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Operators commuting with multi-parameter shift
semigroups

OLEH LOPUSHANSKY and SERGII SHARYN

ABSTRACT. Using operators of cross-correlation with ultradistributions supported by a positive cone, we
describe a commutative algebra of shift-invariant continuous linear operators, commuting with contraction
multi-parameter semigroups over a Banach space. Thereby, we generalize classic Schwartz’s and Hérmander’s
theorems on shift-invariant operators.

1. INTRODUCTION

The well-known Schwartz structure theorem for shift-invariant operators [15] claims
that every continuous linear operator L: D(R") — C°°(R") commuting with the shift
group 7s: ¢(-) — (- —s), s € R, is necessarily the convolution operator with some
distribution f € D'(R"), i.e., Ly = f x . Hérmander in [8] establishes a similar structure
theorem for shift-invariant operators in the Lebesgue spaces LP(R™). Such operators over
test and generalized functions were discussed in an overview paper [18]. An extension of
Hormander’s result on Lorentz and Hardy spaces was considered in [2] and [17], respec-
tively. Structure of operators from the Schwartz space S(R™) into the tempered distribu-
tions S’(R") that commute with a discrete subgroup of translations was studied in [4].
Shift-invariant operators over the space of polynomial ultradistributions were considered
in [12]. For other results and references on the topic we refer the reader to [3, 5, 9, 19].

Our goal is a generalization of the structure theorems for two cases: first one for a
(Co)-semigroup T:R"} 55 — T of shifts and second one for contraction (Cy)-semigroups
{U; : t € R} of operators on a Banach space. In the main Theorems 4.1 and 5.2 we de-
scribe shift-invariant operators for scalar and operator semigroups, respectively.

It is essential that hereinafter functions and distributions are defined on the cone R’
(instead of R™). As a consequence, the shift-invariant property is considered under the
cross-correlation (instead of the convolution). Further, we will consider only the case of
Roumieu ultradistributions.

Let G', be the convolution algebra of Roumieu ultradistributions with supports in the
positive cone R’} and G be its predual space of Gevrey ultradifferentiable functions with
compact supports in R . We consider the cross-correlation operator

Ki: Gy 29— Kpp,  [Kpol(s) = (f,Tsp), €7
In Theorem 4.1 we prove that the algebra G/, has the isomorphic representation

G, > fr— Kj € 2(Gy)
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218 Oleh Lopushansky and Sergii Sharyn
onto the commutant [T]° of the shift semigroup T (see formula (3.2)) in space of linear
continuous operators on G .

Let us consider the set of n-parameter contraction (Cp)-semigroups {U;: t € R’ } ona
Banach space E and a set A of their generators. In section 5 we investigate the isomorphic
representation of the algebra er

G,ofr—Fo(l®Kys)oF !, f:E®pg+9xH9Ac€§,

where E ®, G is the complete projective tensor product. Here G denotes the subspace of
E-valued functions
z: A>3 A—Z(A) € E, Z(A) = U (A)z(t) dt,
RY
determined by the Hille-Phillips calculus, where U;(A) means that the semigroup is gene-

rated by operator A. In Theorem 5.2 we prove that there exists an algebraic isomorphism
from G/, into the commutant of the semigroup Fo (I ® T') o F~1.

2. ULTRADIFFERENTIABLE FUNCTIONS AND ULTRADISTRIBUTIONS

We use the short notations: tF = t5 ... thn gk6 — M8 pkaB k) =k 4 4k,
forany k = (ki1,...,k,) € Z%,t = (t1,...,t,) € R" and areal § > 1. Let 9% = 8{“ . OFn,
where 8]]-” = O /8tfj (j = 1,...,n). For u,v € R", the relation p < v (resp. p > v)
means that p1 < vq,..., [y < vy (T€SP. fi1 > V1,. ..,y > V). Let [u,v] = X?Zl[ﬂj,l/j]
and (p,v) = x?zl(uj, v;j) for any p < v. In what follows ¢ — oo (resp. t — 0) means that
tj — oo (resp. t; — 0) forall j = 1,...,n. By R} = X'_,[0,00) and int R = X 7_, (0, 00)
we denote the positive cone and its interior, respectively.

