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On constructive investigation of a class of non-linear
boundary value problems for functional differential
equations

A. RONTÓ and M. RONTÓ

ABSTRACT.
We consider a two-point boundary value problem for a non-linear system of functional differential equations,
for which a scheme of efficient investigation using certain iteration process is constructed. A new convergence
condition is established in the case where a certain additional property of the Lipschitz operator is present,
which may lead one to weaker assumptions.

1. INTRODUCTION

We consider a two-point boundary value problem for a non-linear system of functional
differential equations, for which a scheme of efficient investigation using certain iteration
process is constructed. In a sense, this is a continuation of the recent work [9], where the
problem is dealt with under different assumptions on the non-linearity.

The aim of this note is to provide an alternative convergence condition in the case
where a certain additional property of the Lipschitz operator is present, which may lead
one to weaker assumptions.

We recall that, in contrast to numerous approaches using degree theory or fixed point
theory (see, e. g., references in [1–3, 11]), the method considered allows one to construct
approximate solutions and, moreover, rigorously prove the existence of an exact solution
by using the results of computation. Mor details on the techniques discussed here can be
found in [4–8, 10].

2. NOTATION

The following notation is used in the sequel:
(1) C([a, b],Rn) is the Banach space of continuous functions [a, b]→ Rn with the stan-

dard uniform norm.
(2) L1([a, b],Rn) is the usual Banach space of the vector functions [a, b] → Rn with

Lebesgue integrable components.
(3) L(Rn) is the algebra of all the square matrices of dimension n with real elements.
(4) r(Q) is the maximal in modulus eigenvalue of a matrix Q ∈ L(Rn).
(5) 1n is the unit matrix of dimension n.
(6) 0n is the zero square matrix of dimension n.
(7) For any xi, i = 1, 2, . . . , n, we use the notation col (x1, x2, . . . , xn) and x = (xi)

n
i=1

for the column vector constituted by x1, x2, . . . , xn.
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(8) ∂Ω is the boundary of a set Ω ⊂ Rn.
(9) For any vectors vi, i = 1, 2, . . . , n, we denote by [v1, v2, . . . , vn] the n × n matrix

with the columns v1, v2, . . . , vn.
(10) For u and v from Rn, we put 〈u, v〉 := {x ∈ Rn | u ≤ x ≤ v}.
(11) For any x ∈ R, [x]− := −min {x, 0} and [x]+ := max {x, 0}.
(12) degF is the Brower degree of a vector field F .
(13) By ei, i = 1, 2, . . . , n, we denote the n-dimensional unit vectors

(2.1) ei := col (0, 0, . . . , 0,︸ ︷︷ ︸
i−1

1, 0, . . . , 0).

(14) Given a linear operator l = (li)
n
i=1 : C([a, b],Rn) → L1([a, b],Rn), we define its

components lik : C([a, b],Rn)→ L1([a, b],Rn), i, k = 1, 2, . . . , n, by putting

(2.2) (liku)(t) := li(uek), t ∈ [a, b],

for all i, j = 1, 2, . . . , n and u ∈ C([a, b],R).
(15) 〈z0, z1〉 and B(y0, y1): see (4.8) and (4.13).

3. PROBLEM SETTING

We consider the system of functional differential systems

(3.3) x′(t) = (fx)(t), t ∈ [a, b],

determined by a non-linear operator f : C([a, b],Rn) → L1([a, b],Rn). Equation (3.3) is
studied under the two-point linear boundary conditions of a non-separated type

(3.4) Ax(a) +Bx(b) = d,

where B is a non-singular matrix.
Without loss of generality, one may restrict oneself to the boundary condition of the

particular form

(3.5) Ax(a) + x(b) = 0.

For the latter purpose, it is sufficient to introduce a new variable according to the formula

(3.6) y(t) = Bx(t)− t− a
b− a

d, t ∈ [a, b],

and make use of the fact that B is non-singular. Then, clearly, for any x satisfying (3.4),
the corresponding function (3.6) has the property

(3.7) AB−1y(a) + y(b) = 0

and, conversely, for any y with property (3.7), the function

x(t) = B−1y(t) +
t− a
b− a

B−1d, t ∈ [a, b],

satisfies condition (3.4).
In what follows, skipping the explicit change of variable (3.6), we replace the boundary

condition (3.4) by (3.5) and deal with problem (3.3), (3.5) directly.
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4. SUCCESSIVE APPROXIMATIONS AND MAIN ASSUMPTIONS

We look for a solution of problem (3.3), (3.5) among functions having initial value in
the cone segment 〈z0, z1〉 of the form

(4.8) 〈z0, z1〉 := {z ∈ Rn | z0 ≤ z ≤ z1},
where z0 and z1 are fixed vectors. Here and below the inequalities for vectors and matrices
are understood in the componentwise sense.

Definition 4.1. An operator l : C([a, b],Rn) → L1([a, b],Rn) is said to be positive if
(lu)(t) ≥ 0 for a. e. t ∈ [a, b] whenever u(t) ≥ 0 for all t ∈ [a, b].

