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On the geometry behind a recurrent relation

CRISTIAN COBELI1 and ALEXANDRU ZAHARESCU2

ABSTRACT. We consider a certain linear recursive relation with integer parameters and study some of its
algebraic and geometric properties, with the purpose of estimating the number of chains of valences in the
Farey series.

1. INTRODUCTION

In the present paper we study some of the significant properties and consequences
of a recurrent construction involving a sequence of polynomials that appears naturally
in different contexts where the algebra and geometry are linked with the arithmetical
features of integers. As in [18], let p−1(·) = 0, p0(·) = 1, and then recursively, for any
integer r ≥ 1 and variables X1, X2, . . . Xr, let

(R) pr(X1, . . . , Xr) = Xrpr−1(X1, . . . , Xr−1)− pr−2(X1, . . . , Xr−2).

We write X = (X1, . . . , Xr) when the order (or length) r is understood from the context and
pr(X) instead of pr(X1, . . . , Xr). A few polynomials of small orders satisfying (R) are:

p1(X) =X1; p2(X) = X1X2 − 1; p3(X) = X1X2X3 −X1 −X3;

p4(X) =X1X2X3X4 −X1X2 −X1X4 −X3X4 + 1;

p5(X) =X1X2X3X4X5 −X1X2X3 −X1X2X5 −X1X4X5 −X3X4X5 +X1 +X3 +X5

p6(X) =X1X2X3X4X5X6 −X1X2X3X6 −X1X4X5X6

−X1X2X5X6 −X1X2X5X6 −X1X2X3X4 −X3X4X5X6

+X1X2 +X5X6 +X1X4 +X3X6 +X1X6 +X3X4 − 1 .

Relation (R) has many nice properties. For example, it produces the symmetry

(1.1) pr(X1, . . . , Xr) = pr(Xr, . . . , X1) .

Notice also the alternation in the signs of the monomials of pr(X) for values of r of the
same parity. The polynomials pr(X) will be used with suitable values Xj = kj . We call an
r-tuple k = (k1, . . . , kr) of positive integers admissible if there exists an integer Q ≥ 1 and
integers 1 ≤ q0, q1, . . . , qr+1 ≤ Q with the following properties:

gcd(qj , qj+1) = 1, for 0 ≤ j ≤ r;(1.2a)

qj + qj+1 > Q, for 0 ≤ j ≤ r;(1.2b)

kjqj = qj−1 + qj+1, for 1 ≤ j ≤ r.(1.2c)

We call the components of k valences and say that they are generated by the denominators
q0, q1, . . . , qr+1. An r-tuple of consecutive valences will also be called a chain of valences.
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Figure 1. A chain of valences and their generators.

Notice that it would be enough to only require in (1.2a) that two neighbor denomina-
tors are relatively prime, since by (1.2c) the same property radiates recursively to all the
other pairs of neighbor denominators.

We remark that by relations (1.2a)-(1.2c) it follows that any admissible r-tuple k can be
extended to an admissible sequence ((k)) that is infinite on both ends. (We call an infinite
sequence admissible if all its r-subchains of consecutive valences are admissible.) Notice
that the extension is not unique. There is a close connection between the sequence of
polynomials defined by relation (R) and Farey sequences. For more details the reader is
referred to [18, Section 6].

A few experiments reveal a peculiar property of ((k)). One may find in ((k)) compo-
nents indefinitely large, but in any neighborhood of such a component all the others are
comparatively small. And the larger a valence is, the larger is its neighborhood with only
small components. Here are a few examples of admissible chains k, that shed some light
on this phenomenon:

[11, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 1, 12];

[10, 1, 2, 3, 1, 5, 1, 4, 1, 3, 2, 2, 1, 15];

[16, 1, 2, 2, 2, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 2, 2, 2, 1, 16];

[1, 6, 1, 3, 1, 5, 1, 4, 1, 3, 2, 2, 2, 2, 2, 2, 1, 28, 1, 2, 2, 2, 2, 2, 3].

