + q2 q2 q q

st 0 0 0 0 2q2 0

We conclude that the conditions in Theorem 3.1 hold for the map

C1 7→ O(1111), Cs 7→ O∗(22), Ct 7→ O(211), Cst 7→ O(4), Cstst 7→ O(22).

As pointed out by Lusztig [52, 4.8], there is considerable evidence that, in general, Theorem 3.1 will continue to hold
in bad characteristic.

4. CHARACTERS OF FINITE COXETER GROUPS

All the general GAP functionality for working with character tables of finite groups is available for finite Coxeter
groups: For example, we can form tensor products of characters, induce characters from subgroups, and decom-
pose the characters so obtained into irreducibles. For a finite Coxeter group W , the following versions of the above
operations are particularly relevant:

• tensoring with the sign character (usually denoted here by “sgn”);
• inducing characters from parabolic subgroups (or reflection subgroups).

Beginning with [37], Lusztig developed the idea that various data which are important in the representation theory of
reductive algebraic groups can be recovered purely in terms of the above operations together with certain numerical
functions on the irreducible characters of W . (See Lusztig [49] for more recent work in this direction.) Quite often
this leads to explicit recursive descriptions of these data, which can be effectively implemented in programs written
in the GAP language. We discuss some examples in this section.

Probably the most subtle of the numerical functions on the irreducible characters of W is given by the so-called
“a-invariants”. These are originally defined in [37] by using the “generic degrees” of the corresponding generic
Iwahori–Hecke algebra; see [11, §68C], [27, 9.3.6]. Developing an idea in [27, §6.5], we begin by showing that these
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“a-invariants” can be characterised purely in terms of the characters of W , without reference to the generic Iwahori–
Hecke algebra.

We shall work in the general “multi-parameter” setting of [40]. To describe this, let Γ be an abelian group (written
additively). Following Lusztig [47], we say that a function L : W → Γ is a weight function if we have

L(ww′) = L(w) + L(w′) for all w,w′ ∈W such that l(ww′) = l(w) + l(w′).

Note that such a function L is uniquely determined by the values {L(s) | s ∈ S}. Furthermore, if {cs | s ∈ S} is
a collection of elements in Γ such that cs = ct whenever s, t ∈ S are conjugate in W , then there is (unique) weight
function L : W → Γ such that L(s) = cs for all s ∈ S. (This follows from Matsumoto’s Lemma; see [27, §1.2].) We
will further assume that Γ admits a total ordering 6 which is compatible with the group structure, that is, whenever
g, g′ ∈ Γ are such that g 6 g′, we have g + h 6 g′ + h for all h ∈ Γ. Then we will require that

L(s) > 0 for all s ∈ S.

(The standard and most important example of this whole setting is Γ = Z with its natural ordering; if, moreover, we
have L(s) = 1 for all s ∈ S, then we say that we are in the “equal parameter case”.)

Let Irr(W ) be the set of (complex) irreducible representations of W (up to isomorphism). Having fixed L,Γ,6 as
above, we wish to define a function

Irr(W )→ Γ>0, E 7→ ãE .

We need one further piece of notation. Recall that T = {wsw−1 | w ∈ W, s ∈ S} is the set of all reflections in W . Let
S′ ⊆ S be a set of representatives of the conjugacy classes of W which are contained in T . For s ∈ S′, let Ns be the
cardinality of the conjugacy class of s; thus, |T | =

∑
s∈S′ Ns. Now let E ∈ Irr(W ) and s ∈ S′. Since s has order 2,

it is clear that trace(s, E) ∈ Z. Hence, by a well-known result in the character theory of finite groups, the quantity
Nstrace(s, E)/ dimE is an integer. Thus, we can define

ωL(E) :=
∑
s∈S′

Ns trace(s, E)

dimE
L(s) ∈ Γ.

(Note that this does not depend on the choice of the set of representatives S′ ⊆ S.)

Definition 4.1. We define a function Irr(W ) → Γ, E 7→ ãE , inductively as follows. If W = {1}, then Irr(W ) only
consists of the unit representation (denoted 1W ) and we set ã1W := 0. Now assume that W 6= {1} and that the
function E 7→ ãE has already been defined for all proper parabolic subgroups of W . Then, for any E ∈ Irr(W ), we
can define

ã′E := max{ãM |M ∈ Irr(WJ) where J $ S and M ↑ E}.
Here, we write M ↑ E if E is an irreducible constituent of the representation obtained by inducing M from WJ to W .
Finally, we set

ãE :=

{
ã′E if ã′E⊗sgn − ã′E 6 ωL(E),

ã′E⊗sgn − ωL(E) otherwise.

One immediately checks that this function satisfies the following conditions:

ãE > ã′E > 0 and ãE⊗sgn − ãE = ωL(E) for all E ∈ Irr(W ).

This also shows that ãE > ãM if M ↑ E where M ∈ Irr(WJ) and J $ S.

Example 4.2. (a) If L(s) = 0 for all s ∈ S, then ãE = 0 for any E ∈ Irr(W ).
(b) Assume that we are in type An−1, where W ∼= Sn and there is a natural labelling Irr(W ) = {Eλ | λ ` n}. All

generators in S are conjugate and so any non-zero weight function L takes a constant value a > 0 on S. Then we
have:

ãEλ =
∑

16i6r

(i− 1)λi a where λ = (λ1 > λ2 > . . . > λr > 0);

This can be shown by a direct argument, as indicated in [27, Example 6.5.8].

Remark 4.3. As already mentioned, Lusztig originally defined an “a-function” Irr(W ) → Γ, E 7→ aE , using the
“generic degrees” of the generic Iwahori–Hecke algebra associated with W and the weight function L. It is known
that this function has the following properties:

(A0) We have a1W = 0.
(A1) Let J $ S, M ∈ Irr(WJ) and E ∈ Irr(W ) be such that M ↑ E. Then aM 6 aE .
(A2) Let J $ S and M ∈ Irr(WJ). Then there exists some E ∈ Irr(W ) such that M ↑ E and aM = aE . In this case, we

write M  L E.
(A3) Let E ∈ Irr(W ). Then there exists some J $ S and some M ∈ Irr(WJ) such that M  L E or M  L E ⊗ sgn.
(A4) Let E ∈ Irr(W ). Then aE⊗sgn − aE = ωL(E).
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(For the original definition of aE in the equal parameter case, see Lusztig [37]; in that article, one can also find (A1)
and (A2). Analogous definitions and arguments work for a general weight function L; see [15, §3], [47, Chap. 20] for
details. (A0) is clear by the definition of aE . A version of (A3) for “special” representations in the equal parameter
case already appeared in [37, §6]; the general case follows from [47, Prop. 22.3]. Note that there does not seem to be
a notion of “special” representations for the general multi-parameter case; see [17, Rem. 4.11]. (A4) follows from [27,
Prop. 9.4.3].)

