Operators commuting with multi-parameter shift semigroups

OLEH LOPUSHANSKY and SERGII SHARYN

ABSTRACT. Using operators of cross-correlation with ultradistributions supported by a positive cone, we describe a commutative algebra of shift-invariant continuous linear operators, commuting with contraction multi-parameter semigroups over a Banach space. Thereby, we generalize classic Schwartz's and Hörmander's theorems on shift-invariant operators.

1. INTRODUCTION

The well-known Schwartz structure theorem for shift-invariant operators [15] claims that every continuous linear operator $L: \mathcal{D}(\mathbb{R}^n) \longrightarrow C^{\infty}(\mathbb{R}^n)$ commuting with the shift group $\tau_s: \varphi(\cdot) \mapsto \varphi(\cdot - s), s \in \mathbb{R}^n$, is necessarily the convolution operator with some distribution $f \in \mathcal{D}'(\mathbb{R}^n)$, i.e., $L\varphi = f * \varphi$. Hörmander in [8] establishes a similar structure theorem for shift-invariant operators in the Lebesgue spaces $L^p(\mathbb{R}^n)$. Such operators over test and generalized functions were discussed in an overview paper [18]. An extension of Hörmander's result on Lorentz and Hardy spaces was considered in [2] and [17], respectively. Structure of operators from the Schwartz space $\mathcal{S}(\mathbb{R}^n)$ into the tempered distributions $\mathcal{S}'(\mathbb{R}^n)$ that commute with a discrete subgroup of translations was studied in [4]. Shift-invariant operators over the space of polynomial ultradistributions were considered in [12]. For other results and references on the topic we refer the reader to [3, 5, 9, 19].

Our goal is a generalization of the structure theorems for two cases: first one for a (C_0) -semigroup $T: \mathbb{R}^n_+ \ni s \longmapsto T_s$ of shifts and second one for contraction (C_0) -semigroups $\{U_t : t \in \mathbb{R}^n_+\}$ of operators on a Banach space. In the main Theorems 4.1 and 5.2 we describe shift-invariant operators for scalar and operator semigroups, respectively.

It is essential that hereinafter functions and distributions are defined on the cone \mathbb{R}^n_+ (instead of \mathbb{R}^n). As a consequence, the shift-invariant property is considered under the cross-correlation (instead of the convolution). Further, we will consider only the case of Roumieu ultradistributions.

Let \mathcal{G}'_+ be the convolution algebra of Roumieu ultradistributions with supports in the positive cone \mathbb{R}^n_+ and \mathcal{G}_+ be its predual space of Gevrey ultradifferentiable functions with compact supports in \mathbb{R}^n_+ . We consider the cross-correlation operator

$$K_f \colon \mathcal{G}_+ \ni \varphi \longmapsto K_f \varphi, \qquad [K_f \varphi](s) \coloneqq \langle f, T_s \varphi \rangle, \qquad f \in \mathcal{G}'_+.$$

In Theorem 4.1 we prove that the algebra \mathcal{G}'_+ has the isomorphic representation

$$\mathcal{G}'_+ \ni f \longmapsto K_f \in \mathscr{L}(\mathcal{G}_+)$$

2010 Mathematics Subject Classification. 46F05, 46H30, 47A60.

Received: 22.04.2013; In revised form: 16.10.2013; Accepted: 15.01.2014

Key words and phrases. *Shift-invariant operator, ultradistribution, multi-parameter semigroup.* Corresponding author: Sharyn Sergii; sharyn.sergii@gmail.com

onto the commutant $[T]^c$ of the shift semigroup T (see formula (3.2)) in space of linear continuous operators on \mathcal{G}_+ .

Let us consider the set of *n*-parameter contraction (C_0) -semigroups $\{U_t : t \in \mathbb{R}^n_+\}$ on a Banach space E and a set \mathcal{A} of their generators. In section 5 we investigate the isomorphic representation of the algebra \mathcal{G}'_+

$$\mathcal{G}'_+ \ni f \longmapsto \mathcal{F} \circ (I \otimes K_f) \circ \mathcal{F}^{-1}, \qquad \mathcal{F} \colon E \otimes_{\mathfrak{p}} \mathcal{G}_+ \ni x \longmapsto \hat{x} \in \widehat{\mathcal{G}},$$

where $E \otimes_{\mathfrak{p}} \mathcal{G}_+$ is the complete projective tensor product. Here $\hat{\mathcal{G}}$ denotes the subspace of *E*-valued functions

$$\hat{x}: \mathcal{A} \ni A \longmapsto \hat{x}(A) \in E, \qquad \hat{x}(A) = \int_{\mathbb{R}^n_+} U_t(A) x(t) \, dt,$$

determined by the Hille-Phillips calculus, where $U_t(A)$ means that the semigroup is generated by operator A. In Theorem 5.2 we prove that there exists an algebraic isomorphism from \mathcal{G}'_+ into the commutant of the semigroup $\mathcal{F} \circ (I \otimes T) \circ \mathcal{F}^{-1}$.