Definition 4.2. An operator f : C([a, b],Rn)→ L1([a, b],Rn) is said to satisfy the Lipschitz
condition on a set B ⊂ C([a, b],Rn) if there exists a positive linear operator
l : C([a, b],Rn)→ L1([a, b],Rn) such that

(4.9) |(fu)(t)− (fv)(t)| ≤ (l|u− v|)(t), t ∈ [a, b],

for all u and v from B.

Given any vectors y0 and y1 from Rn, we define the set B(y0, y1) by putting

(4.10) B(y0, y1) := {x ∈ C([a, b],Rn) : y0 ≤ x(t) ≤ y1 for all t ∈ [a, b]} .
Our study of solutions of the boundary value problem (3.3), (3.5) is based upon the use

of the function sequence determined by the recurrence relation

(4.11) xm+1(·, z) := Pfxm(·, z) + ϕz, m = 0, 1, 2, . . . , z ∈ 〈z0, z1〉,
with x0 (·, z) := ϕz , where

(4.12) ϕz(t) := z − t− a
b− a

(A+ 1n) z, t ∈ [a, b].

and

(Py)(t) :=

∫ t

a

y(s)ds− t− a
b− a

∫ b

a

y(s)ds, t ∈ [a, b].(4.13)

The vector z in (4.11) is considered as an unknown parameter. It can be easily verified
that, for every m = 0, 1, 2, . . . function (4.11) satisfies the boundary condition (3.5) for an
arbitrary z ∈ Rn.

Let us introduce into consideration the n× n matrices

Ā− = (ā−; i,j)
n
i,j=1 and ¯̄A− = (¯̄a−; i,j)

n
i,j=1

with the elements defined by the equalities

ā−; i,j :=

{
0 if i 6= j,

min {1, [aii]−} if i = j,
(4.14)

and

¯̄a−; i,j :=

{
[aij ]− if i 6= j,

max {1, [aii]−} if i = j.
(4.15)

Finally, we put

(4.16) ω(z) := ess sup
t∈[a,b]

(fϕz)(t)− ess inf
t∈[a,b]

(fϕz)(t)

for all z ∈ 〈z0, z1〉, where ϕz is the function defined by (4.12).
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5. CONVERGENCE OF SUCCESSIVE APPROXIMATIONS

Throughout the paper, we consider the case where the positive linear operator
l : C([a, b],Rn) → L1([a, b],Rn) appearing in the Lipschitz condition (4.9) possesses the
property

(5.17) ess sup
t∈[a,b]

(lijσ)(t)

σ(t)
< +∞

for all i, j = 1, 2, . . . , n, where σ is the function given by the formula

(5.18) σ(t) := (t− a)(b− t), t ∈ [a, b].

Here and below, lij : C([a, b],R) → L1([a, b],R), i, j = 1, 2, . . . , n, are the components of l
defined according to (2.2).

It is clear that, under assumption (5.17), the values

(5.19) vij := ess sup
t∈[a,b]

1

σ(t)
(lijσ)(t)

are finite for any i, j = 1, 2, . . . , n. We denote the square matrix (vij)
n
i,j=1 by V . Since σ is

a non-negative function and the operator l is positive, it is clear that all the elements of V
are non-negative.

Theorem 5.1. Assume that f satisfies the Lipschitz condition (4.9) on the set

B(−%∗ + Ā−z0 −A+z1,
¯̄A−z1 + %∗),

where

(5.20) %∗ :=
3

4

(
3

b− a
1n − V

)−1

sup
ξ∈〈z0,z1〉

ω(ξ)

and l : C([a, b],Rn) → L1([a, b],Rn) is a certain positive linear operator with property (5.17).
Furthermore, assume that the corresponding matrix V = (vij)

n
i,j=1 with elements (5.19) satisfies

the condition

(5.21) r(V ) <
3

b− a
.

Then:
(1) For any fixed z ∈ 〈z0, z1〉, the sequence of functions (4.11) converges uniformly on [a, b]

to a function

(5.22) x∞(·, z) := lim
m→∞

xm(·, z)

possessing the properties

x∞(a, z) = z,(5.23)

Ax∞(a, z) + x∞(b, z) = 0.(5.24)

(2) The formula

(5.25) ∆(z) := (A+ 1n) z +

∫ b

a

(fx∞(·, z))(s) ds, z ∈ 〈z0, z1〉,

introduces a well defined single-valued function ∆ : 〈z0, z1〉 → Rn.
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(3) The limit function (5.22) for all fixed z ∈ 〈z0, z1〉 is a solution of the Cauchy problem

x′(t) = (fx)(t)−∆(z), t ∈ [a, b],(5.26)

x(a) = z,(5.27)

where the vector function ∆ : 〈z0, z1〉 → Rn is given by (5.25).
(4) For all fixed z ∈ 〈z0, z1〉 and m ≥ 1,

(5.28) max
t∈[a,b]

|x∞(t, z)− xm(t, z)| ≤ σ(t)
(b− a)m−1

3m
V mṼ ω(z),

where

(5.29) Ṽ :=

(
1n −

1

3
(b− a)V

)−1

.