Following the argument in [27, 6.5.6], let us now prove that aE = ãE for all E ∈ Irr(W ). We proceed by induction
on the order of W . If W = {1}, then Irr(W ) only consists of 1W and we have a1W = ã1W = 0; see (A0). Now assume
that W 6= {1} and that the assertion is already proved for all proper parabolic subgroups of W . Consequently, using
(A1), we have

(∗) aE > ã′E for all E ∈ Irr(W ).

Now fix E ∈ Irr(W ). Using (A3), we distinguish two cases. Assume first that M  L E for some M ∈ Irr(WJ) where
J $ S. By (∗), we have aE > ã′E > aM . Since aE = aM , we deduce that aE = ã′E . Now, by (∗) applied to E ⊗ sgn,
we also have aE⊗sgn > ã′E⊗sgn and so, using (A4), ã′E⊗sgn − ã′E 6 aE⊗sgn − aE = ωL(E). Hence, we are in the first
case of Definition 4.1 and so ãE = ã′E = aE , as required.

Now assume that M  L E ⊗ sgn for some M ∈ Irr(WJ) where J $ S. Arguing as before, we have aE⊗sgn =
ã′E⊗sgn. Using (∗) and (A3), we obtain

ã′E⊗sgn − ã′E = aE⊗sgn − ã′E > aE⊗sgn − aE = ωL(E).

If this inequality is an equality, then ã′E = aE ; furthermore, we are in the first case of Definition 4.1 and so ãE =
ã′E = aE , as required. If the above inequality is strict, then we are in the second case of Definition 4.1 and, using
(A4), we obtain ãE = ã′E⊗sgn − ωL(E) = aE⊗sgn − ωL(E) = aE , as required.

Remark 4.4. Out of the five properties (A0)–(A4), it seems that (A3) is the most subtle one. In fact, (A0), (A1), (A2)
and (A4) are proved by general arguments while the proof of (A3) relies on an explicit case–by–case verification.
Consider the following related statement:

(A3′) Let E ∈ Irr(W ) be such that ωL(E) > 0. Then there exists some proper subset J $ S and some M ∈ Irr(WJ) such
that M ↑ E and aM = aE .

Note that ωL(E ⊗ sgn) = −ωL(E), so (A3′) certainly implies (A3). The above property has first been formulated
and checked (in the equal parameter case) by Spaltenstein [63, §5] (see also [20, Lemma 4.9]). As far as groups of
exceptional type are concerned, Spaltenstein just says that “we can use tables”. So here is a place where CHEVIE can
provide more systematic algorithmic verifications. It would certainly be interesting to find a general argument for
proving (A3′).

The following definition is inspired by Lusztig [41, 4.2] and Spaltenstein [63].

Definition 4.5 (See [20, 2.10]). We define a relation�L on Irr(W ) inductively as follows. IfW = {1}, then Irr(W ) only
consists of the unit representation and this is related to itself. Now assume that W 6= {1} and that �L has already
been defined for all proper parabolic subgroups of W . Let E,E′ ∈ Irr(W ). Then we write E �L E′ if there is a
sequence E = E0, E1, . . . , Em = E′ in Irr(W ) such that, for each i ∈ {1, 2, . . . ,m}, the following condition is satisfied.
There exists a subset Ii $ S and M ′i ,M

′′
i ∈ Irr(WIi), where M ′i �L M ′′i within Irr(WIi), such that either

M ′i ↑ Ei−1 and M ′′i ↑ Ei where ãEi = ãM ′′i

or

M ′i ↑ Ei ⊗ sgn and M ′′i ↑ Ei−1 ⊗ sgn where ãEi−1⊗sgn = ãM ′′i .

Let ∼L be the equivalence relation associated with �L, that is, we have E ∼L E′ if and only if E �L E′ and E′ �L E.
Then we have an induced partial order on the set of equivalence classes of Irr(W ) which we denote by the same
symbol �L.

Example 4.6. (a) If L(s) = 0 for all s ∈ S, then E �L E′ for any E,E′ ∈ Irr(W ).
(b) Assume that W ∼= Sn and L(s) = a > 0 for s ∈ S, as in Example 4.2. Let λ, µ be partitions of n. Then we have

Eλ �L Eµ if and only if λ E µ, where E denotes the dominance order on partitions; see [22, Exp. 3.5].

Remark 4.7. One can show that the following “monotony” property holds:
(a) If E,E′ ∈ Irr(W ) are such that E �L E′, then ãE′ 6 ãE ;

see [20, Prop. 4.4], [22, §6]. Consequently, the equivalence classes of Irr(W ) under ∼L are precisely the “families”
as defined by Lusztig [41, 4.2], [47, 23.1]. (This immediately follows from the definitions, see the argument in [20,
Prop. 4.4].) In particular, the following holds:

(b) The function E 7→ ãE is constant on the “families” of Irr(W ).
In the equal parameter case, this appeared originally in [41, 4.14.1]; see also [39].
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It is straightforward to implement the recursion in Definition 4.5 in the GAP programming language. In this way,
one can for example systematically re-compute the families of Irr(W ) for the exceptional types (in the equal parameter
case), which are listed in [41, Chap. 4]. Similar computations can be performed for a general weight function L.

Example 4.8. Let W be of type F4 with generators labelled as follows:

F4

s1 s2 s3 s4t t t t>

Assume that a := L(s1) = L(s2) > 0 and b := L(s3) = L(s4) > 0. By the symmetry of the Dynkin diagram, we
may also assume without loss of generality that b > a. The results of the computation of �L and ∼L are presented in
Table 3. The notation for Irr(W ) follows [27, App. C]; for example, 11 = 1W , 14 = sgn and 42 is the standard reflection
representation.