Let £(R") be the class of infinitely smooth complex valued functions ¢ defined on
int R” such that 9%y for all k € Z" have continuous limits at the boundary of R". Fix
a3 > 1. A function ¢ € £(R?}) is called (see [11]) Gevrey ultradifferentiable if for every
interval [p,v] C int R} there exist constants 4 > 0 and C' > 0 such that the inequality
SUPse . [0%0(t)] < ChIMER? holds for all k € Z1.

We denote by £7 = £° (R7}) the vector space of all Gevrey ultradifferentiable functions
on int R. By virtue of Seeley’s theorem [16] every function ¢ € Efz has an infinitely
smooth extension ¢ on R" such that 9*@(t) = 9%¢(t) for all k € Z" and t € R". Denote
by G f cé& f the subspace of Gevrey ultradifferentiable functions with compact supports.
In the sequel, to simplify notations we will write G, instead of gﬁ omitting the fixed .

For a fixed h > 0, we consider the subspace G C G, of all functions ¢ vanishing
outside [0, v] for which there exists a constant C' = C(y) > 0 such that sup,¢(y ,; [0%¢(t)| <
Ch!Fk*5 holds for all k € Z". As is known [11, p. 38], the space G" endowed with the
norm

el = _sup 1220
Y kezn, tefo] hlFIEkB
is complete and the inclusions G" & G!, with h < [ are compact. Moreover, if u < v then
G is a closed subspace in G [11, p.40]. We equip the space G = |, ¢ -0 G, with the
inductive limit topology under the compact inclusions G" & G!. Hence,

"
(2.1) G, ~ limind G"
v,h— o0
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is a nuclear (DFS)-space [11, p. 28]. Note that the space G is a topological algebra with
respect to the pointwise multiplication and ||t |[gn+t < [l¢llgr [[4¥]|g: (see [11, p. 41]).

The strong dual G, of G, is a nuclear (F'S)-space. The space G, consists of Roumieu
ultradistributions on R™ supported by R’} and it is a convolution algebra with Dirac ¢ as
the unit element. Remind, that the convolution is defined by (f * g, ) = (f, g * ), where
(gxp)(x) == (g,¢(-+2)) with f,g € G| and ¢ € G, (seee.g. [11,2.5]).

Let (f, p) denote the value of f € G, on ¢ € G,. Sometimes we write (f(t), p(t)), where
the “argument” of an ultradistribution f means the variable of a function ¢ on which the
functional f acts.

3. CROSS-CORRELATION AND SHIFT SEMIGROUPS

For a linear topological space X, we denote by . (X) the space of all continuous linear
operators on X. We write I for the identity operator in .Z (X ). We endow .Z(X) with the
locally convex topology of uniform Convergence on bounded subsets of X. We define the
commutant of a subset S C £ (X) tobe [S]° := {B € £(X): BA= AB,VA € S}.

An n-parameter family {U; : t € R’} } of bounded linear operators on a complex Banach
space (E, ||-||) is called an n- parameter semigroup of operators (see [1, 7]) if it is a mapping
U:R} >5t+— Uy € Z(E)suchthat Uy = I and Uy = Uy o U forall t, s € R}

We call a semigroup {U; : t € R’ } strongly continuous (or Cy-semigroup) if the equa-
lity limpn 540 [Uzz — || = 0 holds for all z € E.

For any n-parameter semigroup {U; : t = (t1,...,t,) € R’} } we define the marginal

one-parameter semigroups {Ut(j ) t; € Ry}, which commute with each other, where

Ut(j) [0,00) > tj — U(O,...,O,tj,O,‘.t,O) S X(E), i=1...,n

Any n-parameter semigroup U; may be represented as a composition of the associated
marginal one-parameter semigroups, i.e. Uy = U(l) .0 Ut(:).

Forall j =1,...,n, let the generator A; of the jth marginal semigroup {Ut(f ) ti e Ry}
be defined as

Ajri= lim ¢ U e —a) =00 w40, zE€D(A),

where ©(A;) consists of all z € E for which the above limit exists.

