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Note on stability of the Cauchy equation
– an answer to a problem of Th. M. Rassias

JANUSZ BRZDȨK

ABSTRACT.
We give an answer to a problem formulated by Th. M. Rassias in 1991 concerning stability of the Cauchy
equation; we also disprove a conjecture of Th. M. Rassias and J. Tabor. In particular, we present a new method
for proving stability results for functional equations.
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