Quite remarkably, it turns out that there are only 4 essentially different cases. Note that, a priori, one has to deal
with infinitely many values of a, b; a reduction to a finite set of values is achieved by using similar techniques as in
[17]; in any case, the final result is the same as that given in the table in [17, p. 362].

The partition of Irr(W ) into families follows from the earlier results of Lusztig [47, 22.17]. (Note that there is an
error for b = 2a in [47, 22.17]; this has been corrected in [17, 4.10], based on the explicit computations using CHEVIE.)

This example, and Guilhot’s results [29] on affine Weyl groups of rank 2 (which also rely on explicit computations
using GAP), provide considerable evidence in support of Bonnafé’s “semicontinuity conjectures” [5].

TABLE 3. Partial order �L on families in type F4

a = b
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c 45
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A box indicates a family containing several irreducible representations:

42 = {21, 23, 42}, 45 = {22, 24, 45}, 13 = {13, 21, 83, 91}, 12 = {12, 22, 84, 94},

121 = {12, 13, 41, 43, 44, 61, 62, 92, 93, 121, 161}, 161 = {41, 61, 62, 121, 161}.

Otherwise, the family contains just one irreducible respresentation.

Remark 4.9. The idea of partitioning Irr(W ) into “families” originally arose from the representation theory of finite
groups of Lie type, see Lusztig [36, §8]. A completely new interpretation appeared in the theory of Kazhdan–Lusztig
cells; see [32], [40]. Among others, this gives rise not only to a partition but to a natural pre-order relation 6LR on
Irr(W ); see [41, 5.15], [20, Def. 2.2]. The relation 6LR is an essential ingredient, for example, in the construction of
a “cellular structure” in the generic Iwahori–Hecke algebra associated with W,L; see [18], [19]. One can show by a
general argument that

E �L E′ ⇒ E 6LR E′ (E,E′ ∈ Irr(W ));

see [20, Prop. 3.4]. In the equal parameter case, it is known that the reverse implication also holds; see [20, The-
orem 4.11]. The computations involved in Example 4.8 provide considerable evidence that this will also hold for
general weight functions L.—Thus, �L may be regarded as a purely combinatorial (and computable!) characterisa-
tion of 6LR.
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Finally, let us assume that W is the Weyl group of a connected reductive algebraic group G over Fp where p is a
good prime. LetNG be the set of all pairs (O,L) whereO is a unipotent class inG and L is aG-equivariant irreducible
Q`-local system on O (up to isomorphism); here, ` is a prime different from p. By the Springer correspondence (see
[65], [42]), we obtain a natural injective map

Irr(W ) ↪→ NG, E 7→ ιE = (OE ,LE).

It is known that, for any unipotent class O, the pair (O,Q`) ∈ NG (where Q` stands for the trivial local system) is in
the image of this map. Hence, the map

Irr(W ) → {unipotent classes of G}, E 7→ OE ,

is surjective.

Remark 4.10. The Springer correspondence is explicitly known in all cases. In good characteristic, the results are
systematically presented in Section 13.3 of Carter [8]; for bad characteristic, see [53], [64]. It turns out that NG and
the map E 7→ ιE are independent of p (in a suitable sense) as long as p is good; some compatibility properties of the
Springer correspondence in good and bad characteristic are established in [24, §2].

Remark 4.11. Let Γ = Z and consider the “equal parameter” weight function L0 such that L0(s) = 1 for all s ∈ S.
Let F ⊆ Irr(W ) be a family with respect to L0 (see Remark 4.7) and consider the following collection of unipotent
classes in G:

C(F) := {OE | E ∈ Irr(W ) such that E ∈ F}.
Then it is known that there exists a unique unipotent class in C(F), which we denote byOF , such thatO ⊆ OF for all
O ∈ C(F); see [24, Prop. 2.2]. (Here, and below, X denotes the Zariski closure in G for any subset X ⊆ G.) Thus, OF
is the maximum of the elements in C(F) with respect to the partial order given by the Zariski closure. A unipotent
class of the form OF will be called a “special” unipotent class. Thus, we have a bijection

{families of Irr(W )} 1−1−→ {special unipotent classes of G}, F 7→ OF .

(Special unipotent classes were originally defined by Lusztig [37, §9]. The above equivalent characterisation appeared
in [20, 5.2]; see also Remark 4.13 below.)

Now we can formulate the following geometric interpretation of the pre-order relation �L0
in Definition 4.5.

Theorem 4.12 (Spaltenstein [63]). Let F ,F ′ be families in Irr(W ) (with respect to the equal parameter weight function L0).
Then we have

F �L0
F ′ ⇔ OF ⊆ OF ′ .

Spaltenstein uses a slightly different definition of �L0
; the equivalence with the one in Definition 4.5 is shown in

[20, Cor. 5.6]. The proofs rely on some explicit verifications for exceptional types; Spaltenstein just says that “we can
then use tables” [63, p. 215]. So here again, CHEVIE provides a more systematic algorithmic way of verifying such
statements.

Remark 4.13. Let SW be the set of all E ∈ Irr(W ) such that LE ∼= Q` and OE is a special unipotent class; see
Remark 4.11. Then every family of Irr(W ) as above contains a unique representation in SW . It is known that SW is the
set of “special” representations of W as defined by Lusztig [36], [37]. (This follows from [24, Prop. 2.2].) Following
Lusztig [46], we define the “special piece” corresponding to E ∈ SW to be the set of all elements in OE which are
not contained in OE′ where E′ ∈ SW is such that OE′ $ OE . By Spaltenstein [62] and Lusztig [46], the various
special pieces form a partition of Guni. Note that every special piece is a union of a special unipotent class (which is
open dense in the special piece) and of a certain number (possibly zero) of non-special unipotent classes.—We will
encounter the special pieces of Guni again in Conjecture 5.3 below.

