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A fixed point theorem for a Ćirić-Berinde type mapping in
orbitally complete metric spaces

SEONG-HOON CHO

ABSTRACT. In this paper, we introduce the notion of Ćirić-Berinde type almost set-valued contraction map-
pings and give a fixed point theorem for these mappings in orbitally complete metric spaces.

1. INTRODUCTION

Banach’s contraction principle [5] is one of the pivotal results of analysis. It is widely
considered as the source of metric fixed point theory. Also, it is a powerful tool in the
study on finding fixed points of mappings defined on metric spaces. In [27], it enounced
in the setting of metric spaces. It is generalized and extended in many directions by the
authors [1-4, 19, 20, 22-29].

Ćirić [21] introduced the concept of quasi-contraction mappings, and proved that a
quasi-contraction mapping defined on complete metric spaces has a unique fixed point.
In the recent years, Berinde [6-15] obtained valuable achievements on fixed point theory.
In [7], he introduced the notion of Ćirić almost contraction mappings and obtained a fixed
point theorem for these mappings. He proved the following theorem.

Theorem 1.1. [7] Let (X, d) be a complete metric space. Suppose that a mapping T : X → X is
Ćirić almost contraction, that is, T satisfies the following condition:

d(Tx, Ty) ≤ αmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}+ Ld(y, Tx),

for all x, y ∈ X , where α ∈ [0, 1) and L ≥ 0.
Then

(1) Fix(T ) 6= ∅, where Fix(T ) is the set of all fixed points of T ;
(2) For any x0 ∈ X , the Picard iteration {Txn} is convergent to some x∗ ∈ Fix(T );
(3) The following estimate holds

d(xn, x
∗) ≤ αn

(1− α)2
d(x, Tx), n = 1, 2, · · · .

The study of fixed point theory for set-valued maps continues to attract the interest of
mathematicians. Interest in such theory stems, perhaps, from its usefulness in real world
problems, such as in Game Theory; and its applications in other areas of mathematics
such as in differential equations with discontinuous right hand sides. For more details on
this, the reader may consult any of the following references: Chidume et. al. [16], [17] and
[18].
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Let (X, d) be a metric space. We denote by CB(X) the family of nonempty closed and
bounded subsets of (X, d). Let H(·, ·) be the Hausdorff distance on CB(X), i.e.,

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}, for A,B ∈ CB(X),

where d(a,B) = inf{d(a, b) : b ∈ B} is the distance from the point a to the subset B.

Recently, the author [4] obtained the following result:

Theorem 1.2. [4] Let (X, d) be a complete metric space. Suppose that a set-valued mapping
T : X → CB(X) satisfies the following condition:

H(Tx, Ty)) ≤ kM(x, y)(1.1)

for all x, y∈X , where k∈
[
0,

1

2

)
andM(x, y)=max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Then T has a fixed point in X , that is, there exists an x∗ ∈ X such that x∗ ∈ Tx∗.

In this paper, we introduce the concept of Ćirić-Berinde type almost set-valued contrac-
tion mappings and establish a new fixed point theorem for these mappings in orbitally
complete metric spaces.

Lemma 1.1. Let (X, d) be a metric space. Suppose that A,B∈CB(X) and c>0. If H(A,B)<c
and a ∈ A , then there exists b ∈ B such that d(a, b) < c.

2. FIXED POINT THEOREMS

Let (X, d) be a metric space and T : X → CB(X) be a set-valued mapping. Then,
(1) X is called T -orbitally complete if any Cauchy subsequence {xn(k)} of

{x0, x1 ∈ Tx0, x2 ∈ Tx1, · · · }, x0 ∈ X

converges in X .
(2) T is called Ćirić-Berinde type almost set-valued contraction if

H(Tx, Ty) ≤ αd(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
+ βM(x, y) + Ld(y, Tx)(2.1)

for all x, y ∈ X , where α, β ≥ 0, α+ 2β < 1, L ≥ 0.

Theorem 2.3. Let (X, d) be a metric space, and let T : X → CB(X) be a given set-valued
mapping. Suppose that X is T -orbitally complete. If T is a Ćirić-Berinde type almost set-valued
contraction mapping, then T has a fixed point in X .