2. ULTRADIFFERENTIABLE FUNCTIONS AND ULTRADISTRIBUTIONS

We use the short notations: $t^k = t_1^{k_1} \cdot \ldots \cdot t_n^{k_n}$, $k^{k\beta} = k_1^{k_1\beta} \cdot \ldots \cdot k_n^{k_n\beta}$, $|k| = k_1 + \cdots + k_n$ for any $k = (k_1, \ldots, k_n) \in \mathbb{Z}_+^n$, $t = (t_1, \ldots, t_n) \in \mathbb{R}^n$ and a real $\beta > 1$. Let $\partial^k = \partial_1^{k_1} \ldots \partial_n^{k_n}$, where $\partial_j^{k_j} = \partial^{k_j}/\partial t_j^{k_j}$ $(j = 1, \ldots, n)$. For $\mu, \nu \in \mathbb{R}^n$, the relation $\mu \prec \nu$ (resp. $\mu \succ \nu$) means that $\mu_1 < \nu_1, \ldots, \mu_n < \nu_n$ (resp. $\mu_1 > \nu_1, \ldots, \mu_n > \nu_n$). Let $[\mu, \nu] = \times_{j=1}^n [\mu_j, \nu_j]$ and $(\mu, \nu) = \times_{j=1}^n (\mu_j, \nu_j)$ for any $\mu \prec \nu$. In what follows $t \to \infty$ (resp. $t \to 0$) means that $t_j \to \infty$ (resp. $t_j \to 0$) for all $j = 1, \ldots, n$. By $\mathbb{R}^n_+ = \times_{j=1}^n [0, \infty)$ and $\operatorname{int} \mathbb{R}^n_+ = \times_{j=1}^n (0, \infty)$ we denote the positive cone and its interior, respectively.

Let $\mathcal{E}(\mathbb{R}^n_+)$ be the class of infinitely smooth complex valued functions φ defined on int \mathbb{R}^n_+ such that $\partial^k \varphi$ for all $k \in \mathbb{Z}^n_+$ have continuous limits at the boundary of \mathbb{R}^n_+ . Fix a $\beta > 1$. A function $\varphi \in \mathcal{E}(\mathbb{R}^n_+)$ is called (see [11]) Gevrey ultradifferentiable if for every interval $[\mu, \nu] \subset \operatorname{int} \mathbb{R}^n_+$ there exist constants h > 0 and C > 0 such that the inequality $\sup_{t \in [\mu, \nu]} |\partial^k \varphi(t)| \leq Ch^{|k|} k^{k\beta}$ holds for all $k \in \mathbb{Z}^n_+$.

We denote by $\mathcal{E}^{\beta}_{+} = \mathcal{E}^{\beta}(\mathbb{R}^{n}_{+})$ the vector space of all Gevrey ultradifferentiable functions on int \mathbb{R}^{n}_{+} . By virtue of Seeley's theorem [16] every function $\varphi \in \mathcal{E}^{\beta}_{+}$ has an infinitely smooth extension $\tilde{\varphi}$ on \mathbb{R}^{n} such that $\partial^{k}\tilde{\varphi}(t) = \partial^{k}\varphi(t)$ for all $k \in \mathbb{Z}^{n}_{+}$ and $t \in \mathbb{R}^{n}_{+}$. Denote by $\mathcal{G}^{\beta}_{+} \subset \mathcal{E}^{\beta}_{+}$ the subspace of Gevrey ultradifferentiable functions with compact supports. In the sequel, to simplify notations we will write \mathcal{G}_{+} instead of \mathcal{G}^{β}_{+} omitting the fixed β .

For a fixed h > 0, we consider the subspace $\mathcal{G}_{\nu}^{h} \subset \mathcal{G}_{+}$ of all functions φ vanishing outside $[0, \nu]$ for which there exists a constant $C = C(\varphi) > 0$ such that $\sup_{t \in [0,\nu]} |\partial^{k}\varphi(t)| \leq Ch^{|k|}k^{k\beta}$ holds for all $k \in \mathbb{Z}_{+}^{n}$. As is known [11, p. 38], the space \mathcal{G}_{ν}^{h} endowed with the norm

$$\|\varphi\|_{\mathcal{G}^h_\nu} = \sup_{k \in \mathbb{Z}^n_+, \ t \in [0,\nu]} \frac{|\partial^k \varphi(t)|}{h^{|k|} k^{k\beta}}$$

is complete and the inclusions $\mathcal{G}^h_{\nu} \hookrightarrow \mathcal{G}^l_{\nu}$ with h < l are compact. Moreover, if $\mu \prec \nu$ then \mathcal{G}^h_{μ} is a closed subspace in \mathcal{G}^h_{ν} [11, p.40]. We equip the space $\mathcal{G}_+ = \bigcup_{\nu \succ 0, h > 0} \mathcal{G}^h_{\nu}$ with the inductive limit topology under the compact inclusions $\mathcal{G}^h_{\mu} \hookrightarrow \mathcal{G}^l_{\nu}$. Hence,

(2.1)
$$\mathcal{G}_{+} \simeq \liminf_{\nu, h \to \infty} \mathcal{G}_{\nu}^{h}$$

is a nuclear (DFS)-space [11, p. 28]. Note that the space \mathcal{G}_+ is a topological algebra with respect to the pointwise multiplication and $\|\varphi\psi\|_{\mathcal{G}_{u}^{h+l}} \leq \|\varphi\|_{\mathcal{G}_{u}^{h}} \|\psi\|_{\mathcal{G}_{u}^{l}}$ (see [11, p. 41]).

The strong dual \mathcal{G}'_+ of \mathcal{G}_+ is a nuclear (FS)-space. The space \mathcal{G}'_+ consists of Roumieu ultradistributions on \mathbb{R}^n supported by \mathbb{R}^n_+ and it is a convolution algebra with Dirac δ as the unit element. Remind, that the convolution is defined by $\langle f * g, \varphi \rangle = \langle f, g \star \varphi \rangle$, where $(g \star \varphi)(x) := \langle g, \varphi(\cdot + x) \rangle$ with $f, g \in \mathcal{G}'_+$ and $\varphi \in \mathcal{G}_+$ (see e.g. [11, 2.5]).