Note that assumption (5.17) is satisfied in many cases. For example, if the components
of the Lipschitz operator l in (4.9) have the form

(liku)(t) := pik(t)u(τik(t)), t ∈ [a, b], i, k = 1, 2, . . . , n,

with pik : [a, b] → R integrable and τik : [a, b] → [a, b] measurable, it follows immediately
from the relation

(5.30)
(lijσ)(t)

σ(t)
= pij(t)

(τij(t)− a)(τij(t)− b)
(t− a)(t− b)

that (5.17) holds, in particular, if either the function

[a, b] 3 t 7−→ pij(t)

(t− a)(t− b)
is essentially bounded or pij ∈ L∞([a, b],R) and τij(t) ≤ t, i, j = 1, 2, . . . , n.

6. LEMMATA

Let us put

(6.31) (Hy)(t) :=

(
1− t− a

b− a

)∫ t

a

y(s)ds+
t− a
b− a

∫ b

t

y(s)ds, t ∈ [a, b],

for any y from L1([a, b],Rn).

6.1. Functions αm, m = 0, 1, . . . . Define the sequence of functions {αm : m ≥ 0} by
putting α0 := 1 and

(6.32) αm := Hαm−1, m = 1, 2, . . . .

It follows immediately from (4.11) that

(6.33) α1 =
2σ

b− a
,

where σ is the function defined by equality (5.18).

Lemma 6.1. The estimate

(6.34) α2(t) ≤ b− a
3

α1(t), t ∈ [a, b],

holds.
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Proof. Let us put

(6.35) µ(t) :=
α2(t)

α1(t)
, t ∈ [a, b].

A direct computation according to formula (4.11) shows that

α2(t) =
1

(b− a)2

(
4

3
t4 − 8(a+ b)

3
t3 +

(
6 ba+ b2 + a2

)
t2

+
a+ b

3

(
a2 + b2 − 10ab

)
t+

1

3

(
6 b2a2 − ba3 − ab3

))
, t ∈ [a, b],

whence, after rearranging and taking (6.33) into account, we bring (6.35) to the form

(6.36) µ(t) =
1

b− a

(
−2t2

3
+

2(a+ b)t

3
+

1

6
(b2 + a2 − 6ba)

)
t ∈ [a, b].

It is clear from (6.36) that µ′(t) = 0 if and only if t = (a+ b)/2. Since

µ((a+ b)/2) =
b− a

3

and µ(a) = µ(b) = (b− a)/6, we see that maxt∈[a,b] µ(t) = (b− a)/3, whence the required
estimate (6.34) follows. �

Lemma 6.2. For any non-negative vector λ ∈ Rn,

(6.37) (Hσλ)(t) ≤ b− a
3

σ(t)λ, t ∈ [a, b].

Proof. To obtain (6.37), it will suffice to use (6.33) and (4.11) with m = 2 and apply
Lemma 6.1. �

6.2. Estimates for the values of P and H .

Lemma 6.3 ([6, Lemma 2]). For an arbitrary essentially bounded function u : [a, b] → R, the
estimate

(6.38) |(Pu)(t)| ≤ σ(t)

b− a

(
ess sup
s∈[a,b]

u(s)− ess inf
s∈[a,b]

u(s)
)

is true, where σ is given by (5.18).

Lemma 6.4 ([9]). The estimate

(6.39) |(Pu)(t)| ≤ (H|u|)(t), t ∈ [a, b],

holds for any u from C([a, b],Rn).

Lemma 6.5. Assume that condition (5.17) holds. Then, for any non-negative vector λ ∈ Rn, the
componentwise estimate

(6.40) l(σλ)(t) ≤ σ(t)V λ, t ∈ [a, b],

holds, where V = (vij)
n
i,j=1 is the matrix with the elements determined by relations (5.19).

Proof. Due to (5.19), it follows from (5.17) that

vijσ(t) ≥ (lijσ)(t)
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for all i, j = 1, 2, . . . , n. Therefore,

(6.41)
n∑
j=1

λj (vijσ(t)− (lijσ)(t)) ≥ 0, t ∈ [a, b],

for any i = 1, 2, . . . , n, and non-negative λj , j = 1, 2, . . . , n. Estimate (6.40) is a direct
consequence of (6.41). �

6.3. Estimates of ϕz . For any z ∈ 〈z0, z1〉 and any vector % ∈ Rn with positive compo-
nents, we put

(6.42) Az(%) := {x ∈ C([a, b],Rn) : |x(t)− ϕz(t)| ≤ % for all t ∈ [a, b]}.

Lemma 6.6 ([9]). Az(%1) ⊂ Az(%2) whenever %1 ≤ %2.

For the given matrix A from the boundary condition (3.5), we define its positive and
negative parts A+ = (a+; i,j)

n
i,j=1 and A− = (a−; i,j)

n
i,j=1 by putting

a+; i,j := [ai,j ]+, a−; i,j := [ai,j ]−(6.43)

for all i and j from 1 to n. Then, obviously, A+ and A− are non-negative matrices and

(6.44) A = A+ −A−.