We denote the generator of {U;: t € R} } by A := (A;,..., Ay). Let us denote D(A4) :=
Nj- . If Uy is a (Cp)-semigroup then the following propertles hold (see [1, Propo-
51t10ns 1 1 8 9])

(i) if v € D(A;) then Uz € D(A;) and A;Ux = U Ajx;
(i) Uwr € D(A) forany z € E,t € intR"}, and D(A) is dense in £
(111) AiAjZ‘ = AinJZ, (’L,j = 1, . ,’fl) forall z € ;D(A)
We also consider the n-parameter (C)-semigroup of shifts over the space G,
(3.2) T:R} 35— T, € £(G4), Tsp(t) = p(t+ s), teRY, pedy.
It is obvious that supp ¢( - + s) = supp ¢ — s for any function ¢, defined on R". Therefore,
supp Ts¢ = (supp ¢ — s) N R} with s € R}. Hence, the inequalities || Tsp|gn < [l¢[lgr for
all s € R and all indexes h, v hold. Clearly, each derivative 9; (j = 1,...,n) generates
the corresponding marginal one-parameter semigroup

T(J) [0 OO) 285 — T((), .,0,55,0,.. ) € f(g+)
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The regular property (see [14]) of the inductive limit (2.1) implies that the semigroup T’
is equibounded. So, T' is equicontinuous by the Banach-Steinhaus theorem.

Definition 3.1. For any ultradistribution f € G, the cross-correlation operator over the
space G is defined to be

K¢:Gr o pr— Kyop, Kro(s) == (f, Tsp), s € RY.

Let £ ®, G+ be a completion of the algebraic tensor product £ ® G with respect to the
projective tensor topology. We can treat elements of F ®, G as a E-valued ultradiffer-
entiable functions = : t — x(t) with compact supports in R’} . From the known (see [6])
Grothendieck’s isomorphism E®, hm ind G, h~ limind E ®pG; h it follows the isomorphism

h,v—o0 h,v—o0

o Vi h
E®p g+ —%TBAXSE@p gl,.

So, for every = € E ®, G4 there exist v € R and h > 0 such that z € E ®, G", where each
space E ®, G is equipped with the norm

ak
Izl eo,gn = sup ” %] (k)ﬁ”'
Y kezn, telow] hiklE

Hence, from theorem about representation of projective tensor product (see [14, Th. IIL.
6.4]) it follows that every x € £ ®, G can be expanded (in general, not uniquely) in an
absolutely convergent series

(3.3) z=>Y Nz;®¢p;, MNEC, z,€E, ¢ egh
JEN

for some v € R} and & > 0, where }; [\;| < oo and the sequences {z;} and {y;} are
convergent to zero in the corresponding spaces.

Let K € Z(G+). Using (3.3), we can define the tensor product I ® K € Z(EF ®, G4 ) as
follows
(3.4) (I®K)z= ) \x; © Kgp;.

jEN

In case K = T, we often use the short notation z(¢ + s) instead of (I ® Ts)xz(t). We can
now define analogously the action

(3.5) (f2) = D Nz (f.05)

JEN
for any ultradistribution f € G/, and z € F ®, G,. It is well-known [14, II1.6.4] that these
definitions are independent of representations of elements = € E ®, G in the form (3.3).

We say that an operator I ® K with K € £(G. ) is invariant with respect to shift oper-
ators [ @ T ={I ®T,: s € R} } if

I®(KoTy)=1®(TsoK) forall seR.

Definition 3.2. For any ultradistribution f € G, the cross-correlation operator over the
space £ ®, G is defined to be

IQK;: E®y,Gy 322 +— (I @ Ky)x.

Here (I ® Ky)x(s) = X en Aty ®@ Kppj = (f, (I ® Ts)x) for all s € R’} by continuity of
a functional f € G/,



Operators commuting with multi-parameter shift semigroups 221

4. OPERATORS COMMUTING WITH SHIFT SEMIGROUPS

The next theorem, based on the cross-correlation notion, is a generalization of known
structure theorems about shift-invariant operators.

Theorem 4.1. (i) The mapping K: G, > f —— Ky € £(G) produces a topological isomor-
phism from the convolution algebra G, onto the commutant [T']° of the shift semigroup T, i.e.

(4.6) Ky = Kyo Ky, f,gGgg_,

where * denotes the convolution in G', . In particular, Ks is the identity in £ (G.).

