
CARPATHIAN J. MATH.
30 (2014), No. 2, 217 - 224

Online version available at http://carpathian.ubm.ro

Print Edition: ISSN 1584 - 2851 Online Edition: ISSN 1843 - 4401

Operators commuting with multi-parameter shift
semigroups

OLEH LOPUSHANSKY and SERGII SHARYN

ABSTRACT. Using operators of cross-correlation with ultradistributions supported by a positive cone, we
describe a commutative algebra of shift-invariant continuous linear operators, commuting with contraction
multi-parameter semigroups over a Banach space. Thereby, we generalize classic Schwartz’s and Hörmander’s
theorems on shift-invariant operators.

1. INTRODUCTION

The well-known Schwartz structure theorem for shift-invariant operators [15] claims
that every continuous linear operator L : D(Rn) −→ C∞(Rn) commuting with the shift
group τs : ϕ(·) 7→ ϕ( · − s), s ∈ Rn, is necessarily the convolution operator with some
distribution f ∈ D′(Rn), i.e., Lϕ = f ∗ ϕ. Hörmander in [8] establishes a similar structure
theorem for shift-invariant operators in the Lebesgue spaces Lp(Rn). Such operators over
test and generalized functions were discussed in an overview paper [18]. An extension of
Hörmander’s result on Lorentz and Hardy spaces was considered in [2] and [17], respec-
tively. Structure of operators from the Schwartz space S(Rn) into the tempered distribu-
tions S ′(Rn) that commute with a discrete subgroup of translations was studied in [4].
Shift-invariant operators over the space of polynomial ultradistributions were considered
in [12]. For other results and references on the topic we refer the reader to [3, 5, 9, 19].

Our goal is a generalization of the structure theorems for two cases: first one for a
(C0)-semigroup T:Rn+ 3s 7−→ Ts of shifts and second one for contraction (C0)-semigroups
{Ut : t ∈ Rn+} of operators on a Banach space. In the main Theorems 4.1 and 5.2 we de-
scribe shift-invariant operators for scalar and operator semigroups, respectively.

It is essential that hereinafter functions and distributions are defined on the cone Rn+
(instead of Rn). As a consequence, the shift-invariant property is considered under the
cross-correlation (instead of the convolution). Further, we will consider only the case of
Roumieu ultradistributions.

Let G′+ be the convolution algebra of Roumieu ultradistributions with supports in the
positive cone Rn+ and G+ be its predual space of Gevrey ultradifferentiable functions with
compact supports in Rn+. We consider the cross-correlation operator

Kf : G+ 3 ϕ 7−→ Kfϕ, [Kfϕ](s) := 〈f, Tsϕ〉, f ∈ G′+.

In Theorem 4.1 we prove that the algebra G′+ has the isomorphic representation

G′+ 3 f 7−→ Kf ∈ L (G+)
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onto the commutant [T ]c of the shift semigroup T (see formula (3.2)) in space of linear
continuous operators on G+.

Let us consider the set of n-parameter contraction (C0)-semigroups
{
Ut : t ∈ Rn+

}
on a

Banach space E and a setA of their generators. In section 5 we investigate the isomorphic
representation of the algebra G′+

G′+ 3 f 7−→ F ◦ (I ⊗Kf ) ◦ F−1, F : E ⊗p G+ 3 x 7−→ px ∈ pG,
where E ⊗p G+ is the complete projective tensor product. Here pG denotes the subspace of
E-valued functions

px : A 3 A 7−→ px(A) ∈ E, px(A) = »
Rn+
Ut(A)x(t) dt,

determined by the Hille-Phillips calculus, where Ut(A) means that the semigroup is gene-
rated by operator A. In Theorem 5.2 we prove that there exists an algebraic isomorphism
from G′+ into the commutant of the semigroup F ◦ (I ⊗ T ) ◦ F−1.