Let $\langle f, \varphi \rangle$ denote the value of $f \in \mathcal{G}'_+$ on $\varphi \in \mathcal{G}_+$. Sometimes we write $\langle f(t), \varphi(t) \rangle$, where the "argument" of an ultradistribution f means the variable of a function φ on which the functional f acts.

3. CROSS-CORRELATION AND SHIFT SEMIGROUPS

For a linear topological space X, we denote by $\mathscr{L}(X)$ the space of all continuous linear operators on X. We write I for the identity operator in $\mathscr{L}(X)$. We endow $\mathscr{L}(X)$ with the locally convex topology of uniform convergence on bounded subsets of X. We define the commutant of a subset $S \subset \mathscr{L}(X)$ to be $[S]^c := \{B \in \mathscr{L}(X) : BA = AB, \forall A \in S\}$.

An *n*-parameter family $\{U_t : t \in \mathbb{R}^n_+\}$ of bounded linear operators on a complex Banach space $(E, \|\cdot\|)$ is called an *n*-parameter semigroup of operators (see [1, 7]) if it is a mapping $U : \mathbb{R}^n_+ \ni t \longmapsto U_t \in \mathscr{L}(E)$ such that $U_0 = I$ and $U_{t+s} = U_t \circ U_s$ for all $t, s \in \mathbb{R}^n_+$.

We call a semigroup $\{U_t : t \in \mathbb{R}^n_+\}$ strongly continuous (or C_0 -semigroup) if the equality $\lim_{\mathbb{R}^n_+ \ni t \to 0} ||U_t x - x|| = 0$ holds for all $x \in E$.

For any *n*-parameter semigroup $\{U_t : t = (t_1, \ldots, t_n) \in \mathbb{R}^n_+\}$ we define the marginal one-parameter semigroups $\{U_{t_i}^{(j)} : t_j \in \mathbb{R}_+\}$, which commute with each other, where

$$U_{t_j}^{(j)}: [0,\infty) \ni t_j \longmapsto U_{(0,\dots,0,t_j,0,\dots,0)} \in \mathscr{L}(E), \quad j=1,\dots,n.$$

Any *n*-parameter semigroup U_t may be represented as a composition of the associated marginal one-parameter semigroups, i.e. $U_t = U_{t_1}^{(1)} \circ \ldots \circ U_{t_n}^{(n)}$.

For all j = 1, ..., n, let the generator A_j of the *j*th marginal semigroup $\{U_{t_j}^{(j)} : t_j \in \mathbb{R}_+\}$ be defined as

$$A_j x := \lim_{t_j \to +0} t_j^{-1} (U_{t_j}^{(j)} x - x) = \partial_j^1 U_{t_j}^{(j)} x \mid_{t_j = +0}, \qquad x \in \mathfrak{D}(A_j),$$

where $\mathfrak{D}(A_j)$ consists of all $x \in E$ for which the above limit exists.

We denote the generator of $\{U_t : t \in \mathbb{R}^n_+\}$ by $A := (A_1, \ldots, A_n)$. Let us denote $\mathfrak{D}(A) := \bigcap_{j=1}^n \mathfrak{D}(A_j)$. If U_t is a (C_0) -semigroup then the following properties hold (see [1, Propositions 1.1 8-9]):

- (i) if $x \in \mathfrak{D}(A_j)$ then $U_t x \in \mathfrak{D}(A_j)$ and $A_j U_t x = U_t A_j x$;
- (ii) $U_t x \in \mathfrak{D}(A)$ for any $x \in E$, $t \in \operatorname{int} \mathbb{R}^n_+$, and $\mathfrak{D}(A)$ is dense in E;
- (iii) $A_i A_j x = A_j A_i x$, (i, j = 1, ..., n) for all $x \in \mathfrak{D}(A)$.

We also consider the *n*-parameter (C_0) -semigroup of shifts over the space \mathcal{G}_+ ,

(3.2)
$$T: \mathbb{R}^n_+ \ni s \longmapsto T_s \in \mathscr{L}(\mathcal{G}_+), \qquad T_s \varphi(t) = \varphi(t+s), \qquad t \in \mathbb{R}^n_+, \quad \varphi \in \mathcal{G}_+.$$

It is obvious that $\operatorname{supp} \varphi(\cdot + s) = \operatorname{supp} \varphi - s$ for any function φ , defined on \mathbb{R}^n . Therefore, $\operatorname{supp} T_s \varphi = (\operatorname{supp} \varphi - s) \cap \mathbb{R}^n_+$ with $s \in \mathbb{R}^n_+$. Hence, the inequalities $||T_s \varphi||_{\mathcal{G}^h_\nu} \leq ||\varphi||_{\mathcal{G}^h_\nu}$ for all $s \in \mathbb{R}^n_+$ and all indexes h, ν hold. Clearly, each derivative ∂_j $(j = 1, \ldots, n)$ generates the corresponding marginal one-parameter semigroup

$$T_{s_j}^{(j)}:[0,\infty)\ni s_j\longmapsto T_{(0,\ldots,0,s_j,0,\ldots,0)}\in\mathscr{L}(\mathcal{G}_+).$$

The regular property (see [14]) of the inductive limit (2.1) implies that the semigroup T is equibounded. So, T is equicontinuous by the Banach-Steinhaus theorem.