5. GREEN FUNCTIONS

We begin by describing a basic algorithm which is inspired by the computation of Green functions and [23]. It
can be formulated without any reference to algebraic groups; in fact, it will work for any finite Coxeter group W
(including the dihedral groups and groups of type H3, H4). Let u be an indeterminate over Q. We define a matrix

Ω =
(
ωE,E′

)
E,E′∈Irr(W )

,

as follows. LetDW := ul(w0)(u−1)|S|
∑
w∈W ul(w) wherew0 ∈W is the longest element. Then, for anyE,E′ ∈ Irr(W ),

we set

ωE,E′ :=
DW

|W |
∑
w∈W

trace(w,E) trace(w,E′)

det(u idV − w)
∈ Q(u);

here,W is regarded as a subgroup of GL(V ) via the natural reflection representation on a vector space V of dimension
|S|. It is known that ωE,E′ ∈ Z[u] for all E,E′ ∈ Irr(W ); see [8, 11.1.1].
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Lemma 5.1 (Cf. [23, §2]). Let us fix a partition Irr(W ) = I1 t I2 t . . . t Ir and a sequence of integers b1 > b2 > . . . > br.
Correspondingly, we write Ω in block form:

Ω =


Ω1,1 Ω1,2 · · · Ω1,r

Ω2,1

...
... Ωr−1,r

Ωr,1 · · · Ωr,r−1 Ωr,r


where Ωi,j has entries ωE,E′ for E ∈ Ii and E′ ∈ Ij . Then there is a unique factorisation

Ω = P tr · Λ · P, P =
(
pE,E′

)
E,E′∈Irr(W )

, Λ =
(
λE,E′

)
E,E′∈Irr(W )

,

such that P and Λ have corresponding block shapes as follows:

P =


ub1In1 P1,2 · · · P1,r

0 ub2In2

...
...

. . . Pr−1,r
0 · · · 0 ubrInr

 and Λ =


Λ1 0 · · · 0

0 Λ2

...
...

. . . 0
0 · · · 0 Λr

 ;

here, ni = |Ii| and Ini denotes the identity matrix of size ni. Furthermore, the block Pi,j has entries pE,E′ ∈ Q(u) for E ∈ Ii
and E′ ∈ Ij ; similarly, the block Λi has entries λE,E′ ∈ Q(u) for E,E′ ∈ Ii.

Proof. This relies on the following remark due to Lusztig (see [23, Lemma 2.1]):
(∗) All the principal minors of Ω are non-zero.

Now P and Λ are constructed inductively by the following well-known procedure (see for example [58, Chap. 8] and
note that Ω is symmetric). We begin with the first block column. We have u2b1Λ1 = Ω1,1, which determines Λ1. For
i > 1 we have ub1P tr

1,iΛ1 = Ωi,1. By (∗), we know that det Ω1,1 6= 0. Hence Λ1 is invertible, and we can determine P1,i.
Now consider the j-th block column, where j > 1. Assume that the first j − 1 block columns of P and the first j − 1
diagonal blocks of Λ have already been determined. We have an equation

u2bjΛj + P tr
j−1,jΛj−1Pj−1,j + · · ·+ P tr

1,jΛ1P1,j = Ωj,j ,

which can be solved uniquely for Λj . In particular, we have now determined all coefficients in P and Λ which belong
to the first j blocks. We consider the subsystem of equations made up of these blocks; this subsystem looks like
the original system written in matrix form above, with r replaced by j. By (∗), the right hand side has a non-zero
determinant. Hence so have the blocks Λ1, . . . ,Λj . Now we can determine the coefficients of P in the i-th row: for
i > j, we have

ubjP tr
j,iΛj + P tr

j−1,iΛj−1Pj−1,j + · · ·+ P tr
1,iΛ1P1,j = Ωi,j .

Since Λj is invertible, Pj,i is determined. Continuing in this way, the above system of equations is solved. �

Example 5.2. Let W be of type B2, with generators S = {s, t}. We write Irr(W ) = {sgn, sgn2, sgn1, σ, 1W } (and
use this ordering for the rows and columns of the matrices below). The values of the corresponding characters are
obtained by formally setting q = 1 in the table in Example 3.9. We have

det(u idV − 1) = (u− 1)2, det(u idV − s) = det(u idV − t) = u2 − 1,

det(u idV − st) = u2 + 1, det(u idV − stst) = (u+ 1)2;

furthermore, DW = u4(u2 − 1)(u4 − 1). Using this information, we obtain:

Ω =


u8 u6 u6 u7+u5 u4

u6 u8 u4 u7+u5 u6

u6 u4 u8 u7+u5 u6

u7+u5 u7+u5 u7+u5 u8+2u6+u4 u7+u5

u4 u6 u6 u7+u5 u8


We shall now determine three factorisations of Ω.

(a) Consider the partition Irr(W ) = {sgn} t {sgn2} t {sgn1, σ} t {1W }, together with the sequence of integers 4, 2,
1, 0. We obtain the matrices:

P=


u4 u2 u2 u3+u 1
0 u2 0 u 1
0 0 u 0 0
0 0 0 u 1
0 0 0 0 1

 , Λ=


1 0 0 0 0
0 u4−1 0 0 0
0 0 u6−u2 u5−u 0
0 0 u5−u u6−u2 0
0 0 0 0 u8−u6−u4+u2

 .
(We will see below that this yields the Green functions of Sp4(Fq), q odd.)
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(b) Consider the partition Irr(W ) = {sgn} t {sgn2} t {sgn1} t {σ} t {1W }, together with the sequence of integers
4, 2, 2, 1, 0. We obtain the matrices:

P=


u4 u2 u2 u3+u 1
0 u2 0 u 1
0 0 u2 u 1
0 0 0 u 1
0 0 0 0 1

 , Λ=


1 0 0 0 0
0 u4−1 0 0
0 0 u4−1 0 0
0 0 0 u6−u4−u2+1 0
0 0 0 0 u8−u6−u4+u2


(We will see below that this yields the Green functions of Sp4(Fq), q even.)

(c) As in [23, 2.9], consider the partition Irr(W ) = {sgn} t {sgn2, sgn1, σ} t {1W }, together with the sequence of
integers 4, 1, 0. We obtain the matrices:

P=


u4 u2 u2 u3+u 1
0 u 0 0 0
0 0 u 0 0
0 0 0 u 1
0 0 0 0 1

 , Λ=


1 0 0 0 0
0 u6−u2 0 u5−u 0
0 0 u6−u2 u5−u 0
0 u5−u u5−u u6+u4−u2−1 0
0 0 0 0 u8−u6−u4+u2


Quite remarkably, in all three cases the solutions are in Z[u]. (One easily finds partitions of Irr(W ) for which this does
not hold, for example, Irr(W ) = {sgn, sgn2} t {sgn1} t {σ} t {1W }.)