Proof. Let x0 ∈ X , and let x1 ∈ Tx0. Let c > 0 be such that d(x0, x1) < c.
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From (2.1) we have

H(Tx0, Tx1)

≤ αd(x1, Tx1)[1 + d(x0, Tx0)]

1 + d(x0, x1)

+ βmax{d(x0, x1), d(x0, Tx0), d(x1, Tx1), d(x0, Tx1), d(x1, Tx0)}
+ Ld(x1, Tx0)

≤ αd(x1, Tx1)[1 + d(x0, x1)]

1 + d(x0, x1)

+ βmax{d(x0, x1), d(x0, x1), d(x1, Tx1), d(x0, x1) + d(x1, Tx1), d(x1, x1)}
+ Ld(x1, x1)

≤ αd(x1, Tx1)
+ βmax{d(x0, x1), d(x1, Tx1), d(x0, x1) + d(x1, Tx1), 0}
≤ αH(Tx0, Tx1)

+ βmax{d(x0, x1), H(Tx0, Tx1), d(x0, x1) +H(Tx0, Tx1), 0}
= αH(Tx0, Tx1) + β{d(x0, x1) +H(Tx0, Tx1)}.

Thus we have H(Tx0, Tx1) ≤ rd(x0, x1) < rc, where r =
β

1− α− β
.

By Lemma 1.1, we can choose x2 ∈ Tx1 such that

d(x1, x2) < rc.

Again, from (2.1) we have

H(Tx1, Tx2)

≤ αd(x2, Tx2)[1 + d(x1, Tx1)]

1 + d(x1, x2)

+ βmax{d(x1, x2), d(x1, Tx1), d(x2, Tx2), d(x1, Tx2), d(x2, Tx1)}
+ Ld(x2, Tx1)

≤ αd(x2, Tx2)[1 + d(x1, x2)]

1 + d(x1, x2)

+ βmax{d(x1, x2), d(x1, x2), d(x2, Tx2), d(x1, Tx2), d(x2, x2)}
+ Ld(x2, x2)

≤ αd(x2, Tx2) + βmax{d(x1, x2), d(x2, Tx2), d(x1, x2) + d(x2, Tx2), 0}
≤ αH(Tx1, Tx2) + βmax{d(x1, x2), H(Tx1, Tx2), d(x1, x2) +H(Tx1, Tx2), 0}
= αH(Tx1, Tx2) + β{d(x1, x2) +H(Tx1, Tx2)}.

Thus we have H(Tx1, Tx2) ≤ rd(x1, x2) < r2c.
By Lemma 1.1, we can choose x3 ∈ Tx2 such that

d(x2, x3) < r2c.

Continuing this process, we obtain a sequence {xn} ⊂ X such that

xn+1 ∈ Txn
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and
d(xn, xn+1) ≤ rnc

for all n = 0, 1, 2, · · · .
For m > n, we obtain

d(xn, xm)

≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≤ (rn + rn+1 + · · ·+ rm−1)c

≤ rn

1− r
c.

Thus, {xn} is a Cauchy sequence in X .
By the T -orbitally completeness of X , there exists z ∈ X such that lim

n→∞
xn = z.

From (2.1) we have

d(xn+1, T z)

≤ H(Txn, T z)

≤ αd(z, Tz)[1 + d(xn, Txn)]

1 + d(xn, z)

+ βmax{d(xn, z), d(xn, Txn), d(z, Tz), d(xn, T z), d(z, Txn)}
+ Ld(z, Txn)

≤ αd(z, Tz)[1 + d(xn, xn+1)]

1 + d(xn, z)

+ βmax{d(xn, z), d(xn, xn+1), d(z, Tz), d(xn, T z), d(z, xn+1)}
+ Ld(z, xn+1).

Letting n→∞ in above, we have d(z, Tz)≤(α+β)d(z, Tz). Since α+β < 1, d(z, Tz)=0.
Thus, z ∈ Tz. �

By Theorem 2.3, we have the following corollaries.

Corollary 2.1. Let (X, d) be a metric space, and let T : X → CB(X) be a given set-valued
mapping. Suppose that X is T -orbitally complete.

Assume that T satisfies the following condition:

H(Tx, Ty) ≤ αd(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
+ βM(x, y) + LN(x, y),

for any x, y ∈ X , where α, β ≥ 0, α+ 2β < 1, L ≥ 0 and
N(x, y) = min{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Then T has a fixed point in X .

Corollary 2.2. Let (X, d) be a metric space, and let T : X → CB(X) be a given set-valued
mapping. Suppose that X is T -orbitally complete.

Assume that a set-valued mapping T : X → CB(X) satisfies the following condition:

H(Tx, Ty) ≤ αd(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
+ βM(x, y),

for any x, y ∈ X , where α, β ≥ 0, α+ 2β < 1.
Then T has a fixed point in X .
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Corollary 2.3. Let (X, d) be a metric space, and let T : X → CB(X) be a given set-valued
mapping. Suppose that X is T -orbitally complete.

Assume that a set-valued mapping T : X → CB(X) satisfies the following condition:

H(Tx, Ty) ≤ αd(y, Ty)d(x, Tx)

1 + d(x, y)
+ βM(x, y),

for any x, y ∈ X , where α, β ≥ 0, α+ 2β < 1.
Then T has a fixed point in X .