Definition 3.1. For any ultradistribution $f \in \mathcal{G}'_+$, the cross-correlation operator over the space \mathcal{G}_+ is defined to be

$$K_f \colon \mathcal{G}_+ \ni \varphi \longmapsto K_f \varphi, \qquad K_f \varphi(s) \coloneqq \langle f, T_s \varphi \rangle, \qquad s \in \mathbb{R}^n_+.$$

Let $E \otimes_{\mathfrak{p}} \mathcal{G}_+$ be a completion of the algebraic tensor product $E \otimes \mathcal{G}_+$ with respect to the projective tensor topology. We can treat elements of $E \otimes_{\mathfrak{p}} \mathcal{G}_+$ as a *E*-valued ultradifferentiable functions $x : t \longmapsto x(t)$ with compact supports in \mathbb{R}^n_+ . From the known (see [6]) Grothendieck's isomorphism $E \otimes_{\mathfrak{p}} \liminf_{h,\nu \to \infty} \mathcal{G}^h_{\nu} \simeq \liminf_{h,\nu \to \infty} E \otimes_{\mathfrak{p}} \mathcal{G}^h_{\nu}$ it follows the isomorphism

$$E \otimes_{\mathfrak{p}} \mathcal{G}_+ \simeq \liminf_{h,\nu \to \infty} E \otimes_{\mathfrak{p}} \mathcal{G}^h_{\nu}.$$

So, for every $x \in E \otimes_{\mathfrak{p}} \mathcal{G}_+$ there exist $\nu \in \mathbb{R}^n_+$ and h > 0 such that $x \in E \otimes_{\mathfrak{p}} \mathcal{G}^h_{\nu}$, where each space $E \otimes_{\mathfrak{p}} \mathcal{G}^h_{\nu}$ is equipped with the norm

$$\|x\|_{E\otimes_{\mathfrak{p}}\mathcal{G}^h_{\nu}} = \sup_{k\in\mathbb{Z}^n_+,\ t\in[0,\nu]} \frac{\|\partial^k x(t)\|}{h^{|k|}k^{k\beta}}.$$

Hence, from theorem about representation of projective tensor product (see [14, Th. III. 6.4]) it follows that every $x \in E \otimes_{\mathfrak{p}} \mathcal{G}_+$ can be expanded (in general, not uniquely) in an absolutely convergent series

(3.3)
$$x = \sum_{j \in \mathbb{N}} \lambda_j x_j \otimes \varphi_j, \qquad \lambda_j \in \mathbb{C}, \quad x_j \in E, \quad \varphi_j \in \mathcal{G}^h_{\nu},$$

for some $\nu \in \mathbb{R}^n_+$ and h > 0, where $\sum_j |\lambda_j| < \infty$ and the sequences $\{x_j\}$ and $\{\varphi_j\}$ are convergent to zero in the corresponding spaces.

Let $K \in \mathscr{L}(\mathcal{G}_+)$. Using (3.3), we can define the tensor product $I \otimes K \in \mathscr{L}(E \otimes_{\mathfrak{p}} \mathcal{G}_+)$ as follows

(3.4)
$$(I \otimes K)x = \sum_{j \in \mathbb{N}} \lambda_j x_j \otimes K\varphi_j$$

In case $K = T_s$ we often use the short notation x(t + s) instead of $(I \otimes T_s)x(t)$. We can now define analogously the action

(3.5)
$$\langle f, x \rangle := \sum_{j \in \mathbb{N}} \lambda_j x_j \langle f, \varphi_j \rangle$$

for any ultradistribution $f \in \mathcal{G}'_+$ and $x \in E \otimes_{\mathfrak{p}} \mathcal{G}_+$. It is well-known [14, III.6.4] that these definitions are independent of representations of elements $x \in E \otimes_{\mathfrak{p}} \mathcal{G}_+$ in the form (3.3).

We say that an operator $I \otimes K$ with $K \in \mathscr{L}(\mathcal{G}_+)$ is invariant with respect to shift operators $I \otimes T = \{I \otimes T_s : s \in \mathbb{R}^n_+\}$ if

$$I \otimes (K \circ T_s) = I \otimes (T_s \circ K) \quad \text{for all} \quad s \in \mathbb{R}^n_+.$$

Definition 3.2. For any ultradistribution $f \in \mathcal{G}'_+$, the cross-correlation operator over the space $E \otimes_{\mathfrak{p}} \mathcal{G}_+$ is defined to be

$$I \otimes K_f \colon E \otimes_{\mathfrak{p}} \mathcal{G}_+ \ni x \longmapsto (I \otimes K_f)x.$$

Here $(I \otimes K_f)x(s) = \sum_{j \in \mathbb{N}} \lambda_j x_j \otimes K_f \varphi_j = \langle f, (I \otimes T_s)x \rangle$ for all $s \in \mathbb{R}^n_+$ by continuity of a functional $f \in \mathcal{G}'_+$.

4. OPERATORS COMMUTING WITH SHIFT SEMIGROUPS

The next theorem, based on the cross-correlation notion, is a generalization of known structure theorems about shift-invariant operators.

Theorem 4.1. (i) The mapping $\mathcal{K}: \mathcal{G}'_+ \ni f \longmapsto K_f \in \mathscr{L}(\mathcal{G}_+)$ produces a topological isomorphism from the convolution algebra \mathcal{G}'_+ onto the commutant $[T]^c$ of the shift semigroup T, i.e.