2. ULTRADIFFERENTIABLE FUNCTIONS AND ULTRADISTRIBUTIONS

We use the short notations: tk = tk11 · . . . · tknn , kkβ = kk1β1 · . . . · kknβn , |k| = k1 + · · ·+ kn
for any k = (k1, . . . , kn) ∈ Zn+, t = (t1, . . . , tn) ∈ Rn and a real β > 1. Let ∂k = ∂k11 . . . ∂knn ,
where ∂kjj = ∂kj/∂t

kj
j (j = 1, . . . , n). For µ, ν ∈ Rn, the relation µ ≺ ν (resp. µ � ν)

means that µ1 < ν1, . . . , µn < νn (resp. µ1 > ν1, . . . , µn > νn). Let [µ, ν] =
�n

j=1[µj , νj ]

and (µ, ν) =
�n

j=1(µj , νj) for any µ ≺ ν. In what follows t→∞ (resp. t→ 0) means that
tj →∞ (resp. tj → 0) for all j = 1, . . . , n. By Rn+ =

�n
j=1[0,∞) and intRn+ =

�n
j=1(0,∞)

we denote the positive cone and its interior, respectively.
Let E(Rn+) be the class of infinitely smooth complex valued functions ϕ defined on

intRn+ such that ∂kϕ for all k ∈ Zn+ have continuous limits at the boundary of Rn+. Fix
a β > 1. A function ϕ ∈ E(Rn+) is called (see [11]) Gevrey ultradifferentiable if for every
interval [µ, ν] ⊂ intRn+ there exist constants h > 0 and C > 0 such that the inequality
supt∈[µ,ν] |∂kϕ(t)| ≤ Ch|k|kkβ holds for all k ∈ Zn+.

We denote by Eβ+ = Eβ(Rn+) the vector space of all Gevrey ultradifferentiable functions
on intRn+. By virtue of Seeley’s theorem [16] every function ϕ ∈ Eβ+ has an infinitely
smooth extension ϕ̃ on Rn such that ∂kϕ̃(t) = ∂kϕ(t) for all k ∈ Zn+ and t ∈ Rn+. Denote
by Gβ+ ⊂ E

β
+ the subspace of Gevrey ultradifferentiable functions with compact supports.

In the sequel, to simplify notations we will write G+ instead of Gβ+ omitting the fixed β.
For a fixed h > 0, we consider the subspace Ghν ⊂ G+ of all functions ϕ vanishing

outside [0, ν] for which there exists a constant C = C(ϕ) > 0 such that supt∈[0,ν] |∂kϕ(t)| ≤
Ch|k|kkβ holds for all k ∈ Zn+. As is known [11, p. 38], the space Ghν endowed with the
norm

‖ϕ‖Ghν = sup
k∈Zn+, t∈[0,ν]

|∂kϕ(t)|
h|k|kkβ

is complete and the inclusions Ghν # Glν with h < l are compact. Moreover, if µ ≺ ν then
Ghµ is a closed subspace in Ghν [11, p.40]. We equip the space G+ =

�
ν�0, h>0 Ghν with the

inductive limit topology under the compact inclusions Ghµ # Glν . Hence,

(2.1) G+ ' lim ind
ν,h→∞

Ghν
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is a nuclear (DFS)-space [11, p. 28]. Note that the space G+ is a topological algebra with
respect to the pointwise multiplication and ‖ϕψ‖Gh+lν

≤ ‖ϕ‖Ghν ‖ψ‖Glν (see [11, p. 41]).
The strong dual G′+ of G+ is a nuclear (FS)-space. The space G′+ consists of Roumieu

ultradistributions on Rn supported by Rn+ and it is a convolution algebra with Dirac δ as
the unit element. Remind, that the convolution is defined by 〈f ∗ g, ϕ〉 = 〈f, g ? ϕ〉, where
(g ? ϕ)(x) := 〈g, ϕ( ·+ x)〉with f, g ∈ G′+ and ϕ ∈ G+ (see e.g. [11, 2.5]).