Corollary 2.4. Let (X, d) be a metric space, and let T : X → CB(X) be a given set-valued
mapping. Suppose that X is T -orbitally complete.

Assume that a set-valued mapping T : X → CB(X) satisfies the following condition:

H(Tx, Ty) ≤ βM(x, y) + Ld(y, Tx),

for any x, y ∈ X , where 0 ≤ β < 1

2
and L ≥ 0.

Then T has a fixed point in X .

Corollary 2.5. Let (X, d) be a metric space, and let T : X → CB(X) be a given set-valued
mapping. Suppose that X is T -orbitally complete.

Assume that a set-valued mapping T : X → CB(X) satisfies the following condition:

H(Tx, Ty) ≤ βM(x, y)

for any x, y ∈ X , where 0 ≤ β < 1

2
.

Then T has a fixed point in X .

Remark 2.1. (1) Corollary 2.4 is a generalization of Theorem 2.1 in [6] and Theorem 3.2
[7] to the case of set-valued mapping and T -orbitally complete.
(2) Corollary 2.5 is a generalization of Theorem 2.2 in [4] to the case of T -orbitally com-
plete.

Question. (1) Does the conclusion of Theorem 2.3 remain true for α+ β < 1 and L ≥ 0?
(2) Does the conclusion of Corollary 2.4 remain true for 0 ≤ β < 1 and L ≥ 0?

A set-valued mapping T :X →CB(X) is called Ćirić-Berinde type strong almost set-valued
contraction if

H(Tx, Ty) ≤ αd(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
+ βM1(x, y) + Ld(y, Tx)

for all x, y ∈ X , where α, β ≥ 0, α+ β < 1, L ≥ 0 and

M1(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), 1
2
{d(x, Ty) + d(y, Tx)}}.

Remark 2.2. (1) Ćirić-Berinde type strong almost set-valued contraction mapping is
Ćirić-Berinde type almost set-valued contraction mapping. Thus, for α, β ≥ 0, α+ 2β < 1

and L ≥ 0, a Ćirić-Berinde type strong almost set-valued contraction mapping has a fixed
point.
(2) Theorem 2.3 generalizes and improves Corollary 3.3 of [22] and Theorem 3.3 of [23].

The following example illustrates Theorem 2.3.
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Example 2.1. Let X =

{
1

n
: n = 1, 2, · · ·

}
∪ {0}with the Euclidean metric d.

We define a set-valued mapping T : X → CB(X) by

Tx =

{ {
1

n+1

}
(x = 1

n , n = 1, 2, 3, · · · ),

{0} (x = 0).

Then, (X, d) is complete, and X is T -orbitally complete.
Let α, β ≥ 0, α+ 2β < 1 and L = 1.
We now show that condition (2.1) is satisfied.
We consider three cases.
Case 1. Let x = y. Then we have H(Tx, Ty) = 0. Hence condition (2.1) is satisfied.

Case 2. Let x = 0 and y =
1

n

(
or x =

1

n
and y = 0

)
. Then we have

H(Tx, Ty) = H

(
{0},

{
1

n+ 1

})
=

1

n+ 1
≤ 1

n
= Ld(y, Tx)

≤ αd(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
+ βM(x, y) + Ld(y, Tx).

Case 3. Let x =
1

n
and y =

1

m
(m > n). Then we have

H(Tx, Ty) = H

({
1

n+ 1

}
,

{
1

m+ 1

})
=

∣∣∣∣ 1

n+ 1
− 1

m+ 1

∣∣∣∣
=

m−m
(m+ 1)(n+ 1)

≤ (1 + β)
m−m
mn

= βM(x, y) + Ld(y, Tx)

≤ αd(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
+ βM(x, y) + Ld(y, Tx).

Thus T satisfies all conditions in Theorem 2.3 and 0 ∈ T0.
Note that condition (1.1) of Theorem 1.2 is not satisfied.

In fact, if there exists k ∈
[
0,

1

2

)
such that for any x, y ∈ X

H(Tx, Ty) ≤ k max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}, then we have, for

x = 0 and y =
1

n
for n = 1, 2, 3, · · · ,

1

n+ 1
= H(Tx, Ty)

≤ k max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

= k max

{
1

n
, 0,

1

n
− 1

n+ 1
,

1

n+ 1
,

1

n+ 1

}
= k

1

n
.
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Thus we obtain k ≥ n

n+ 1
for n = 1, 2, 3, · · · .

From this inequality, we have that k ≥ 1. But it is not possible. Thus, condition (1.1) of
Theorem 1.2 is not satisfied.
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