Lemma 6.7 ([9]). For any z ∈ 〈z0, z1〉 and non-negative %, the inclusion

(6.45) Az(%) ⊂ B(−%+ Ā−z0 −A+z1,
¯̄A−z1 + %)

holds.

Recall that Ā− = (ā−; i,j)
n
i,j=1 and ¯̄A− = (¯̄a−; i,j)

n
i,j=1 are the matrices with the elements

given by formulae (4.14) and (4.15).

7. PROOF OF THEOREM 5.1

We shall follow the lines of the proof of [9, Theorem 5.1]. Throughout this section, we
fix an arbitrary vector z from the order interval 〈z0, z1〉.

7.1. Let us first show that all the members of sequence (4.11) belong to the set

B(−%∗ + Ā−z0 −A+z1,
¯̄A−z1 + %∗).

Indeed, it follows immediately from (6.42) thatAz(0) = {ϕz} and, therefore, Lemmata 6.6
and 6.7 imply that

(7.46) ϕz ∈ B(−%∗ + Ā−z0 −A+z1,
¯̄A−z1 + %∗).

Since, by definition, x0(·, z) = ϕz , inclusion (7.46), in fact, means that

x0(·, z) ∈ B(−%∗ + Ā−z0 −A+z1,
¯̄A−z1 + %∗).

Further on, by Lemma 6.3, it follows from (6.31) that

|x1(t, z)− ϕz(t)| = |(Pfϕz)(t)|(7.47)

≤ σ(t)

b− a
ω(z), t ∈ [a, b],

where σ is the function (5.18) and ω : 〈z0, z1〉 → Rn is defined by (4.16).
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Let us put %0(z) := 1
4 (b− a)ω(z) and

(7.48) %m(z) :=
b− a

4

(
1n +

1

3
(b− a)V +

1

9
(b− a)2V 2 + . . .

+
1

3m
(b− a)mV m

)
ω(z)

for any m ≥ 1.
It is clear from (3.3) that

(7.49) max
t∈[a,b]

σ(t) =
1

4
(b− a)2

and, therefore, (7.47) yields

(7.50) |x1(t, z)− ϕz(t)| ≤
b− a

4
ω(z) = %0(z), t ∈ [a, b].

Hence, according to notation (6.42),

(7.51) x1(·, z) ∈ Az (%0(z)) .

In view of assumption (5.21), equality (5.20) implies that

%∗ =
b− a

4

(
1n −

b− a
3

V

)−1

sup
ξ∈〈z0,z1〉

ω(ξ)(7.52)

≥ b− a
4

+∞∑
i=0

(
b− a

3

)i
V i ω(z)

= lim
m→+∞

%m(z),

whence it is clear that

(7.53) %∗ ≥ %m(z), m = 0, 1, 2, . . . .

Considering (7.53) and applying Lemma 6.7, we obtain the inclusions

(7.54) Az (%m(z)) ⊂ Az(%∗) ⊂ B(−%∗ + Ā−z0 −A+z1,
¯̄A−z1 + %∗)

valid for any m ≥ 0. In view of (7.54), inclusion (7.51) implies that

(7.55) x1(·, z) ∈ B(−%∗ + Ā−z0 −A+z1,
¯̄A−z1 + %∗).

Thus, both functions ϕz and x1(·, z) belong to the set where the Lipschitz condition
(4.9) is satisfied. Applying Lemmata 6.4 and 6.5, we get

|x2(t, z)− ϕz(t)| = |(Pfx1(·, z)(t)|(7.56)

≤ |(Pfϕz)(t)|+ |(P [fx1(·, z)− fϕz])(t)|

≤ σ(t)

b− a
ω(z) +

1

b− a
Hl(σω(z))(t)

≤ σ(t)

b− a
ω(z) +

1

b− a
(HσV ω(z)) (t)

for any t ∈ [a, b].
By Lemma 6.2, the inequality

(7.57) (HσV ω(z))(t) ≤ b− a
3

σ(t)V ω(z), t ∈ [a, b],
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is true. Note that, by (4.16), ω(z) ≥ 0 and, hence, V ω(z) ≥ 0 as well, so that the estimate
of Lemma 6.2 is applicable.

Using the positivity of the operator H , applying Lemma 6.5 with λ = ω(z), and taking
relations (4.11), (3.3), (7.56), and (7.57) into account, we obtain

|x2(t, z)− ϕz(t)| ≤
σ(t)

b− a
ω(z) +

1

b− a
H(σV ω(z))(t)(7.58)

≤ 1

b− a

(
σ(t)ω(z) +

b− a
3

σ(t)V ω(z)

)
=

σ(t)

b− a

(
1n +

b− a
3

V

)
ω(z), t ∈ [a, b],

whence, by (7.49) and (7.48),

|x2(t, z)− ϕz(t)| ≤
b− a

4

(
1n +

b− a
3

V

)
ω(z)(7.59)

= %1(z)

for all t ∈ [a, b]. According to (6.42), estimate (7.59) means that

(7.60) x2(·, z) ∈ Az (%1(z)) .