It is straightforward to implement the algorithm in the proof of Lemma 5.1 in the GAP programming language.
In those cases where one expects that polynomial solutions exist, it is most efficient to first specialise u to a large
number of integer values, then solve the resulting systems of equations over Q, and finally interpolate to obtain
polynomial solutions. (In order to avoid working with large rational numbers, one can further reduce the specialised
systems of equations modulo various prime numbers, then solve the resulting systems over finite fields, and finally
use “chinese remainder” techniques to recover the solutions over Q; similar methods have been used in the proof of
[27, Prop. 11.5.13] where it was necessary to invert certain matrices with polynomial entries.) All this works well for
W of rank up to 8, including all exceptional types.

Although this turns the actual chronological development of things upside down, the discussion in the previous
section leads us to consider the partition of Irr(W ) into families with respect to the “equal parameter” weight func-
tion L0 : W → Z such that L0(s) = 1 for all s ∈ S. The following conjecture has been found through extensive
experimentation with CHEVIE. It is verified for all W of exceptional type; the answer for W of classical type is open.

Conjecture 5.3 (Geck–Malle [23, §2]). Consider the partition Irr(W ) = F1 t . . .tFr where F1, . . . ,Fr are the families with
respect to L0. Let bi be the constant value of the function E 7→ ãE on Fi; see Remark 4.7. Assume that b1 > . . . > br. Let P
and Λ be the matrices obtained by Lemma 5.1. Then the following hold.

(a) All the entries of P and Λ are polynomials in Z[u]; furthermore, the polynomials in P have non-negative coefficients.
(b) Assume that W is the Weyl group of a connected reductive algebraic group G over k = Fp, with a split Fq-rational

structure where q is a power of p (as in Remark 3.5). Let Ei ∈ SW . Then λEi,Ei(q) is the number of Fq-rational points
in the “special piece” corresponding to Ei; see Remark 4.13.

We now turn to the discussion of Green functions. Let G be a connected reductive algebraic group over k = Fp.
Let B ⊆ G be a Borel subgroup and T ⊆ G be a maximal torus contained in B. Let W = NG(T )/T be the Weyl group
of G. Let q be a power of p and F : G→ G be a Frobenius map with respect to a split Fq-rational structure on G, as in
Remark 3.5. Recall that then B and all unipotent classes of G are F -stable; furthermore, F acts as the identity on W .

Let w ∈ W and Tw ⊆ G be an F -stable maximal torus obtained from T by twisting with w. Let θ ∈ Irr(TFw ) and
RθTw be the character of the corresponding virtual representation of GF defined by Deligne and Lusztig; see Carter
[8, §7.2]. Then the restriction of RθTw to GFuni only depends on w but not on θ (see [8, 7.2.9]). This restriction is called
the Green function corresponding to w ∈ W ; it will be denoted by Qw. There is a character formula which reduces
the computation of the values of RθTw to the computation of the values of various Green functions (see [8, 7.2.8]).
It is known that the values of Qw are integers (see [8, §7.6]), but it is a very hard problem to compute these values
explicitly.

Let E ∈ Irr(W ). Following Lusztig [41, §3.7], we define

RE :=
1

|W |
∑
w∈W

trace(w,E)R1
Tw and QE := RE |GFuni

,

where the superscript 1 stands for the unit representation of TFw . Note that Qw =
∑
E∈Irr(W ) trace(w,E)QE , so QE

and Qw determine each other. Now the entries of the matrix Ω introduced above have the following interpretation:

ωE,E′(q) =
∑
u∈GFuni

QE(u)QE′(u) (E,E′ ∈ Irr(W )).

(This follows from the orthogonality relations for Green functions; see [8, 7.6.2]. It also uses the formulae for |TFw |
and |(NG(Tw)/Tw)F | in [8, §3.3].)
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As in the previous section, let NG be the set of all pairs (O,L) where O is a unipotent class in G and L is a G-
equivariant irreducible Q`-local system on O (up to isomorphism). Recall that the Springer correspondence defines an
injection

Irr(W ) ↪→ NG, E 7→ ιE = (OE ,LE).

The Frobenius map F acts naturally onNG. Given ι = (O,L) ∈ NF
G , we obtain a class function Yι : GF → C as in [43,

24.2.3]. We have Yι(g) = 0 unless g ∈ OF . Furthermore, the matrix
(
Yι(g)

)
(with rows labelled by all ι = (O,L) ∈ NF

G

where O is fixed, and columns labelled by a set of representatives of the GF -classes contained in OF ) is, up to
multiplication of the rows by roots of unity, the “F -twisted” character table of the finite group A(u) = CG(u)/CG(u)◦

(u ∈ O); see [43, 24.2.4, 24.2.5]. In particular, the following hold:

Remark 5.4. (a) The functions {Yι | ι ∈ NF
G } form a basis of the space of class functions on GFuni.

(b) Let ι = (O,L) ∈ NF
G where L ∼= Q`. Then there is a root of unity η such that Yι(g) = η for all g ∈ OF . (It will

turn out that η = ±1; see Remark 5.6 below.)

Let O1,O2, . . . ,Or be the unipotent classes of G, where the labelling is chosen such that dimO1 6 dimO2 6 . . . 6
dimOr. For i ∈ {1, . . . , r}, we set

I∗i := {E ∈ Irr(W ) | OE = Oi}, and

b∗i :=
1

2
(dimG− dimT − dimOi).

(It is known that dimG−dimT −dimOi always is an even number; see [8, 5.10.2].) Recall that all pairs (Oi,Q`) ∈ NG
belong to the image of the Springer correspondence. Thus, we obtain a partition Irr(W ) = I∗1 t . . . t I∗r , and a
decreasing sequence of integers b∗1 > . . . > b∗r . Hence, Lemma 5.1 yields a factorisation

Ω = (P ∗)tr · Λ∗ · P ∗.
Recall that the entries of P ∗, Λ∗ are in Q(u); we denote these entries by p∗E,E′ and λ∗E,E′ . With this notation, we can
now state the following fundamental result.