(ii) For any f € G', the operator I ® Ky is invariant with respect to shift operators I @ T.
Conversely, for any K € (G ) such that I ® K is invariant with respect to I @ T there exists a
unique f € G such that forall x € E ®, G,

K =Ky and I®K)x=(I®Ky)z.
Proof. (i) Check that K is a linear continuous operator. It is clear that
supp K yp # @ <= supp f Nsupp ¢(- + s) # @ <= Ity € supp f Nsupp (- + s).

Since ty € supp (- + 8) < to + s € supp p <= s € supp ¢ — to, s € supp ¢ — supp f. So,
supp Ko C (supp ¢ —supp f) "R’} C [0, v] for some v > 0.

Prove that Ky € .2 (G ). Let {¢,,, } C G4 be a sequence for which there exists [0, 7] CR"
such that supp p,, C [0,v] for all m € Nand

k
lim sup L ()

=0
m—r 00 tG[O,D] hlk‘kjkﬁ

for all k € Z!} with some h > 0. From the continuity of f € G, and T, € .Z(G.) it follows
that 0" K s = K;0%¢ for all k € Z'. So, we obtain

k i ,
L

lim sup

; sup
m—r o0 tG[O,I/] hlklkkﬂ

m—o0 te[o,l/] h‘klkk‘ﬂ
forall k € Z'} and some h > 0. Using the isomorphism (2.1), we obtain Ky € .Z(G. ).
The following equalities

(4.7) (B Tsp)(t) = (f(r), o(r +t +5)) = To(f(r), o(r + 1)) = (T: K5 ¢)(t)
hold for all t,s € R} and ¢ € G. Hence, for any f € G, we have Ky € [T]°.
Letnow K € Z(G.) be an arbitrary operator with the property

(4.8) (KTs)p(t) = (TsK)p(t),  »€Gy, tseRL.

It is easy to see that the functional (fo, ) := (K)(0) belongs to G', . By cross-correlation
definition (Ky,4)(0) = (fo, ), i.e. (K¢)(0) = (Kz,¢)(0) for all ¢ € G. Substituting T
instead of ¢ and using the property (4.8), we get that X = Ky, and hence that the image
of K coincides with the commutant [T)°.

If Kyp(s) = (f,Tsp) = 0forall p € G, then f = 0. Hence, the mapping K is injective.

Since G, is a Montel space [14, IV.5], the topologies on .2’ (G, ) of uniform convergence
on compacts and on bounded sets coincide. By barrelledness of the spaces G', and G [14,
IL7] the map G, x G > (f,¢) — K;p € G, is equicontinuous, because it is separately
continuous. Hence, K is continuous. Moreover, K has the closed image [T]°. Since G is a
nuclear (DF'S)-space, we have Z(G,) ~ G, ®, G, (see [14,1V.9.4]) where G/, is a Fréchet
space as a strong dual of (DF'S)-space. So,

G1 ®p G ~ limind Gh ®p Gl

h,v—00
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by virtue of the isomorphism (2.1). On the other hand, in G’, there exists a countable base
of closed absolutely convex bounded sets { B, } such that G| = |J,,cy Bn, where B,, :=
C - B,, is a subspace with the norm ||z|,, = inf {|\|: # € AB,,}. From the completeness
of G, and the closedness of B, it follows that B,, is a Banach space for all n € N. From
boundedness of B,, it follows that the embeddings B,, 3+ G, are continuous [14, 11.8.4].
So, the identical mapping limind,, . B, — G/, is continuous. As a consequence, we
obtain the isomorphism

G+ ®p g; ~ limind g,’} ®p By,

h,v,n—o00
ie. Z(G4) is ultrabornological space [10]. Now, Open Mapping Theorem (see [13]) im-
plies that K is a topological isomorphism from G’, onto [T7]°.
Check the equality (4.6). The convolution definition implies

(Kpag)(t) = (f % 9. Tuop) = (f(r), {g(s), 0t + 7+ 5))) = (}, Te(Ey0)) = (K Kg)p(t).
with ¢,7,s € R"}. In particular, Ky o K5 = Kj.s = Ky = K5,y = K50 Ky forall f € G/,
so K is the identity.

(i) The equality >, A\jz; ® (K;Ts)p; = 3, \jz; ® (TsKy)p; holds for all f € G, and
xr € E®, Gy via (3.3) and (4.7). Therefore, I @ (K;oT,) =1 ® (Ts 0 Ky),ie. I ® Ky is
invariant with respect to the shift operators I @ T'.