Let 〈f, ϕ〉 denote the value of f ∈ G′+ on ϕ ∈ G+. Sometimes we write 〈f(t), ϕ(t)〉, where
the “argument” of an ultradistribution f means the variable of a function ϕ on which the
functional f acts.

3. CROSS-CORRELATION AND SHIFT SEMIGROUPS

For a linear topological space X , we denote by L (X) the space of all continuous linear
operators on X . We write I for the identity operator in L (X). We endow L (X) with the
locally convex topology of uniform convergence on bounded subsets of X . We define the
commutant of a subset S ⊂ L (X) to be [S]c :=

{
B ∈ L (X) : BA = AB, ∀A ∈ S

}
.

An n-parameter family {Ut : t ∈ Rn+} of bounded linear operators on a complex Banach
space (E, ‖·‖) is called an n-parameter semigroup of operators (see [1, 7]) if it is a mapping
U : Rn+ 3 t 7−→ Ut ∈ L (E) such that U0 = I and Ut+s = Ut ◦ Us for all t, s ∈ Rn+.

We call a semigroup {Ut : t ∈ Rn+} strongly continuous (or C0-semigroup) if the equa-
lity limRn+3t→0 ‖Utx− x‖ = 0 holds for all x ∈ E.

For any n-parameter semigroup {Ut : t = (t1, . . . , tn) ∈ Rn+} we define the marginal
one-parameter semigroups {U (j)

tj : tj ∈ R+}, which commute with each other, where

U
(j)
tj : [0,∞) 3 tj 7−→ U(0,...,0,tj ,0,...,0) ∈ L (E), j = 1, . . . , n.

Any n-parameter semigroup Ut may be represented as a composition of the associated
marginal one-parameter semigroups, i.e. Ut = U

(1)
t1 ◦ . . . ◦ U

(n)
tn .

For all j = 1, . . . , n, let the generator Aj of the jth marginal semigroup {U (j)
tj : tj ∈ R+}

be defined as

Ajx := lim
tj→+0

t−1j
(
U

(j)
tj x− x

)
= ∂1jU

(j)
tj x |tj=+0, x ∈ D(Aj),

where D(Aj) consists of all x ∈ E for which the above limit exists.
We denote the generator of {Ut : t ∈ Rn+} by A := (A1, . . . , An). Let us denote D(A) :=�n
j=1 D(Aj). If Ut is a (C0)-semigroup then the following properties hold (see [1, Propo-

sitions 1.1 8-9]):
(i) if x ∈ D(Aj) then Utx ∈ D(Aj) and AjUtx = UtAjx;

(ii) Utx ∈ D(A) for any x ∈ E, t ∈ intRn+, and D(A) is dense in E;
(iii) AiAjx = AjAix, (i, j = 1, . . . , n) for all x ∈ D(A).
We also consider the n-parameter (C0)-semigroup of shifts over the space G+,

(3.2) T : Rn+ 3 s 7−→ Ts ∈ L (G+), Tsϕ(t) = ϕ(t+ s), t ∈ Rn+, ϕ ∈ G+.

It is obvious that suppϕ( ·+ s) = suppϕ− s for any function ϕ, defined on Rn. Therefore,
suppTsϕ = (suppϕ− s) ∩ Rn+ with s ∈ Rn+. Hence, the inequalities ‖Tsϕ‖Ghν ≤ ‖ϕ‖Ghν for
all s ∈ Rn+ and all indexes h, ν hold. Clearly, each derivative ∂j (j = 1, . . . , n) generates
the corresponding marginal one-parameter semigroup

T (j)
sj : [0,∞) 3 sj 7−→ T(0,...,0,sj ,0,...,0) ∈ L (G+).
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The regular property (see [14]) of the inductive limit (2.1) implies that the semigroup T
is equibounded. So, T is equicontinuous by the Banach-Steinhaus theorem.

Definition 3.1. For any ultradistribution f ∈ G′+, the cross-correlation operator over the
space G+ is defined to be

Kf : G+ 3 ϕ 7−→ Kfϕ, Kfϕ(s) := 〈f, Tsϕ〉, s ∈ Rn+.