In view of inclusions (7.60) and (7.54), the function x2(·, z) belongs to the set B(−%∗ +

Ā−z0 −A+z1,
¯̄A−z1 + %∗) on which the Lipschitz condition (4.9) is satisfied.

Using (4.9) for the functions x2(·, z) and ϕz , similarly to (7.56) and (7.58), we obtain

|x3(t, z)− ϕz(t)| = |(Pfx2(·, z)(t)|
≤ |(Pfϕz)(t)|+ |(P [fx2(·, z)− fϕz])(t)|

≤ 1

b− a
(σ(t)ω(z) + (Hl)(σω(z) + (Hl)(σω(z)))(t))

=
1

b− a
(σ(t)ω(z) + (Hl(σω(z))(t) + (HlHlσω(z))(t))

and, therefore, by (7.48) and (7.53),

|x3(t, z)− ϕz(t)| ≤
b− a

4

(
1n +

1

3
(b− a)V +

1

9
(b− a)2V 2

)
ω(z)(7.61)

= %2(z) ≤ %∗, t ∈ [a, b],

whence it follows that x3(·, z) ∈ Az(ρ2(z)) and, consequently, by (7.54),

x3(·, z) ∈ B(−%∗ + Ā−z0 −A+z1,
¯̄A−z1 + %∗).

Proceeding analogously, we obtain the estimate

(7.62) |xm(t, z)− ϕz(t)| ≤ %m−1(z), t ∈ [a, b],

valid for any m ≥ 1, whence, in view of (7.54), the inclusion

(7.63) {xm(·, z) : m ≥ 0} ⊂ B(−%∗ + Ā−z0 −A+z1,
¯̄A−z1 + %∗)

follows.
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7.2. Let us show that {xm(·, z) : m ≥ 0} is a Cauchy sequence in the Banach space
C([a, b],Rn).

Indeed, by virtue of definition (4.11) and Lemma 6.4, we have

|xm+1(t, z)− xm(t, z)| = |(P [fxm(·, z)− fxm−1(·, z)])(t)|(7.64)

≤ H |fxm(·, z)− fxm−1(·, z)| (t)

for all t ∈ [a, b] and m ≥ 1. In view of inclusion (7.63), the Lipschitz condition for f holds
at all the members of sequence (4.11) and, therefore, estimate (7.64) yields

|xm+1(t, z)− xm(t, z)| ≤ (Hl |xm(·, z)− xm−1(·, z)|)(t)(7.65)

≤ ((Hl)m |x1(·, z)− ϕz|)(t)

for all t ∈ [a, b] and m ≥ 1. Due to estimate (7.47), inequality (7.65) yields

|xm+1(t, z)− xm(t, z)| ≤ 1

b− a
((Hl)mσω(z))(t)(7.66)

=
1

b− a
((Hl)m−1Hlσω(z))(t)

for all m > 1 and t ∈ [a, b], where σ is the function given by (5.18).
By Lemma 6.5,

(7.67) l(σω(z))(t) ≤ σ(t)V ω(z), t ∈ [a, b].

On the other hand, Lemma 6.2 implies that inequality (7.57) holds,

(HσV ω(z))(t) ≤ b− a
3

σ(t)V ω(z), t ∈ [a, b],

which, together with (7.67), yields

(7.68) (Hlσω(z))(t) ≤ b− a
3

σ(t)V ω(z), t ∈ [a, b].

Using (7.68) in (7.66), we get

|xm+1(t, z)− xm(t, z)| ≤ 1

b− a
((Hl)m−1 b− a

3
σV ω(z))(t)(7.69)

=
1

3
((Hl)m−1σV ω(z))(t).

Arguing similarly, we obtain

|xm+1(t, z)− xm(t, z)| ≤ 1

b− a
· b− a

3
((Hl)m−2HlσV ω(z))(t)

≤ 1

b− a
· b− a

3
((Hl)m−2HσV · V ω(z))(t)

≤ 1

b− a

(
b− a

3

)2

((Hl)m−2σV 2ω(z))(t)

and, finally,

|xm+1(t, z)− xm(t, z)| ≤ 1

b− a

(
b− a

3

)m
σ(t)V mω(z)

=
1

3m
(b− a)

m−1
σ(t)V mω(z)(7.70)

for all m ≥ 1 and t ∈ [a, b].
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By virtue of assumption (5.21), it follows from (7.70) that

|xm+k(t, z)− xm(t, z)| ≤
k−1∑
j=0

|xm+j+1(t, z)− xm+j(t, z)|(7.71)

≤ σ(t)

k−1∑
j=0

(b− a)
m+j−1

3m+j
V m+jω(z)

= σ(t)
(b− a)m−1

3m
V m

k−1∑
j=0

1

3j
(b− a)

j
V jω(z)

≤ σ(t)
(b− a)m−1

3m
V m

+∞∑
j=0

1

3j
(b− a)

j
V jω(z)

for any m ≥ 0 and k ≥ 1. In view of assumption (5.21), limm→+∞
1

3m (b− a)m−1V m = 0n,
and, therefore, estimate (7.71) proves that {xm(·, z) : m ≥ 0} is a Cauchy sequence in
C([a, b],Rn).