Conversely, let K € .Z(G,) be an operator such that I @ (K o Ty) = I ® (Ts 0 K) for all
s € Rt. Forany ¢ € G, let fo: ¢ — (K¢)(0). Definitions (3.4) and (3.5) imply

(I © K)z](0) = (fo, ) = [(I © K ,)2](0).

Substituting (I ® Ts)z instead of x and using that I ® K is invariant with respect to the
shift operators I ® T, we obtain (I ® K)x = (I ® Ky,)x forallz € E®, G,. Consequently,
K=Kj,. O

5. SHIFT-INVARIANT OPERATORS COMMUTING WITH OPERATOR SEMIGROUPS

Consider the set of n-parameter contraction Cp-semigroups {U; : t € R, } on a complex
Banach space (E, || - ||), i.e. semigroups satisfying the condition

(5.9) sup ||Uill2p) <1,
teR™

and let A be the set of their generators. To emphasize the fact that a semigroup {U; : t €
R’} } is generated by an operator A € A we will use the notation {U;(A) : t € R} } for the
semigroup. Consider the space

G={3:A—E:2€E®,G,}
of F-valued functions

(5.10) B AS Ao 3(A) B with ﬂmzj U (A)a(t) dt,
RY

determined by the Hille-Phillips calculus [7, Chapter 15], where the integral is understood

in the Bochner sense. The integral in (5.10) is well-defined, because the integrand is a

continuous E-valued function ¢t — U, (A)x(t) with a compact support.

Let us determine the linear mapping
F:E®,Gy 32— 2 €.

If the assumption (5.9) holds, then the mapping F is an isomorphism by virtue of [7,
Theorem 15.2.1]. Indeed, the semigroups R” > t — e~ M1 with Re A € int R} satisfy
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the condition (5.9). Therefore, their generators —AI belong to A. Note that Z(—\I) =
SRK e~V x(t) dt is the Laplace transform of an E-valued function = € E ®,, G;. Particu-
larly, it follows that if = 0 then = 0, i.e., Ker F = {0}.

We endow the space G with the strongest locally convex topology induced by F. Na-
mely, let G'(E) = {Z: 2 € E ®, G/} be a Banach space endowed with the inductive
topology under the mapping E ®, G > 2 — 7 with fixed h and v. Then from (2.1) it
follows that ,C’; has the structure of the inductive limit é = limindp »—e0 G"(E) under the
continuous embeddings G!!(E) & G!,(E) with h < l and v < p. So the mapping F is a
topological isomorphism.

Consider the n-parameter semigroup on the space G
(5.11) T:R: s+ Ty 2(G), Ti=Fo(laTs)oF !,

where F~! means the inverse map of F. Since F is a topological isomorphism and the
semigroup R’} > s — (I ® Ts)xr € E ®, G4 is continuous for all 2 € E ®, G, , we have

that the semigroup T on G has the (Co)-property and its generator is densely defined.
Theorem 5.2. The mapping

G,3f— K;e2G), Ki=Fo(loK;)oF
is an algebraic isomorphism of the convolution algebra G'. and the subalgebra of all operators

K=Fo (I ® K)o F~1 for some K € £(G) in the commutant [f]e onG. In particular, the
equality K.y = Ky o K, forall f,g € G holds and Ks is the identity in Z(G).

Proof. For any f € G/ the diagram
Gz —— Kizeg
A A
E®p,Groz —— (I®Kf)x € EQy, G4

is commutative. Continuity of the mappings I ® Ky and F and openness of the mapping
F~1imply that Ky € £(G). It follows that the equalities

F(I @ Kp)zl(A) = | U(A)I @ Kp)a(t)dt = Kp3(A)
RY
are valid for all A € A. Consequently, the equalities
RiT3(A) = f U(A)I ® Kp)a(t +r) dt = TR 3(A)
R
hold for all » € R} and z € G. Hence, for any f € G'. we have that K belongs to the

commutant of the semigroup 7T in .Z(G).
Conversely, let K = F o (I ® K) o F~1 belongs to the commutant [1']¢ of 7. Then