Let E ⊗p G+ be a completion of the algebraic tensor product E ⊗G+ with respect to the
projective tensor topology. We can treat elements of E ⊗p G+ as a E-valued ultradiffer-
entiable functions x : t 7−→ x(t) with compact supports in Rn+. From the known (see [6])
Grothendieck’s isomorphismE⊗p lim ind

h,ν→∞
Ghν ' lim ind

h,ν→∞
E⊗pGhν it follows the isomorphism

E ⊗p G+ ' lim ind
h,ν→∞

E ⊗p Ghν .

So, for every x ∈ E⊗p G+ there exist ν ∈ Rn+ and h > 0 such that x ∈ E⊗p Ghν , where each
space E ⊗p Ghν is equipped with the norm

‖x‖E⊗pGhν = sup
k∈Zn+, t∈[0,ν]

‖∂kx(t)‖
h|k|kkβ

.

Hence, from theorem about representation of projective tensor product (see [14, Th. III.
6.4]) it follows that every x ∈ E ⊗p G+ can be expanded (in general, not uniquely) in an
absolutely convergent series

(3.3) x =
¸
j∈N

λjxj ⊗ ϕj , λj ∈ C, xj ∈ E, ϕj ∈ Ghν ,

for some ν ∈ Rn+ and h > 0, where
°
j |λj | < ∞ and the sequences {xj} and {ϕj} are

convergent to zero in the corresponding spaces.
Let K ∈ L (G+). Using (3.3), we can define the tensor product I ⊗K ∈ L (E ⊗p G+) as

follows

(3.4) (I ⊗K)x =
¸
j∈N

λjxj ⊗Kϕj .

In case K = Ts we often use the short notation x(t + s) instead of (I ⊗ Ts)x(t). We can
now define analogously the action

(3.5) 〈f, x〉 :=
¸
j∈N

λjxj〈f, ϕj〉

for any ultradistribution f ∈ G′+ and x ∈ E ⊗p G+. It is well-known [14, III.6.4] that these
definitions are independent of representations of elements x ∈ E ⊗p G+ in the form (3.3).

We say that an operator I ⊗K with K ∈ L (G+) is invariant with respect to shift oper-
ators I ⊗ T =

{
I ⊗ Ts : s ∈ Rn+

}
if

I ⊗ (K ◦ Ts) = I ⊗ (Ts ◦K) for all s ∈ Rn+.

Definition 3.2. For any ultradistribution f ∈ G′+, the cross-correlation operator over the
space E ⊗p G+ is defined to be

I ⊗Kf : E ⊗p G+ 3 x 7−→ (I ⊗Kf )x.

Here (I ⊗Kf )x(s) =
°
j∈N λjxj ⊗Kfϕj = 〈f, (I ⊗ Ts)x〉 for all s ∈ Rn+ by continuity of

a functional f ∈ G′+.
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4. OPERATORS COMMUTING WITH SHIFT SEMIGROUPS

The next theorem, based on the cross-correlation notion, is a generalization of known
structure theorems about shift-invariant operators.

Theorem 4.1. (i) The mapping K : G′+ 3 f 7−→ Kf ∈ L (G+) produces a topological isomor-
phism from the convolution algebra G′+ onto the commutant [T ]c of the shift semigroup T , i.e.

(4.6) Kf∗g = Kf ◦Kg, f, g ∈ G′+,
where ∗ denotes the convolution in G′+. In particular, Kδ is the identity in L (G+).

(ii) For any f ∈ G′+ the operator I ⊗Kf is invariant with respect to shift operators I ⊗ T .
Conversely, for any K ∈ L (G+) such that I ⊗K is invariant with respect to I ⊗ T there exists a
unique f ∈ G′+ such that for all x ∈ E ⊗p G+,

K = Kf and (I ⊗K)x = (I ⊗Kf )x.