For any chain of valences k, we define the norm of k, to be its largest component. We
denote the norm of k by ||k||. Let Ar be the set of admissible chains of valences of length r.
Our aim is to estimate the size of Ar. The main result below unveils the following peculiar
fact: for each positive integer r, the number of admissible chains of length r and norm at
most x grows almost linearly as a function of x.

Theorem 1.1. For any integer r ≥ 1, we have

(1.3)
∑

k∈Ar

||k||≤x

1 = rx+Or(1).

Remark 1.1. We found that for n positive integer and sufficiently large the difference

δr(n) := #
{
k ∈ Ar : ||k|| ≤ n

}
− rn

becomes constant. We denote this constant, which depends only on r, by C(r). The first
twenty five values of C(r) are: C(1) = 0; C(2) = 3; C(3) = 15; C(4) = 41; C(5) = 84;
C(6) = 153; C(7) = 247; C(8) = 367; C(9) = 523; C(10) = 721; C(11) = 961; C(12) =
1251; C(13) = 1588; C(14) = 1983; C(15) = 2437; C(16) = 2963; C(17) = 3548; C(18) =
4219; C(19) = 4954; C(20) = 5761.

Open problem. We leave open the question of whether there exists a closed formula for
C(r) for all r, or at least for r large enough.
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2. THE FAREY SEQUENCE

About two hundred years ago Haros and Farey observed (see also [11], [17] and the
references therein) that by arranging the subunitary fractions with denominators at most
a given Q ≥ 1 in ascending order, the finite sequence obtained has remarkable properties.
Thus, if a′/q′ < a′′/q′′ are consecutive fractions then a′′q′ − a′q′′ = 1 and q′ + q′′ > Q.
Given Q ≥ 1, let

F
Q
:=

{
a

q
∈ [0, 1] : gcd(a, q) = 1, q ≤ Q

}

.

Arranged in ascending order, this is the Farey sequence of order Q. For example the
sequence of Farey fractions of order 8 is

F
8
:=

{
0

1
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8
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,
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4
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4
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5
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6
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,
7
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,
1

1

}

.

Relations (1.2a)-(1.2c) are crystallized from some basic features of a Farey sequence. If
a′/q′, a′′/q′′, a′′′/q′′′ are consecutive Farey fractions, then (a′+a′′′)/a′′ = (q′+q′′′)/q′′ ∈ N

∗,
any neighbor denominators are relatively prime, and their sum is greater than the order.
Thus, if a0/q0, a1/q1, . . . , ar+1/qr+1 are consecutive fractions in F

Q
and k = (k1, . . . , kr) is

the chain of the associated valences to the fractions, in [18] it is shown that

ar+1

qr+1
−

a0
q0

=
pr(k)

q0qr+1
.

In recent years the authors of [5], [6], [2], [8], [12], [7], [13], [19], [20], [9], [10], [18], [4], [14],
[15], [3], [16], [1] investigated various questions on the distribution of Farey fractions, the
tessellations and their polygonal tiles.

3. GERMS, TILES AND TESSELLATIONS

Any chain of valences has many corresponding chains of denominators (actually in-
finitely many as Q → ∞), but conversely, exactly one chain of valences corresponds to a
given chain of admissible denominators.

In the following, if (k1, . . . , kr) is a chain of valences with denominators (q0, q1, . . . , qr),
we shall call the pair (q0, q1) a pair of integer germs of k.

For a given k ∈ Ar and Q sufficiently large, let T Q[k] = T Q
r [k] be the set of integer

germs of k. Since this set depends on Q and we are interested in all admissible chains,
independent of the size of their germs, it is natural to let Q approach infinity and move
the problem to a bounded frame. Starting with two variables x, y, we put x−1 = x, x0 = y
and then define

(RR) xj = xj(k1, . . . , kj ;x, y) := kjxj−1 − xj−2, for j ≥ 1,

where kj =
[
1+xj−2

xj−1

]

. The connection with relation (R) is given in the next lemma. (Ob-

serve also that when x = 0 and y = 1 (RR) produces the same sequence as (R).)