7.3. It is clear from (6.33) that

ϕz(a) = z, ϕz(b) = −Az.

Therefore, by (4.11) and (4.13),

xm(a, z) = (Pxm−1(·, z))(a) = z,

xm(b, z) = (Pxm−1(·, z))(b) + ϕz(b) = −Az,

whence it follows that the initial condition

(7.72) xm(a, z) = z

and the two-point boundary condition

(7.73) Axm(a, z) + xm(b, z) = 0

are satisfied for any m ≥ 1.
Passing to the limit as m → ∞ in (7.72), (7.73), we arrive at the required equalities

(5.23), (5.24).
Passing to the limit as m → ∞ in equality (4.11), we show that the function x∞(·, z)

given by (5.22) is the unique solution the integro-functional equation

(7.74) x(t) = ϕz(t) + (Pfx)(t), t ∈ [a, b].

In particular, the function ∆ : 〈z0, z1〉 → Rn is well defined by formula (5.25).
Differentiating both sides of (7.74) and recalling (6.31) and (6.33), we find that, for an

arbitrary z ∈ 〈z0, z1〉, the function x = x∞(·, z) is the unique solution of the Cauchy
problem (5.26), (5.27).

Finally, passing to the limit as k →∞ in (7.71), we obtain the inequality

|x∞(t, z)− xm(t, z)| ≤ σ(t)
(b− a)m−1

3m
V m

+∞∑
j=0

1

3j
(b− a)

j
V jω(z),

which coincides with the required estimate (5.28). This completes the proof.
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8. A REMARK ON CONDITION (5.21)

In [9], the successive approximations (4.11) are considered on the assumption that f in
(3.3) satisfies the Lipschitz condition (4.9) on the set B(−%∗ + Ā−z0 − A+z1,

¯̄A−z1 + %∗)
with

(8.75) %∗ :=
b− a

4
(1−Ql)−1 sup

z∈〈z0,z1〉
ω(z),

where Ql is the constant matrix of the form

(8.76) Ql := max
t∈[a,b]

((
1− t− a

b− a

)∫ t

a

Kl(s)ds+
t− a
b− a

∫ b

t

Kl(s)ds

)
and the matrix-valued function Kl : [a, b] → L(R) is associated with a positive linear
operator l : C → L1 according to the formula

(8.77) Kl := [le1, le2, . . . , len],

with ei, i = 1, 2, . . . , n, are the unit vectors given by (5.17).
We note that the maximum in (8.76) is taken elementwise, and it is, in general, not

attained at a point from [a, b] unless n = 1.
The convergence of the successive approximations (4.11) has been proven in [9, Theo-

rem 5.1] on the condition

(8.78) r(Ql) < 1.

In contrast to (8.78), the condition (5.21) used in Theorem 5.1 depends solely on the
value of the Lipschitz operator l at the function σ and, as is seen from examples, may be
weaker in the cases where lσ is small in some sense.

9. ANALYSIS OF SOLVABILITY

The following general statement on the solvability of the boundary value problem (3.3),
(3.5) holds.

Theorem 9.2. Let the conditions of Theorem 5.1 be satisfied. Then the limit function x∞(·, z) of
the recurrence sequence (4.11) is a solution of the boundary value problem (3.3), (3.5) if, and only
if the value of the vector parameter z ∈ 〈z0, z1〉 satisfies the system of equations

(9.79) ∆(z) = 0,

where ∆ : 〈z0, z1〉 → Rn is given by (5.25).

The proof of Theorem 9.2 is similar to that of [9, Theorem 6.2] and is omitted.
Equations of type (9.79) are usually referred to as “determining equations” because

they determine the actual values of the parameters z ∈ 〈z0, z1〉 involved in the iteration
process (4.11). Likewise, ∆ : 〈z0, z1〉 → Rn given by (5.25) is often called a “determining
function” for problem (3.3), (3.5).

A constructive investigation of problem (3.3), (3.5) with the help of Theorem 9.2 is car-
ried out by passing from the exact determining equation (9.79) to some its approximations.
In practice, it is natural to fix some m ≥ 1, introduce the mth “approximate determining
function” ∆m : 〈z0, z1〉 → Rn by setting

(9.80) ∆m(z) := (A+ 1n) z +

∫ b

a

(fxm(·, z))(s) ds, z ∈ 〈z0, z1〉,
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and, instead of the inconvenient equation (9.79), consider the mth “approximate deter-
mining equation” of the form

(9.81) ∆m(z) = 0.

It should be noted that, in contrast to (9.79), the new equation (9.88) is constructed
directly based on the function xm(·, z) and does not involve any unknown terms. It turns
out that, under suitable assumptions, the function

Xm(t) := xm(t, z̃), t ∈ [a, b],

where z̃ iz a root of equation (9.81), can be regarded as anmth approximation to a solution
of problem (3.3), (3.5).