(4.6)
$$K_{f*g} = K_f \circ K_g, \qquad f, g \in \mathcal{G}'_+,$$

where * denotes the convolution in \mathcal{G}'_+ . In particular, K_{δ} is the identity in $\mathscr{L}(\mathcal{G}_+)$.

(ii) For any $f \in \mathcal{G}'_+$ the operator $I \otimes K_f$ is invariant with respect to shift operators $I \otimes T$. Conversely, for any $K \in \mathcal{L}(\mathcal{G}_+)$ such that $I \otimes K$ is invariant with respect to $I \otimes T$ there exists a unique $f \in \mathcal{G}'_+$ such that for all $x \in E \otimes_{\mathfrak{p}} \mathcal{G}_+$,

$$K = K_f$$
 and $(I \otimes K)x = (I \otimes K_f)x$

Proof. (i) Check that K_f is a linear continuous operator. It is clear that

$$\operatorname{supp} K_f \varphi \neq \emptyset \Longleftrightarrow \operatorname{supp} f \cap \operatorname{supp} \varphi(\cdot + s) \neq \emptyset \iff \exists t_0 \in \operatorname{supp} f \cap \operatorname{supp} \varphi(\cdot + s).$$

Since $t_0 \in \operatorname{supp} \varphi(\cdot + s) \iff t_0 + s \in \operatorname{supp} \varphi \iff s \in \operatorname{supp} \varphi - t_0, s \in \operatorname{supp} \varphi - \operatorname{supp} f$. So, $\operatorname{supp} K_f \varphi \subset (\operatorname{supp} \varphi - \operatorname{supp} f) \cap \mathbb{R}^n_+ \subset [0, \nu]$ for some $\nu \succ 0$.

Prove that $K_f \in \mathscr{L}(\mathcal{G}_+)$. Let $\{\varphi_m\} \subset \mathcal{G}_+$ be a sequence for which there exists $[0, \nu] \subset \mathbb{R}^n_+$ such that $\operatorname{supp} \varphi_m \subset [0, \nu]$ for all $m \in \mathbb{N}$ and

$$\lim_{m \to \infty} \sup_{t \in [0,\nu]} \frac{|\partial^k \varphi_m(t)|}{h^{|k|} k^{k\beta}} = 0$$

for all $k \in \mathbb{Z}_+^n$ with some h > 0. From the continuity of $f \in \mathcal{G}'_+$ and $T_s \in \mathscr{L}(\mathcal{G}_+)$ it follows that $\partial^k K_f \varphi = K_f \partial^k \varphi$ for all $k \in \mathbb{Z}_+^n$. So, we obtain

$$\lim_{m \to \infty} \sup_{t \in [0,\nu]} \frac{\left| \partial^k K_f \varphi_m(t) \right|}{h^{|k|} k^{k\beta}} = \left| \left\langle f, \lim_{m \to \infty} \sup_{t \in [0,\nu]} \frac{\partial^k \varphi_m(\cdot + t)}{h^{|k|} k^{k\beta}} \right\rangle \right| = 0$$

for all $k \in \mathbb{Z}_+^n$ and some h > 0. Using the isomorphism (2.1), we obtain $K_f \in \mathscr{L}(\mathcal{G}_+)$. The following equalities

(4.7)
$$(K_f T_s \varphi)(t) = \langle f(r), \varphi(r+t+s) \rangle = T_s \langle f(r), \varphi(r+t) \rangle = (T_s K_f \varphi)(t)$$

hold for all $t, s \in \mathbb{R}^n_+$ and $\varphi \in \mathcal{G}_+$. Hence, for any $f \in \mathcal{G}'_+$ we have $K_f \in [T]^c$. Let now $K \in \mathscr{L}(\mathcal{G}_+)$ be an arbitrary operator with the property

(4.8)
$$(KT_s)\varphi(t) = (T_sK)\varphi(t), \qquad \varphi \in \mathcal{G}_+, \quad t,s \in \mathbb{R}^n_+.$$

It is easy to see that the functional $\langle f_0, \varphi \rangle := (K\varphi)(0)$ belongs to \mathcal{G}'_+ . By cross-correlation definition $(K_{f_0}\varphi)(0) = \langle f_0, \varphi \rangle$, i.e. $(K\varphi)(0) = (K_{f_0}\varphi)(0)$ for all $\varphi \in \mathcal{G}_+$. Substituting $T_s\varphi$ instead of φ and using the property (4.8), we get that $K = K_{f_0}$ and hence that the image of \mathcal{K} coincides with the commutant $[T]^c$.

If $K_f \varphi(s) = \langle f, T_s \varphi \rangle = 0$ for all $\varphi \in \mathcal{G}_+$ then f = 0. Hence, the mapping \mathcal{K} is injective.