Lemma 3.1. We have:

(3.1) xj = pj(k1, . . . , kj)y − pj−1(k2, . . . , kj)x, for j ≥ 1 .
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Proof. The proof is by induction. For j = 1, relation (3.1) coincides with (RR). For j ≥ 2,
using (R) and the induction hypothesis, we have:

pj+1(k1, . . . , kj+1)y − pj(k2, . . . , kj+1)x

=
(
kj+1pj(k1, . . . , kj)− pj−1(k1, . . . , kj−1)

)
y −

(
kj+1pj−1(k2, . . . , kj)− pj−2(k2, . . . , kj−1)

)
x

=kj+1(kjxj−1 − xj−2)− (kj−1xj−2 − xj−3)

=kj+1xj − xj−1 = xj .

This completes the proof of the lemma. �

The next result expresses the integers defined by (RR) in the language of inequalities.

Lemma 3.2. For any j ≥ 1, the equality kj =
[
1+xj−2

xj−1

]

is equivalent to

(3.2)
pj−1(k2, . . . , kj + 1)x+ 1

pj(k1, . . . , kj)
< y ≤

pj−1(k2, . . . , kj)x+ 1

pj(k1, . . . , kj)
.

Proof. The lemma follows by translating kj =
[
1+xj−2

xj−1

]

into

1 + xj−2

xj−1
− 1 < kj ≤

1 + xj−2

xj−1
,

and inserting here the information provided by (3.1). �

The Farey triangle is defined by

T =
{
(x, y) : x+ y > 1, and 0 < x, y ≤ 1

}
,

and

(3.3) Tr[k1, . . . , kr] =
{
(x, y) ∈ T : kj =

[
1+xj−2

xj−1

]

, for 1 ≤ j ≤ r
}
.

We call Tr[k] the tile of k. Similarly we say that any pair (x, y) ∈ Tr[k] is a germ of k.
Notice that one can write

Tj [k1, . . . , kj ] =
{

(x, y) ∈ Tj−1[k1, . . . , kj−1] : kj =
[x+ 1

y

]}

, for j ≥ 1,(3.4)

with T0[·] := T . This shows that any tile of any admissible chain is a convex polygon. It is
easy to see that any two tiles are disjoint, and the set of all tiles Tr[k] with k ∈ Ar form a
partition of T , which we call the tessellation of order r. In this language, our main problem
is to estimate the number of tiles in such a tessellation.

The expression (3.4) gives also an algorithm to find germs of k: Calculate Tr[k]; if it is
empty, then k is not admissible. Otherwise choose Q sufficiently large and pick a pair of
relatively prime integers (q0, q1) ∈ QTr[k]. This is an integer germ of k and any other germ
is obtainable by this method. In conclusion, given a chain of valences k and Q sufficiently
large, the polygon QT [k] contains plenty generators of k.

4. SMALL ORDERS

Here we look at the size of valences for several small orders.
Case r = 1. Any positive integer is a valence, and the exact shape of the polygons T1[k]
can be calculated easily by the definition (see the first case of relation (5.4)). Thus we have

∑

k∈A1

1≤k1≤K

1 = K, for K ≥ 1 .
(4.1)
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Case r = 2. Let k and l be two consecutive valences and suppose they are generated by
q1, q2, q3, q4, that is,

(4.2) kq2 = q1 + q3 , lq3 = q2 + q4 .

Lemma 4.3. The smallest of any two consecutive neighbor valences cannot be larger than 3.

Proof. By (4.2) and the fact that the sum of consecutive denominators of Farey fractions in
F

Q
is larger than Q, it follows that

min(k, l)Q < min(k, l)(q2 + q3) ≤ kq2 + lq3 = (q1 + q3) + (q2 + q4) ≤ 4Q ,

which gives min(k, l) ≤ 3, as required. �

Lemma 4.4. There are no two neighbor valences both equal to 1.