Proof. (i) Check that Kf is a linear continuous operator. It is clear that

suppKfϕ=/ ∅⇐⇒ supp f ∩ suppϕ( ·+ s)=/ ∅⇐⇒ ∃ t0 ∈ supp f ∩ suppϕ( ·+ s).

Since t0 ∈ suppϕ( ·+ s)⇐⇒ t0 + s ∈ suppϕ⇐⇒ s ∈ suppϕ− t0, s ∈ suppϕ− supp f . So,
suppKfϕ ⊂ (suppϕ− supp f) ∩ Rn+ ⊂ [0, ν] for some ν � 0.

Prove that Kf ∈L (G+). Let {ϕm}⊂G+ be a sequence for which there exists [0, ν]⊂Rn+
such that suppϕm ⊂ [0, ν] for all m ∈ N and

lim
m→∞

sup
t∈[0,ν]

|∂kϕm(t)|
h|k|kkβ

= 0

for all k ∈ Zn+ with some h > 0. From the continuity of f ∈ G′+ and Ts ∈ L (G+) it follows
that ∂kKfϕ = Kf∂

kϕ for all k ∈ Zn+. So, we obtain

lim
m→∞

sup
t∈[0,ν]

|∂kKfϕm(t)|
h|k|kkβ

=

∣∣∣∣〈f, lim
m→∞

sup
t∈[0,ν]

∂kϕm( ·+ t)

h|k|kkβ

〉∣∣∣∣ = 0

for all k ∈ Zn+ and some h > 0. Using the isomorphism (2.1), we obtain Kf ∈ L (G+).
The following equalities

(4.7) (KfTsϕ)(t) = 〈f(r), ϕ(r + t+ s)〉 = Ts〈f(r), ϕ(r + t)〉 = (TsKfϕ)(t)

hold for all t, s ∈ Rn+ and ϕ ∈ G+. Hence, for any f ∈ G′+ we have Kf ∈ [T ]c.
Let now K ∈ L (G+) be an arbitrary operator with the property

(4.8) (KTs)ϕ(t) = (TsK)ϕ(t), ϕ ∈ G+, t, s ∈ Rn+.
It is easy to see that the functional 〈f0, ϕ〉 := (Kϕ)(0) belongs to G′+. By cross-correlation
definition (Kf0ϕ)(0) = 〈f0, ϕ〉, i.e. (Kϕ)(0) = (Kf0ϕ)(0) for all ϕ ∈ G+. Substituting Tsϕ
instead of ϕ and using the property (4.8), we get that K = Kf0 and hence that the image
of K coincides with the commutant [T ]c.

If Kfϕ(s) = 〈f, Tsϕ〉 = 0 for all ϕ ∈ G+ then f = 0. Hence, the mapping K is injective.
Since G+ is a Montel space [14, IV.5], the topologies on L (G+) of uniform convergence

on compacts and on bounded sets coincide. By barrelledness of the spaces G′+ and G+ [14,
II.7] the map G′+ × G+ 3 (f, ϕ) 7−→ Kfϕ ∈ G+ is equicontinuous, because it is separately
continuous. Hence, K is continuous. Moreover, K has the closed image [T ]c. Since G+ is a
nuclear (DFS)-space, we have L (G+) ' G+ ⊗p G′+ (see [14, IV.9.4]) where G′+ is a Fréchet
space as a strong dual of (DFS)-space. So,

G+ ⊗p G′+ ' lim ind
h,ν→∞

Ghν ⊗p G′+
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by virtue of the isomorphism (2.1). On the other hand, in G′+ there exists a countable base
of closed absolutely convex bounded sets {Bn} such that G′+ =

�
n∈N Bn, where Bn :=

C · Bn is a subspace with the norm ‖x‖n = inf {|λ| : x ∈ λBn}. From the completeness
of G′+ and the closedness of Bn it follows that Bn is a Banach space for all n ∈ N. From
boundedness of Bn it follows that the embeddings Bn # G′+ are continuous [14, II.8.4].
So, the identical mapping lim indn→∞ Bn −→ G′+ is continuous. As a consequence, we
obtain the isomorphism

G+ ⊗p G′+ ' lim ind
h,ν,n→∞

Ghν ⊗p Bn,

i.e. L (G+) is ultrabornological space [10]. Now, Open Mapping Theorem (see [13]) im-
plies that K is a topological isomorphism from G′+ onto [T ]c.