FoI®(KoT))oF '=Fo(I®K)o(I®T,)oF !
—Fo(I®K)oF 'oFo(I®T)oF ' =KoT,
=T,oK=Fo(I®T,)oF 'oFo(I®K)oF !
=Fo(I®T)o(I®K)oF '=Fo(I® (TsoK))oF 1,
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therefore K € [T]°. By Theorem 4.1 there exists a unique f € G', such that K = Ky, ie,
Ki=KFr=F(I®Ky)r =K,z €G. Hence, K = Ky.
Since K5 = I, we obtain K5 = F o (I ® Ks5) o F~1 = F o F~1, so the operator K is the

identity in .Z(G).
From the properties of cross-correlation (see Theorem 4.1) it follows

KiK,2(A) = | U(A)I @ KKzt dt = | U (AT @ K pog)x(t) dt = Upagi(A),

R R7
so the mapping f — K ¢ is an algebraic isomorphism. O

In the same way as in the proof of Theorem 4.1 we can prove that the algebraic isomor-
phism in Theorem 5.2 is topological.

Acknowledgements. The authors would like to thank the referee for valuable comments
which helped to improve the manuscript.

REFERENCES

[1] Butzer, P. L. and Berens, H., Semi-Group of Operators and Approximation, Springer-Verlag, New-York, 1967
[2] Colzani, L. and Sjogren, P, Translation-invariant operators on Lorentz spaces L(1,q) with 0 < q < 1, Studia
Math., 132 (1999), No. 2, 101-124
[3] Dales, H. G. and Millinoton, A., Translation-invariant linear operators, Math. Proc. Cambridge Phil. Soc., 113
(1993), No. 1, 161-172
[4] Feichtinger, H. G., Féuhr, H., Gréochenig, K. and Kaiblinger, N., Operators commuting with a discrete subgroup
of translations, J. Geometric Analysis, 16 (2006), No. 1, 53-67
[5] Grafakos, L. and Soria, J., Translation-invariant bilinear operators with positive kernels, Integr. Equ. Oper. The-
ory, 66 (2010), 253264
[6] Grothendieck, A., Produits tensoriels topologiques et espaces nucléaries, Mem. Amer. Math. Soc., 16, 1955
[7] Hille, E. and Phillips, R., Functional analysis and semi-hroups, AMS Coll. Publ., voL. XXXI, New York, 1957
[8] Hormander, L, Estimates for transtation invariant operators in LP spaces, Acta Math., 104 (1960), No. 1, 93-140
[9] Hytonen, T., Translation-invariant operators on spaces of vector-valued functions, Helsinki University of Tech-
nology, 2003
[10] Jarchow, H., Locally Convex Spaces, Teubner, Stuttgart, 1981
[11] Komatsu, H., An Introduction to the theory of generalized functions, Tokyo University Publ., 2000
[12] Lopushansky, O. and Sharyn, S., Polynomial ultradistributions on cone R%, Topology, 48 (2009), No. 2-4, 80-90
[13] Raikov, D. A., Double closed-graph theorem for topological linear spaces, Siber. Math. J., 7 (1967), No. 2, 287-300
[14] Schaefer, H., Topological vector spaces, Springer-Verlag, New-York, 1971
[15] Schwartz, L., Theorie des distributions, Hermann, Paris, 1966
[16] Seeley, R. T., Extensions of C'°°-functions defined in a half-space, Proc. Amer. Math. Soc., 15 (1964), 625-626
[17] Tovstolis, A., On translation invariant operators in Hardy spaces in tube domains over open cones, Methods Funct.
Anal. Topology, 9 (2003), No. 3, 262-272
[18] Swartz, C. W., Translation invariant linear operators and generalized functions, Czechoslovak Math. J., 25 (1975),
No. 2,202-213
[19] Weiss, G., Representation of shift-invariant operators on L2 by H® transfer functions: An elementary proof, a
generalization to LP, and a counterexample for L>°, Math. Control Signals Systems, 4 (1991), 193-203

UNIVERSITY OF RZESZOW

FACULTY OF MATHEMATICS AND NATURAL SCIENCES
16A REJTANA, 35-959 RZESZOW, POLAND

E-mail address: ovlopusz@ur.edu.pl

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES
PRECARPATHIAN NATIONAL UNIVERSITY

57 SHEVCHENKA, 76-018 IVANO-FRANKIVSK, UKRAINE
E-mail address: sharyn.sergii@gmail.com