Theorem 5.5 (Springer [65]; Shoji [60], [61, §5]; Lusztig [43, §24], [44]; see also [14, §3]). In the above setting, the entries
of P ∗ and Λ∗ are polynomials in u. We have

QE =
∑

E′∈Irr(W )

p∗E′,E(q)YιE′ and

λ∗E,E′(q) =
∑

u∈GFuni

YιE (u)YιE′ (u)

for all E,E′ ∈ Irr(W ). Furthermore, the polynomial p∗E′,E is 0 unless OE′ ⊆ OE .

Remark 5.6. The above result shows that, for any E ∈ Irr(W ), we have

QE = qdE YιE +
∑

E′∈Irr(W )

O
E′$OE

p∗E′,E(q)YιE′ .

These equations can be inverted and, hence, every function YιE can be expressed as a Q-linear combination of the
Green functions Qw (w ∈ W ). Since the values of the Green functions are integers (see [8, §7.6]), we deduce that the
values of YιE are rational numbers. Since they are also algebraic integers, they must be integers. In particular, the
root of unity η in Remark 5.4 must be ±1.

Remark 5.7. (a) Note that, in order to run the algorithm in Lemma 5.1, we only need to know the map E 7→ OE and
the dimensions dimOE . The finer information on the local systems LE only comes in at a later stage.

(b) As formulated above, Theorem 5.5 does not say anything about the tricky question of determining the values
of the functions YιE . This relies on the careful choice of a representative in OF , where the situation is optimal when
a so-called “split” element can be found; see the discussion by Beynon–Spaltenstein [4, §3]. Such split elements exist
for G of classical type in good characteristic; see Shoji [59]. On the other hand, in type E8 where q ≡ −1 mod 3, there
is one unipotent class which does not contain any split element; see [4, Case V, p. 591].—For our purposes here, the
information in Remark 5.4(b) will be sufficient.

Example 5.8. Let us re-interprete the computations in Example 5.2 in the light of Theorem 5.5. By Carter [8, p. 424]
and Lusztig–Spaltenstein [53, 6.1], the Springer correspondence for G = Sp4(k) is given by the following tables:

char(k) 6= 2 b∗E
sgn 7→ O(1111) 4
sgn2 7→ O(211) 2
sgn1 7→ O(22) 1 (LE 6∼= Q`)
σ 7→ O(22) 1

1W 7→ O(4) 0

char(k) = 2 b∗E
sgn 7→ O(1111) 4
sgn2 7→ O(211) 2
sgn1 7→ O∗(22) 2

σ 7→ O(22) 1
1W 7→ O(4) 0
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Here, b∗E = (dimG− dimT − dimOE)/2; furthermore, LE ∼= Q` unless explicitly stated otherwise. Hence, these data
give rise to the first two cases in Example 5.2.

We shall now explain, following Lusztig [51, 1.2], how the cardinalities of the sets (O ∩BẇB)F (see Section 3) can
be effectively computed. For this purpose, it will be convenient to introduce the following notation.

Definition 5.9. For any E ∈ Irr(W ) and w ∈W , we set

βwE := |GF /BF |
∑

16i6d

|Oui ∩BF ẇBF |YιE (ui),

where u1, . . . , ud are representatives of the GF -conjugacy classes contained in OFE . Note that, by Remark 5.4(b), we
have

βwE = ±|GF /BF ||(OE ∩BẇB)F | if LE ∼= Q`.

We will now rewrite the expression for βwE using various results from the representation theory of GF . First, by
Remark 3.6(b), we obtain

βwE =
∑

16i6d

∑
V ∈Irr(Hq)

|Oui | trace(ui, ρV ) trace(Tw, V )YιE (ui)

=
∑

V ∈Irr(Hq)

trace(Tw, V )
∑
u∈GFuni

χV (u)YιE (u),

where χV denotes the character of ρV . Now, by definition, χV is a constituent of the character of the permutation
module C[GF /BF ], and the latter is known to be equal to R1

T ; see [8, 7.2.4]. But then the multiplicity of χV in any
RθTw is 0 unless θ = 1; see [8, 7.3.8]. Consequently, we can write

χV =
( ∑
E′∈Irr(W )

〈RE′ , χV 〉RE′
)

+ ψV ,

where 〈RE′ , χV 〉 denotes the multiplicity of χV in the decomposition of RE′ as a linear combination of irreducible
characters; furthermore, ψV is a class function which is orthogonal to all RθTw . We now use Theorem 5.5 to evaluate
χV on unipotent elements. Let u ∈ GF be unipotent. Then

χV (u) = ψV (u) +
∑

E′,E′′∈Irr(W )

〈RE′ , χV 〉 p∗E′′.E′(q)YιE′′ (u).

Consequently, we obtain ∑
u∈GFuni

χV (u)YιE (u) =
∑
u∈GFuni

ψV (u)YιE (u)

+
∑

E′,E′′∈Irr(W )

〈RE′ , χV 〉 p∗E′′,E′(q)λ∗E′′,E(q).

Finally, by Remark 5.6, we can write YιE as a linear combination of Green functions. Since ψV is orthogonal to all
RθTw , it follows that ∑

u∈GFuni

ψV (u)YιE (u) = 0.

Thus, we have shown the following formula which is a slight variation of the one obtained by Lusztig [51, 1.2(c)];
this is the key to the explicit computation of βwE .

Lemma 5.10. For any E ∈ Irr(W ) and w ∈W , we have:

βwE =
∑

V ∈Irr(Hq)

∑
E′,E′′∈Irr(W )

trace(Tw, V ) 〈RE′ , χV 〉 p∗E′′,E′(q)λ∗E′′,E(q).