Since \mathcal{G}_+ is a Montel space [14, IV.5], the topologies on $\mathscr{L}(\mathcal{G}_+)$ of uniform convergence on compacts and on bounded sets coincide. By barrelledness of the spaces \mathcal{G}'_+ and \mathcal{G}_+ [14, II.7] the map $\mathcal{G}'_+ \times \mathcal{G}_+ \ni (f, \varphi) \longmapsto K_f \varphi \in \mathcal{G}_+$ is equicontinuous, because it is separately continuous. Hence, \mathcal{K} is continuous. Moreover, \mathcal{K} has the closed image $[T]^c$. Since \mathcal{G}_+ is a nuclear (DFS)-space, we have $\mathscr{L}(\mathcal{G}_+) \simeq \mathcal{G}_+ \otimes_{\mathfrak{p}} \mathcal{G}'_+$ (see [14, IV.9.4]) where \mathcal{G}'_+ is a Fréchet space as a strong dual of (DFS)-space. So,

$$\mathcal{G}_+ \otimes_\mathfrak{p} \mathcal{G}'_+ \simeq \liminf_{h, \nu \to \infty} \mathcal{G}^h_\nu \otimes_\mathfrak{p} \mathcal{G}'_+$$

by virtue of the isomorphism (2.1). On the other hand, in \mathcal{G}'_+ there exists a countable base of closed absolutely convex bounded sets $\{B_n\}$ such that $\mathcal{G}'_+ = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$, where $\mathcal{B}_n := \mathbb{C} \cdot B_n$ is a subspace with the norm $||x||_n = \inf \{|\lambda| : x \in \lambda B_n\}$. From the completeness of \mathcal{G}'_+ and the closedness of B_n it follows that \mathcal{B}_n is a Banach space for all $n \in \mathbb{N}$. From boundedness of B_n it follows that the embeddings $\mathcal{B}_n \hookrightarrow \mathcal{G}'_+$ are continuous [14, II.8.4]. So, the identical mapping $\liminf_{n\to\infty} \mathcal{B}_n \longrightarrow \mathcal{G}'_+$ is continuous. As a consequence, we obtain the isomorphism

$$\mathcal{G}_+ \otimes_{\mathfrak{p}} \mathcal{G}'_+ \simeq \liminf_{h,\nu,n \to \infty} \mathcal{G}^h_{\nu} \otimes_{\mathfrak{p}} \mathcal{B}_n,$$

i.e. $\mathscr{L}(\mathcal{G}_+)$ is ultrabornological space [10]. Now, Open Mapping Theorem (see [13]) implies that \mathcal{K} is a topological isomorphism from \mathcal{G}'_+ onto $[T]^c$.

Check the equality (4.6). The convolution definition implies

$$(K_{f*g}\varphi)(t) = \langle f*g, T_t\varphi \rangle = \langle f(r), \langle g(s), \varphi(t+r+s) \rangle \rangle = \langle f, T_t(K_g\varphi) \rangle = (K_fK_g)\varphi(t).$$

with $t, r, s \in \mathbb{R}^n_+$. In particular, $K_f \circ K_\delta = K_{f*\delta} = K_f = K_{\delta*f} = K_\delta \circ K_f$ for all $f \in \mathcal{G}'_+$, so K_δ is the identity.

(ii) The equality $\sum_{j} \lambda_{j} x_{j} \otimes (K_{f}T_{s})\varphi_{j} = \sum_{j} \lambda_{j} x_{j} \otimes (T_{s}K_{f})\varphi_{j}$ holds for all $f \in \mathcal{G}'_{+}$ and $x \in E \otimes_{\mathfrak{p}} \mathcal{G}_{+}$ via (3.3) and (4.7). Therefore, $I \otimes (K_{f} \circ T_{s}) = I \otimes (T_{s} \circ K_{f})$, i.e. $I \otimes K_{f}$ is invariant with respect to the shift operators $I \otimes T$.

Conversely, let $K \in \mathscr{L}(\mathcal{G}_+)$ be an operator such that $I \otimes (K \circ T_s) = I \otimes (T_s \circ K)$ for all $s \in \mathbb{R}^n_+$. For any $\varphi \in \mathcal{G}_+$, let $f_0 \colon \varphi \longmapsto (K\varphi)(0)$. Definitions (3.4) and (3.5) imply

$$[(I \otimes K)x](0) = \langle f_0, x \rangle = [(I \otimes K_{f_0})x](0).$$

Substituting $(I \otimes T_s)x$ instead of x and using that $I \otimes K$ is invariant with respect to the shift operators $I \otimes T$, we obtain $(I \otimes K)x = (I \otimes K_{f_0})x$ for all $x \in E \otimes_{\mathfrak{p}} \mathcal{G}_+$. Consequently, $K = K_{f_0}$.

5. SHIFT-INVARIANT OPERATORS COMMUTING WITH OPERATOR SEMIGROUPS

Consider the set of *n*-parameter contraction C_0 -semigroups $\{U_t : t \in \mathbb{R}^n_+\}$ on a complex Banach space $(E, \|\cdot\|)$, i.e. semigroups satisfying the condition

(5.9)
$$\sup_{t\in\mathbb{R}^n_+} \|U_t\|_{\mathscr{L}(E)} \le 1,$$

and let \mathcal{A} be the set of their generators. To emphasize the fact that a semigroup $\{U_t : t \in \mathbb{R}^n_+\}$ is generated by an operator $A \in \mathcal{A}$ we will use the notation $\{U_t(A) : t \in \mathbb{R}^n_+\}$ for the semigroup. Consider the space

$$\mathcal{G} = \{ \widehat{x} \colon \mathcal{A} \longrightarrow E : x \in E \otimes_{\mathfrak{p}} \mathcal{G}_+ \}$$

of E-valued functions

(5.10)
$$\hat{x}: \mathcal{A} \ni A \longmapsto \hat{x}(A) \in E \text{ with } \hat{x}(A) = \int_{\mathbb{R}^n_+} U_t(A) x(t) dt$$

determined by the Hille-Phillips calculus [7, Chapter 15], where the integral is understood in the Bochner sense. The integral in (5.10) is well-defined, because the integrand is a continuous *E*-valued function $t \mapsto U_t(A)x(t)$ with a compact support.