Check the equality (4.6). The convolution definition implies

(Kf∗gϕ)(t) = 〈f ∗ g, Ttϕ〉 =
〈
f(r), 〈g(s), ϕ(t+ r + s)〉

〉
= 〈f, Tt(Kgϕ)〉 = (KfKg)ϕ(t).

with t, r, s ∈ Rn+. In particular, Kf ◦Kδ = Kf∗δ = Kf = Kδ∗f = Kδ ◦Kf for all f ∈ G′+,
so Kδ is the identity.

(ii) The equality
°
j λjxj ⊗ (KfTs)ϕj =

°
j λjxj ⊗ (TsKf )ϕj holds for all f ∈ G′+ and

x ∈ E ⊗p G+ via (3.3) and (4.7). Therefore, I ⊗ (Kf ◦ Ts) = I ⊗ (Ts ◦ Kf ), i.e. I ⊗ Kf is
invariant with respect to the shift operators I ⊗ T .

Conversely, let K ∈ L (G+) be an operator such that I ⊗ (K ◦ Ts) = I ⊗ (Ts ◦K) for all
s ∈ Rn+. For any ϕ ∈ G+, let f0 : ϕ 7−→ (Kϕ)(0). Definitions (3.4) and (3.5) imply

[(I ⊗K)x](0) = 〈f0, x〉 = [(I ⊗Kf0)x](0).

Substituting (I ⊗ Ts)x instead of x and using that I ⊗K is invariant with respect to the
shift operators I⊗T , we obtain (I ⊗K)x = (I ⊗Kf0)x for all x ∈ E⊗p G+. Consequently,
K = Kf0 . �

5. SHIFT-INVARIANT OPERATORS COMMUTING WITH OPERATOR SEMIGROUPS

Consider the set of n-parameter contraction C0-semigroups {Ut : t ∈ Rn+} on a complex
Banach space (E, ‖ · ‖), i.e. semigroups satisfying the condition

(5.9) sup
t∈Rn+

‖Ut‖L (E) ≤ 1,

and let A be the set of their generators. To emphasize the fact that a semigroup {Ut : t ∈
Rn+} is generated by an operator A ∈ A we will use the notation {Ut(A) : t ∈ Rn+} for the
semigroup. Consider the space

pG = {px : A −→ E : x ∈ E ⊗p G+}
of E-valued functions

(5.10) px : A 3 A 7−→ px(A) ∈ E with px(A) = »
Rn+
Ut(A)x(t) dt,

determined by the Hille-Phillips calculus [7, Chapter 15], where the integral is understood
in the Bochner sense. The integral in (5.10) is well-defined, because the integrand is a
continuous E-valued function t 7−→ Ut(A)x(t) with a compact support.

Let us determine the linear mapping

F : E ⊗p G+ 3 x 7−→ px ∈ pG.
If the assumption (5.9) holds, then the mapping F is an isomorphism by virtue of [7,
Theorem 15.2.1]. Indeed, the semigroups Rn+ 3 t 7−→ e−(λ,t)I with Reλ ∈ intRn+ satisfy
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the condition (5.9). Therefore, their generators −λI belong to A. Note that px(−λI) =³
Rn+
e−(λ,t)x(t) dt is the Laplace transform of an E-valued function x ∈ E ⊗p G+. Particu-

larly, it follows that if px ≡ 0 then x ≡ 0, i.e., KerF = {0}.
We endow the space pG with the strongest locally convex topology induced by F . Na-

mely, let Ghν (E) =
{px : x ∈ E ⊗p Ghν

}
be a Banach space endowed with the inductive

topology under the mapping E ⊗p Ghν 3 x 7−→ px with fixed h and ν. Then from (2.1) it
follows that pG has the structure of the inductive limit pG = lim indh,ν→∞ Ghν (E) under the
continuous embeddings Ghν (E) # Glµ(E) with h < l and ν ≺ µ. So the mapping F is a
topological isomorphism.

