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The Picard-Lindelöf’s theorem at a regular singular point

CHELO FERREIRA, JOSÉ L. LÓPEZ and ESTER PÉREZ SINUSÍA

ABSTRACT.
We consider initial value problems of the form{

(D(x)y)′ = f(x,y), x ∈ [−a, b], a, b ≥ 0,

D(0)y(0) = D(0)ỹ0, y ∈ C[−a, b], ỹ0 ∈ Cn,

where f : [−a, b] × U → Cn is a continuous function in its variables and U ⊂ Cn is an open set. D(x) is
an n × n diagonal matrix whose first n −m diagonal entries are 1 and the last m diagonal entries are x, with
m = 0, 1, 2, . . . or n. This is an initial value problem where the initial condition is given at a regular singular
point of the system of differential equations. The main result of this paper is an existence and uniqueness
theorem for the solution of this initial value problem. It is shown that this problem has a unique solution and the
Picard-Lindelöf’s expansion converges to that solution if the function F(y, x) := xD−1(x)f(x,y) is Lipschitz
continuous in the variables y with Lipschitz constant L of the form L = N + Mxp for a certain p > 0, M > 0

and 0 ≤ N < 1. When we add the condition y(s) ∈ C[−a, b], s ∈ N, to the formulation of the problem and
the Taylor polynomial of y at x = 0 and degree s − 1 is available from the differential equation, then the same
conclusion is true with a less restrictive condition upon N : 0 ≤ N < s + 1. The standard Picard-Lindelöf’s
theorem is the particular case of the problem studied here obtained for m = 0 (D(x) is the identity matrix),
N = 0, p = 1 and M is the Lipschitz constant of f(x,y).
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167



168 Chelo Ferreira, José L. López and Ester Pérez Sinusı́a
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