Let us determine the linear mapping

$$\mathcal{F}\colon E\otimes_{\mathfrak{p}}\mathcal{G}_{+}\ni x\longmapsto \widehat{x}\in\widehat{\mathcal{G}}.$$

If the assumption (5.9) holds, then the mapping \mathcal{F} is an isomorphism by virtue of [7, Theorem 15.2.1]. Indeed, the semigroups $\mathbb{R}^n_+ \ni t \mapsto e^{-(\lambda,t)}I$ with $\operatorname{Re} \lambda \in \operatorname{int} \mathbb{R}^n_+$ satisfy

the condition (5.9). Therefore, their generators $-\lambda I$ belong to \mathcal{A} . Note that $\hat{x}(-\lambda I) = \int_{\mathbb{R}^n_+} e^{-(\lambda,t)} x(t) dt$ is the Laplace transform of an *E*-valued function $x \in E \otimes_{\mathfrak{p}} \mathcal{G}_+$. Particularly, it follows that if $\hat{x} \equiv 0$ then $x \equiv 0$, i.e., Ker $\mathcal{F} = \{0\}$.

We endow the space $\hat{\mathcal{G}}$ with the strongest locally convex topology induced by \mathcal{F} . Namely, let $\mathcal{G}_{\nu}^{h}(E) = \{\hat{x} : x \in E \otimes_{\mathfrak{p}} \mathcal{G}_{\nu}^{h}\}$ be a Banach space endowed with the inductive topology under the mapping $E \otimes_{\mathfrak{p}} \mathcal{G}_{\nu}^{h} \ni x \longmapsto \hat{x}$ with fixed h and ν . Then from (2.1) it follows that $\hat{\mathcal{G}}$ has the structure of the inductive limit $\hat{\mathcal{G}} = \liminf_{h,\nu\to\infty} \mathcal{G}_{\nu}^{h}(E)$ under the continuous embeddings $\mathcal{G}_{\nu}^{h}(E) \hookrightarrow \mathcal{G}_{\mu}^{l}(E)$ with h < l and $\nu \prec \mu$. So the mapping \mathcal{F} is a topological isomorphism.

Consider the *n*-parameter semigroup on the space $\hat{\mathcal{G}}$

(5.11)
$$\hat{T}: \mathbb{R}^n_+ \ni s \longmapsto \hat{T}_s \in \mathscr{L}(\hat{\mathcal{G}}), \qquad \hat{T}_s = \mathcal{F} \circ (I \otimes T_s) \circ \mathcal{F}^{-1},$$

where \mathcal{F}^{-1} means the inverse map of \mathcal{F} . Since \mathcal{F} is a topological isomorphism and the semigroup $\mathbb{R}^n_+ \ni s \longmapsto (I \otimes T_s)x \in E \otimes_{\mathfrak{p}} \mathcal{G}_+$ is continuous for all $x \in E \otimes_{\mathfrak{p}} \mathcal{G}_+$, we have that the semigroup \hat{T} on $\hat{\mathcal{G}}$ has the (C_0) -property and its generator is densely defined.

Theorem 5.2. The mapping

$$\mathcal{G}'_+ \ni f \longmapsto \hat{K}_f \in \mathscr{L}(\hat{\mathcal{G}}), \qquad \hat{K}_f = \mathcal{F} \circ (I \otimes K_f) \circ \mathcal{F}^{-1},$$

is an algebraic isomorphism of the convolution algebra \mathcal{G}'_+ and the subalgebra of all operators $\hat{K} = \mathcal{F} \circ (I \otimes K) \circ \mathcal{F}^{-1}$ for some $K \in \mathscr{L}(\mathcal{G}_+)$ in the commutant $[\hat{T}]^c$ on $\hat{\mathcal{G}}$. In particular, the equality $\hat{K}_{f*g} = \hat{K}_f \circ \hat{K}_g$ for all $f, g \in \mathcal{G}'_+$ holds and \hat{K}_δ is the identity in $\mathscr{L}(\hat{\mathcal{G}})$.

Proof. For any $f \in \mathcal{G}'_+$ the diagram

is commutative. Continuity of the mappings $I \otimes K_f$ and \mathcal{F} and openness of the mapping \mathcal{F}^{-1} imply that $\hat{K}_f \in \mathscr{L}(\hat{\mathcal{G}})$. It follows that the equalities

$$[\mathcal{F}(I \otimes K_f)x](A) = \int_{\mathbb{R}^n_+} U_t(A)(I \otimes K_f)x(t) \, dt = \hat{K}_f \hat{x}(A)$$

are valid for all $A \in \mathcal{A}$. Consequently, the equalities

$$\hat{K}_f \hat{T}_r \hat{x}(A) = \int_{\mathbb{R}^n_+} U_t(A) (I \otimes K_f) x(t+r) \, dt = \hat{T}_r \hat{K}_f \hat{x}(A)$$

hold for all $r \in \mathbb{R}^n_+$ and $\hat{x} \in \hat{\mathcal{G}}$. Hence, for any $f \in \mathcal{G}'_+$ we have that \hat{K}_f belongs to the commutant of the semigroup \hat{T} in $\mathscr{L}(\hat{\mathcal{G}})$.