Consider the n-parameter semigroup on the space pG
(5.11) pT : Rn+ 3 s 7−→ pTs ∈ L (pG), pTs = F ◦ (I ⊗ Ts) ◦ F−1,
where F−1 means the inverse map of F . Since F is a topological isomorphism and the
semigroup Rn+ 3 s 7−→ (I ⊗ Ts)x ∈ E ⊗p G+ is continuous for all x ∈ E ⊗p G+ , we have
that the semigroup pT on pG has the (C0)-property and its generator is densely defined.

Theorem 5.2. The mapping

G′+ 3 f 7−→ pKf ∈ L (pG), pKf = F ◦ (I ⊗Kf ) ◦ F−1,

is an algebraic isomorphism of the convolution algebra G′+ and the subalgebra of all operatorspK = F ◦ (I ⊗K) ◦ F−1 for some K ∈ L (G+) in the commutant [ pT ]c on pG. In particular, the
equality pKf∗g = pKf ◦ pKg for all f, g ∈ G′+ holds and pKδ is the identity in L (pG).
Proof. For any f ∈ G′+ the diagram

pG 3 px −−−−→ pKfpx ∈ pG
F
x F

x
E ⊗p G+ 3 x −−−−→ (I ⊗Kf )x ∈ E ⊗p G+

is commutative. Continuity of the mappings I ⊗Kf and F and openness of the mapping
F−1 imply that pKf ∈ L (pG). It follows that the equalities

[F(I ⊗Kf )x](A) =

»
Rn+
Ut(A)(I ⊗Kf )x(t) dt = pKfpx(A)

are valid for all A ∈ A. Consequently, the equalities

pKf
pTrpx(A) =

»
Rn+
Ut(A)(I ⊗Kf )x(t+ r) dt = pTr pKfpx(A)

hold for all r ∈ Rn+ and px ∈ pG. Hence, for any f ∈ G′+ we have that pKf belongs to the
commutant of the semigroup pT in L (pG).

Conversely, let pK = F ◦ (I ⊗K) ◦ F−1 belongs to the commutant [ pT ]c of pT . Then

F ◦ (I ⊗ (K ◦ Ts)) ◦ F−1 = F ◦ (I ⊗K) ◦ (I ⊗ Ts) ◦ F−1

= F ◦ (I ⊗K) ◦ F−1 ◦ F ◦ (I ⊗ Ts) ◦ F−1 = pK ◦ pTs
= pTs ◦ pK = F ◦ (I ⊗ Ts) ◦ F−1 ◦ F ◦ (I ⊗K) ◦ F−1

= F ◦ (I ⊗ Ts) ◦ (I ⊗K) ◦ F−1 = F ◦ (I ⊗ (Ts ◦K)) ◦ F−1,
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therefore K ∈ [T ]c. By Theorem 4.1 there exists a unique f ∈ G′+ such that K = Kf , i.e.,pKpx = pKFx = F(I ⊗Kf )x = pKfpx, px ∈ pG. Hence, pK = pKf .
Since Kδ = I , we obtain pKδ = F ◦ (I ⊗Kδ) ◦ F−1 = F ◦ F−1, so the operator pKδ is the

identity in L (pG).
From the properties of cross-correlation (see Theorem 4.1) it follows

pKf
pKgpx(A) =

»
Rn+
Ut(A)(I ⊗KfKg)x(t) dt =

»
Rn+
Ut(A)(I ⊗Kf∗g)x(t) dt = pUf∗gpx(A),

so the mapping f 7−→ pKf is an algebraic isomorphism. �

In the same way as in the proof of Theorem 4.1 we can prove that the algebraic isomor-
phism in Theorem 5.2 is topological.
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