Definition 9.3. Let S ⊂ Rn be an arbitrary non-empty set. For any pair of functions
gj = col (gj,1, . . . , gj,n), j = 1, 2, we write

(9.82) g1 BS g2

if and only if there exists a function ν : S → {1, 2, . . . , n} such that the strict inequality

(9.83) g1,ν(x)(x) > g2,ν(x)(x)

holds for all x ∈ S.

The following statement gives conditions sufficient for the solvability of the boundary
value problem (3.3), (6.40) based on properties of a certain fixed member of the recurrence
sequence (4.11).

Theorem 9.3. Let us suppose that, in addition to assumptions of Theorem 5.1, there exist a closed
domain Ω ⊂ 〈z0, z1〉 and an integer m ≥ 1 such that, on the boundary of Ω, the approximate
determining function ∆m given by formula (9.80) satisfies the condition

(9.84) |∆m| B∂Ω
1

2

(b− a)m+2

3m+1
V m+1Ṽ ω,

where ω : 〈z0, z1〉 → Rn is the function given by (4.16) and Ṽ is the matrix (5.29).
Let, moreover,

(9.85) deg (∆m,Ω, 0) 6= 0.

Then there exists a certain z∗ ∈ Ω such that the function x∞(·, z∗) is a solution of the boundary
value problem (3.3), (3.5).

The proof of Theorem 9.3 is analogous to that of [9, Theorem 7.1] and is based on the
application of the following

Lemma 9.8. Under the assumptions of Theorem 5.1,

(9.86) |∆(z)−∆m(z)| ≤ 1

2

(b− a)m+2

3m+1
V m+1Ṽ ω(z)

for arbitrary z ∈ 〈z0, z1〉 and m ≥ 1.

Proof. Let z ∈ 〈z0, z1〉 and m ≥ 1 be arbitrary. By virtue of (5.25) and (9.81), we have

|∆(z)−∆m(z)| =

∣∣∣∣∣
∫ b

a

[fx∞(·, z)(t)− fxm(·, z)(t)]dt

∣∣∣∣∣(9.87)

≤
∫ b

a

|fx∞(·, z)(t)− fxm(·, z)(t)| dt.
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Since condition (5.21) is assumed, it follows that estimate (7.62) is satisfied for any m ≥ 1.
Passing to the limit as m→∞ in (7.62) and taking (5.20), (7.52) into account, we obtain

(9.88) |x∞(t, z)− ϕz(t)| ≤ lim
k→+∞

%k(z) ≤ %∗, t ∈ [a, b],

whence, according to (7.54), we get

(9.89) x∞(·, z) ∈ B(−%∗ + Ā−z0 −A+z1,
¯̄A−z1 + %∗).

It follows from (7.63) and (9.89) that the Lipschitz condition (4.9) imposed on f can
be applied for the pair of functions x∞(·, z) and xm(·, z). By doing so in (9.87), taking
estimate (5.28) into account, and applying Lemma 6.5 with λ = V mṼ ω(z) and Ṽ given by
(5.29), we obtain

|∆(z)−∆m(z)| ≤
∫ b

a

l |x∞(·, z)(t)− xm(·, z)(t)| dt(9.90)

≤ (b− a)m−1

3m

∫ b

a

(lσV mṼ ω(z))(t) dt

≤ (b− a)m−1

3m

∫ b

a

σ(t)dt V V mṼ ω(z).

Since, by (5.18), ∫ b

a

σ(t) dt =
1

6
(b− a)3,

relation (9.90) implies the estimate

|∆(z)−∆m(z)| ≤ 1

6

(b− a)m+2

3m
V m+1Ṽ ω(z),

which coincides with (9.86). �

10. AN EXAMPLE OF APPLICATION

Consider the functional differential system

x′1(t) = −3t2(x2(t2))2,(10.91)

x′2(t) = (1− t)5

(
3x1

( t
3

)
+
t3

9

)
, t ∈ [0, 1],(10.92)

with the two-point boundary conditions

x2(0) + x1(1) = 0,(10.93)

x1(0)− x2(0) + x2(1) = 0.(10.94)

Clearly, system (10.91), (10.92) is a particular case of (3.3) with a = 0, b = 1, n = 2,

(10.95) (fx)(t) :=

(
−3t2(x2(t2))2

(1− t)5
(
3x1

(
t
3

)
+ 1

9 t
3
)) , t ∈ [0, 1],

for all x = (xi)
2
i=1 ∈ C([a, b],R2), whereas the boundary conditions (10.93), (10.94) take

form (3.5) if one puts

(10.96) A :=

(
0 1
1 −1

)
.
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One can verify that the conditions of Theorem 5.1 hold, and it thus makes sense to
apply the approach described above. We omit the details and focus on the results of com-
putation. Note only that the coefficients in (10.91), (10.92) are continuous functions and
the argument deviations are of delay type and, thus, by virtue of relation (5.30), assump-
tion (5.17) is satisfied.