Conversely, let $\hat{K} = \mathcal{F} \circ (I \otimes K) \circ \mathcal{F}^{-1}$ belongs to the commutant $[\hat{T}]^c$ of \hat{T} . Then $\mathcal{F} \circ (I \otimes (K \circ T_s)) \circ \mathcal{F}^{-1} = \mathcal{F} \circ (I \otimes K) \circ (I \otimes T_s) \circ \mathcal{F}^{-1}$ $= \mathcal{F} \circ (I \otimes K) \circ \mathcal{F}^{-1} \circ \mathcal{F} \circ (I \otimes T_s) \circ \mathcal{F}^{-1} = \hat{K} \circ \hat{T}_s$ $= \hat{T}_s \circ \hat{K} = \mathcal{F} \circ (I \otimes T_s) \circ \mathcal{F}^{-1} \circ \mathcal{F} \circ (I \otimes K) \circ \mathcal{F}^{-1}$ $= \mathcal{F} \circ (I \otimes T_s) \circ (I \otimes K) \circ \mathcal{F}^{-1} = \mathcal{F} \circ (I \otimes (T_s \circ K)) \circ \mathcal{F}^{-1}$, therefore $K \in [T]^c$. By Theorem 4.1 there exists a unique $f \in \mathcal{G}'_+$ such that $K = K_f$, i.e., $\hat{K}\hat{x} = \hat{K}\mathcal{F}x = \mathcal{F}(I \otimes K_f)x = \hat{K}_f\hat{x}, \hat{x} \in \hat{\mathcal{G}}$. Hence, $\hat{K} = \hat{K}_f$.

Since $K_{\delta} = I$, we obtain $\hat{K}_{\delta} = \mathcal{F} \circ (I \otimes K_{\delta}) \circ \mathcal{F}^{-1} = \mathcal{F} \circ \mathcal{F}^{-1}$, so the operator \hat{K}_{δ} is the identity in $\mathscr{L}(\hat{\mathcal{G}})$.

From the properties of cross-correlation (see Theorem 4.1) it follows

$$\hat{K}_{f}\hat{K}_{g}\hat{x}(A) = \int_{\mathbb{R}^{n}_{+}} U_{t}(A)(I \otimes K_{f}K_{g})x(t) dt = \int_{\mathbb{R}^{n}_{+}} U_{t}(A)(I \otimes K_{f*g})x(t) dt = \hat{U}_{f*g}\hat{x}(A),$$

 \Box

so the mapping $f \mapsto \hat{K}_f$ is an algebraic isomorphism.

In the same way as in the proof of Theorem 4.1 we can prove that the algebraic isomorphism in Theorem 5.2 is topological.

Acknowledgements. The authors would like to thank the referee for valuable comments which helped to improve the manuscript.

References

- [1] Butzer, P. L. and Berens, H., Semi-Group of Operators and Approximation, Springer-Verlag, New-York, 1967
- [2] Colzani, L. and Sjögren, P., *Translation-invariant operators on Lorentz spaces* L(1,q) *with* 0 < q < 1, Studia Math., **132** (1999), No. 2, 101–124
- [3] Dales, H. G. and Millinoton, A., Translation-invariant linear operators, Math. Proc. Cambridge Phil. Soc., 113 (1993), No. 1, 161–172
- [5] Grafakos, L. and Soria, J., Translation-invariant bilinear operators with positive kernels, Integr. Equ. Oper. Theory, 66 (2010), 253–264
- [6] Grothendieck, A., Produits tensoriels topologiques et espaces nucléaries, Mem. Amer. Math. Soc., 16, 1955
- [7] Hille, E. and Phillips, R., Functional analysis and semi-hroups, AMS Coll. Publ., vol.XXXI, New York, 1957
- [8] Hörmander, L, Estimates for transtation invariant operators in L^p spaces, Acta Math., 104 (1960), No. 1, 93–140
- [9] Hytönen, T., Translation-invariant operators on spaces of vector-valued functions, Helsinki University of Technology, 2003
- [10] Jarchow, H., Locally Convex Spaces, Teubner, Stuttgart, 1981
- [11] Komatsu, H., An Introduction to the theory of generalized functions, Tokyo University Publ., 2000
- [12] Lopushansky, O. and Sharyn, S., Polynomial ultradistributions on cone \mathbb{R}^d_+ , Topology, 48 (2009), No. 2-4, 80–90
- [13] Raikov, D. A., Double closed-graph theorem for topological linear spaces, Siber. Math. J., 7 (1967), No. 2, 287–300
- [14] Schaefer, H., Topological vector spaces, Springer-Verlag, New-York, 1971
- [15] Schwartz, L., Theorie des distributions, Hermann, Paris, 1966
- [16] Seeley, R. T., Extensions of C^{∞} -functions defined in a half-space, Proc. Amer. Math. Soc., 15 (1964), 625–626
- [17] Tovstolis, A., On translation invariant operators in Hardy spaces in tube domains over open cones, Methods Funct. Anal. Topology, 9 (2003), No. 3, 262–272
- [18] Swartz, C. W. Translation invariant linear operators and generalized functions, Czechoslovak Math. J., 25 (1975), No. 2, 202–213
- [19] Weiss, G., Representation of shift-invariant operators on L^2 by H^{∞} transfer functions: An elementary proof, a generalization to L^p , and a counterexample for L^{∞} , Math. Control Signals Systems, 4 (1991), 193–203

UNIVERSITY OF RZESZÓW FACULTY OF MATHEMATICS AND NATURAL SCIENCES 16A REJTANA, 35-959 RZESZÓW, POLAND *E-mail address*: ovlopusz@ur.edu.pl

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES PRECARPATHIAN NATIONAL UNIVERSITY 57 SHEVCHENKA, 76-018 IVANO-FRANKIVSK, UKRAINE *E-mail address*: sharyn.sergii@gmail.com