In the above formula, the terms “trace(Tw, V )” can also be seen to be specialisations of some well-defined poly-
nomials. For this purpose, we introduce the generic Iwahori–Hecke algebra H associated with W . This algebra is
defined over the ring of Laurent polynomials A = Z[u1/2, u−1/2]; it has an A-basis {Tw | w ∈ W} and the multiplica-
tion is given as follows, where s ∈ S and w ∈W :

TsTw =

{
Tsw if l(sw) > l(w),

uTsw + (u− 1)Tw if l(sw) < l(w);

see [27, §4.4]. Thus, we have Hq ∼= C ⊗A H where C is considered as an A-module via the specialisation A → C,
u1/2 7→ q1/2; here, q1/2 is a fixed square root of q in C. Let K be the field of fractions of A and HK be the K-algebra
obtained by extending scalars from A to K. Then it is known thatHK is split semisimple and that there is a bijection
Irr(W )↔ Irr(HK), E ↔ Eu, such that

trace(w,E) = trace(Tw, Eu)|u1/2→1 for all w ∈W ;
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see [27, 8.1.7, 9.3.5] or [47, Chap. 20]. Now, following [27, 8.2.9], we define the character table ofH by

X(H) :=
(
trace(TwC , Eu)

)
E∈Irr(W ), C∈Cl(W )

,

where wC ∈ Cmin for each C ∈ Cl(W ). (By [27, 8.2.6], this does not depend on the choice of the elements wC ; by [27,
9.3.5], the entries of X(H) are in Z[u1/2].)

Finally, since the algebraHq is semisimple, we also have a bijection Irr(Hq)↔ Irr(HK), V ↔ Vu, such that

trace(Tw, V ) = trace(Tw, Vu)|u1/2→q1/2 for all w ∈W.

Composing this bijection with the previous bijection E ↔ Eu, we obtain a bijection Irr(W ) ↔ Irr(Hq), E ↔ Eq . We
now define the matrix

ΥW :=
(
〈RE , χE′q 〉

)
E,E′∈Irr(W )

.

The entries of this matrix are explicitly described by Lusztig’s multiplicity formula [41, Main Theorem 4.23], together
with the information in [38, 1.5] (for types E7, E8) and [41, 12.6] (in all remaining cases). It turns out that ΥW is
given by certain non-abelian Fourier transformations associated to the various families of Irr(W ); in particular, ΥW only
depends on W , but not on p or q.

Now the three matrices Λ∗, P ∗, ΥW have rows and columns labelled by Irr(W ); furthermore, X(H) has rows
labelled by Irr(W ) and columns labelled by Cl(W ). Consequently, it makes sense to consider the following product

Ξ∗ := Λ∗ · P ∗ ·ΥW ·X(H),

which is a matrix with entries in Q[u1/2, u−1/2], which has rows labelled by Irr(W ) and columns labelled by Cl(W ).
Then Lemma 5.10 can be re-stated as follows.

Corollary 5.11. Let E ∈ Irr(W ) and w ∈ Cmin for some C ∈ Cl(W ). Then we have:

βwE = (E,C)-entry of the matrix Ξ∗|u1/2→q1/2

In particular, the numbers βwE are given by “polynomials in q”.

Remark 5.12. The advantage of working with βwE is that then we obtain a true expression in terms of polynomials in
q, as above. (In the original setting of [51, 1.2], one has to distinguish congruence classes of q modulo 3 in type E8.)

Following Lusztig [51, 1.2], we are now in a position to write a computer program for computing βwE and, hence,
the cardinalities |(O ∩BẇB)F |. Note that:

• The explicit knowledge of the Springer correspondence (see Remark 4.10) can be turned into a GAP/CHEVIE
program which, given any G, determines the partition Irr(W ) = I∗1 t . . . t I∗r and the numbers b∗1 > . . . > b∗r
required for running the algorithm in Lemma 5.1. (Lübeck [34] provides an electronic library of tables of
Green functions.)

• The character tables ofH are known for all types of W ; see Chapters 10 and 11 of [27]. For any given W , they
are explicitly available in GAP through an already existing CHEVIE function.

• The Fourier matrices ΥW are explicitly known by [38], [41]. They are available in GAP through Michel’s [55]
development version of CHEVIE.

It then remains to combine all these various pieces (data and algorithms) into a GAP program for determining βwE . In
this way, the verification of Theorem 3.1 for a given G is reduced to a purely mechanical computation.

Remark 5.13. Using the methods described above, Lusztig [51, 1.2] has verified Theorem 3.1 for G of exceptional
type; as remarked in [52, 4.8], this works both in good and in bad characteristic. The computations also yield the
following property of the entries of the matrix Ξ∗. Let C ∈ Cl(W ) be cuspidal; let O be a unipotent class in G and
E ∈ Irr(W ) be such that ιE = (O,Q`). Then we have:

(a) The (E,C)-entry Ξ∗E,C is divisible by DW ; recall that we defined DW = ul(w0)(u − 1)|S|
∑
w∈W ul(w) (hence,

we have Dw(q) = GFad).
(b) If O = OC , then the constant term of the polynomial Ξ∗E,C/DW is 1; otherwise, the constant term is 0.

In fact, the further results in [51], [52] provide a general proof of (a), (b), assuming that O = OC . See [52, 4.4(a)] for
an explicit formula for Ξ∗E,C in this case.

We illustrate all this with our usual example G = Sp4(Fp). Recall that we write Irr(W ) = {sgn, sgn2, sgn1, σ, 1W }.
Then ΥW is given by

Υ =
1

2


1 0 0 0 0
0 1 −1 1 0
0 −1 1 1 0
0 1 1 1 0
0 0 0 0 1


(where the rows and columns are labelled by Irr(W ) as specified above). All the remaining pieces of information
are already contained in the examples considered earlier; see Example 3.9 for the character table X(H). The results
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TABLE 4. The numbers |GF /BF |−1βwE for G = Sp4(Fp)

p 6= 2 O(1111) O(211) O(22),L 6∼= Q` O(22) O(4)

1 1 q2 − 1 q3 − q 2q3 − 2q2 q4 − 2q3 + q2

t 0 q3 − q2 0 q4 − 2q3 + q2 q5 − 2q4 + q3

stst 0 0 0 q6 − 2q5 + q4 q8 − 2q7 + q6

s 0 0 q4 − q3 q4 − q3 q5 − 2q4 + q3

st 0 0 0 0 q6 − 2q5 + q4

p = 2 O(1111) O(211) O∗(22) O(22) O(4)

1 1 q2 − 1 q2 − 1 2q3 − 3q2 + 1 q4 − 2q3 + q2

t 0 q3 − q2 0 q4 − 2q3 + q2 q5 − 2q4 + q3

stst 0 0 0 q6 − 2q5 + q4 q8 − 2q7 + q6

s 0 0 q3 − q2 q4 − 2q3 + q2 q5 − 2q4 + q3

st 0 0 0 0 q6 − 2q5 + q4

are contained in Table 4. First of all note that this is, of course, consistent with the computations in Example 3.9.
Furthermore, the entries in the rows corresponding to the two cuspidal classes (with representatives st and stst) are
divisible by |BF |, which implies that the properties (a) and (b) in Remark 5.13 hold.