By (10.96), the starting approximation (4.12) in this case has the form

ϕz(t) =

(
z1 − tz1 − tz2

z2 − tz1

)
, t ∈ [0, 1].

Carrying out the first step of iteration according to formula (4.11), we obtain the equal-
ities

x11(t, z1, z2) = z1 − tz1 − tz2 −
3

7
z1

2t7 +
6

5
z2z1t

5 − z2
2t3(10.97)

+ t

(
3

7
z1

2 − 6

5
z2z1 + z2

2

)

and

x12(t, z1, z2) = z2 +
32

21
tz1 −

1

81
t9 +

5

72
t8 − 10

63
t7 +

1

7
t7z1 +

1

7
t7z2(10.98)

− 4

3
t6z1 +

5

27
t6 − 5

6
t6z2 + 5 t5z1 −

1

9
t5 + 2 t5z2 − 10 t4z1

+
1

36
t4 − 5

2
t4z2 +

35

3
t3z1 +

5

3
t3z2 − 8 t2z1 −

1

2
t2z2

− 1

4536
t+

1

42
tz2

for all t ∈ [0, 1]. Constructing the vector function ∆1 : R2 → R2 according to (9.80) with
m = 1, we find that the first approximate determining system (9.81) has the form

35822288758573397

35821106339668650
z1 +

35819006959189709

35821106339668650
z2(10.99)

+
581323225130404

663353821104975
z2z1 −

5514914693

3180914242962576120

−11912489872861

12060978565545
z2

2 − 41035461286199

132670764220995
z1

2 = 0,

31

21
z1 −

1

42
z2 +

1

4536
− 1069

37422
z2z1 +

107

4536
z2

2 +
1250957

122594472
z1

2 = 0.(10.100)

The computation here has been performed using MapleTM.
Solving system (10.99), (10.100) numerically in a neighbourghood of point (0, 1), we

obtain

z1 ≈ −0.0001966740103, z2 ≈ 1.012034341.(10.101)
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Substituting values (10.101) into formulae (10.97) and (10.98), we arrive at the first ap-
proximation of the solution in question:

X11(t) ≈ −0.0001966740103 + 0.012614706 t(10.102)

− 0.00000001657742843 t7 − 0.0002388490229 t5

− 1.024213507 t3

X12(t) ≈ 1.012034341 + 0.02357590346 t(10.103)

− 0.01234567901 t9 + 0.06944444444 t8

− 0.01418192059 t7 − 0.6579145336 t6

+ 1.911974201 t5 − 2.500341335 t4

+ 1.684429372 t3 − 0.5044437784 t2, t ∈ [0, 1].

(a) First component (b) Second component

FIGURE 1. The first approximation (�) and the exact solution (solid line)

Note that, as can easily be verified, the pair of functions

x1(t) = −t3, x2(t) = 1(10.104)

is a solution of the original problem. We can compare the graphs of functions (10.102),
(10.103) and (10.104) on Figure 1.

Proceeding similarly, we find the roots of the second approximate determining equa-
tion

z1 ≈ 0.0001948022964, z2 ≈ 1.000364679,
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which determine the second approximation of the solution:

X21(t) ≈ −0.2362794075 · 10−5 − 0.121067348 · 10−1t(10.105)

− 0.1172429156 · 10−4t39 + 0.1390279168 · 10−3t37

− 0.4469102669 · 10−3t35 − 0.1254983549 · 10−2t33

+ 0.1320307360 · 10−1t31 − 0.3558503833 · 10−1t29

+ 0.2690720263 · 10−2t27 + 0.2552538119 t25 − .08676295819 t23

+ 1.644128081 t21 − 2.083909660 t19 + 1.799046652 t17

− 0.8087453689 t15 − 0.4604246775 t13 + 1.259222257 t11

− 1.103551748 t9 + 0.4284412737 t7 − 0.2831082023 · 10−1t5

− 1.000290553 t3,

X22(t) ≈ 1.000145266− 0.7063123523 · 10−5t+ 2.524666867 · 10−16t13(10.106)

− 1.367527886 · 10−15t12 + 3.182679494 · 10−9t11

− 1.750472409 · 10−8t10 + 0.3625977159 · 10−5t9

− 0.2022107430 · 10−4t8 + 0.2464657817 · 10−4t7

+ 0.7277439546 · 10−4t6 − 0.2757766822 · 10−3t5

+ 0.3858650306 · 10−3t4 − 0.2744379408 · 10−3t3

+ 0.9296395556 · 10−4t2

for t ∈ [0, 1].

(a) First component (b) Second component

FIGURE 2. The first (�), second (×), and third (�) approximations of the
exact solution (drawn with a solid line)

In a similar way, we find the third approximation, which has the initial data

z1 ≈ −0.000002362794075, z2 ≈ 1.000145266.
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The graphs of the exact solution (10.104) and its first three approximations are shown
on Figure 2. We see that the scheme applied here gives approximations which provide
quite a good accuracy. In particular, the error of the third approximation does not exceed
10−4.
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