Remark 5.14. Finally, we wish to state a conjecture concerning a general finite Coxeter group W . We place ourselves
in the setting of Conjecture 5.3 where P,Λ are computed with respect to the partition of Irr(W ) into Lusztig’s families,
using the equal parameter weight function L0. We form again the matrix

Ξ := Λ · P ·ΥW ·X(H) (with entries in Q(u1/2)).

Analogues of the Fourier matrix ΥW for W of type I2(m), H3 and H4 have been constructed by Lusztig [45, §3],
Broué–Malle [6, 7.3] and Malle [54], respectively.

Now letC ∈ Cl(W ). Then we conjecture that there is a unique family of Irr(W ), denoted byFC , with the following
properties:

(a) For some w ∈ Cmin and some E ∈ F , the (E,C)-entry of Ξ is non-zero.
(b) For any w′ ∈ Cmin and any E′ ∈ Irr(W ), we have that the (E′, C)-entry is zero unless FC �L0

F ′, where F ′ is the
family containing E′.

(Here, �L0
is the partial order as in Definition 4.5.) Furthermore, we expect that the assignment C 7→ FC defines

a surjective map from Cl(W ) to the set of families of Irr(W ). In particular, we would obtain a natural partition of
Cl(W ) into pieces which are indexed by the families of Irr(W ); a similar idea has been formulated by Lusztig [50, 1.4]
(for W of crystallographic type).

For example, if W ∼= Sn (type An−1), then the above conjecture is equivalent to Theorem 3.1. In this case, all
families are singleton sets; furthermore, both Cl(W ) and Irr(W ) are naturally parametrised by the partitions of n.
The map C 7→ FC is given by sending the conjugacy class of W consisting of elements of cycle type λ ` n to the
family consisting of the irreducible representation labelled by λ.

Using the computational methods described above, one can check that the conjecture holds for allW of exceptional
type. The resulting maps C 7→ FC for typesH3, H4 are described in Table 5, where we use the following conventions.
In the first column, a family F is specified by the unique “special” representation in F ; see [27, App. C]. A non-
cuspidal class C ∈ Cl(W ) is specified as (w) where w ∈ Cmin. Representatives for cuspidal classes have already been
described in Table 1; so, here, #n refers to the class with number n in that table.
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[34] Lübeck, F., Tables of Green functions for exceptional groups, http://www/math.rwth-aachen.de/˜Frank.Luebeck/chev/Green/
[35] Lusztig, G., On the finiteness of the number of unipotent classes, Invent. Math. 34 (1976), 201–213
[36] Lusztig, G., Unipotent representations of a finite Chevalley group of type E8, Quart. J. Math. Oxford 30 (1979), 315–338
[37] Lusztig, G., A class of irreducible representations of a finite Weyl group, Indag. Math. 41 (1979), 323–335
[38] Lusztig, G., On the unipotent characters of the exceptional groups over finite fields, Invent. Math. 60 (1980), 173–192
[39] Lusztig, G., A class of irreducible representations of a finite Weyl group II, Indag. Math. 44 (1982), 219–226
[40] Lusztig, G., Left cells in Weyl groups, in Lie group representations, I (College Park, Md., 1982/1983), Lecture Notes in Math., 1024, Springer,

Berlin, 1983, 99–111
[41] Lusztig, G., Characters of reductive groups over a finite field, Annals Math. Studies, vol. 107, Princeton University Press, 1984
[42] Lusztig, G., Intersection cohomology complexes on a reductive group, Invent. Math. 75, 205–272 (1984)
[43] Lusztig, G., Character sheaves V, Adv. Math. 61 (1986), 103–155
[44] Lusztig, G., Green functions and character sheaves, Ann. Math. 131 (1990), 355–408
[45] Lusztig, G., Exotic Fourier transform, with an appendix by Gunter Malle, Duke Math. J. 73 (1994), 227–241, 243–248
[46] Lusztig, G., Notes on unipotent classes, Asian J. Math. 1 (1997), 194–207
[47] Lusztig, G., Hecke algebras with unequal parameters, CRM Monographs Ser. 18, Amer. Math. Soc., Providence, RI, 2003

http://www-math.univ-poitiers.fr/~maavl/LiE/
http://www-math.univ-poitiers.fr/~maavl/LiE/
http://www/math.rwth-aachen.de/~Frank.Luebeck/chev/Green/


84 Meinolf Geck

[48] Lusztig, G., Homomorphisms of the alternating groupA5 into reductive groups, J. Algebra 260 (2003), 298–322
[49] Lusztig, G., Unipotent classes and special Weyl group representations, J. Algebra 321 (2009), 3418–3440
[50] Lusztig, G., On some partitions of a flag manifold, peprint (2009), available at arXiv:0906.1505
[51] Lusztig, G., From conjugacy classes in the Weyl group to unipotent classes, Represent. Theory (to appear)
[52] Lusztig, G., Elliptic elements in a Weyl group: a homogeneity property, preprint (2010), available at arXiv:1007.5040
[53] Lusztig, G. and Spaltenstein, N., On the generalized Springer correspondence for classical groups, in Algebraic groups and related topics (Ky-

oto/Nagoya, 1983), Adv. Stud. Pure Math., 6, North-Holland, Amsterdam, 1985, 289–316
[54] Malle, G., Appendix: An exotic Fourier transform for H4, Duke J. Math. 73 (1994), 243–248
[55] Michel, J., Homepage of the development version of the GAP part of CHEVIE, http://www.institut.math.jussieu.fr/˜jmichel/

chevie/chevie.html
[56] Reeder, M., Formal degrees and L-packets of unipotent discrete series representations of exceptional p-adic groups, with an appendix by Frank Lübeck,
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