Proof. Let q1, q2, q3, q4 be consecutive denominators in F
Q

, for some Q, and assume that
(4.2) holds with k = l = 1. Then, adding the two relations, we obtain q1 + q4 = 0, a
contradiction which completes the proof of the lemma. �

Lemma 4.5. Let (k, l) be two neighbor valences in ((k)). Then, if one of k or l is ≥ 5, than the
other is equal to 1.

Proof. Since the pairs (k, l) and (l, k) are either both admissible or not, we may assume
that k ≥ 5. Let d1 be the bottom edge of the quadrilateral T1[k], and let d2 be the top line
of the strip that should intersect T1[k] in order to have a nonempty T2[k, l].

Our aim is to show that, for any l ≥ 2, in the triangle T , the line d1 with equation
y = lx+1

kl−1 is under the line d2, whose equation is y = x+1
k+1 . On x = 1 this is true since

(l + 1)/(kl − 1) ≤ 2/(k + 1), which follows by our assumption that 4 ≤ (k − 1)(l − 1).
The slope of d2 is greater than that of d1, and this completes the proof of the lemma. �

Inspecting all the pairs (k1, k2) in the remaining cases, one finds the set of pairs of
neighbor valences presented in Table 1 . In particular, this gives

∑

k∈A2

1≤k1,k2≤K

1 = 2K + 3, for K ≥ 4 .
(4.3)

Case r = 3. The larger the order, the larger the noise, in other words, many triples of
consecutive valences occur. We check first only the end points of a triple.

Lemma 4.6. Let (k, l,m) be three consecutive valences. Then, min(k,m) < 8.

Proof. Suppose k, l and m are generated by q1, q2, q3, q4, q5, that is,

kq2 = q1 + q3,(4.4)

lq3 = q2 + q4 ,(4.5)

mq4 = q3 + q5 .(4.6)

We split the argument in three parts.
Case 1. Suppose mq4 − kq3 ≥ 0. By (4.4) and (4.6) we obtain kq2 +mq4 ≤ 4Q. Then

kQ < k(q2 + q3) ≤ kq2 + kq3 +mq4 − kq3 < (q1 + q3) + (q3 + q5) ≤ 4Q ,

which gives that k < 4.
Case 2. Suppose kq2−mq3 ≥ 0. By symmetry, or proceeding similarly as in Case 1,

it follows that l < 4.
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Case 3. Now assume that mq4 − kq3 < 0 and kq2 −mq3 < 0. Then

mQ < m(q3 + q4) < (k +m)q3,

kQ < k(q2 + q3) < (k +m)q3,

which give Q < 2q3. Then, by (4.5), Q/2 < q3 ≤ lq3 = q2 + q4. This implies

min(k,m)Q/2 < min(k,m)(q2 + q4) ≤ kq2 +mq4 ≤ 4Q ,

that is, min(k,m) < 8, as claimed. �

On combining Lemma 4.6 with (4.3) and the analysis for the remaining triples summa-
rized in Table 1, we obtain (1.3) for r = 3 with the error term C(3) = 15:

∑

k∈A3

1≤k1,k2,k3≤K

1 = 3K + 15, for K ≥ 4 .
(4.7)

TABLE 1. Chains of valences. In the second column only one of k and its reverse kis included.

r Chains of admissible valences of length r

1 (k) for k ≥ 1

2 (1, k) for k ≥ 2; (2, 2); (2, 3); (2, 4)

3 (1, k, 1) for k ≥ 3; (2, 1, k) for k ≥ 6; (2, 2, 2); (2, 3, 2); (4, 1, 4);

(1, 2, 2); (1, 2, 3); (1, 2, 4); (1, 3, 2); (1, 4, 2); (2, 2, 3);
(3, 1, 4); (3, 1, 5); (3, 1, 6); (3, 1, 7); (3, 1, 8); (4, 1, 5)

4 (1, k, 1, 2) for k ≥ 6; (2, 2, 1, k) for k ≥ 10; (2, 2, 2, 2);
(1, 2, 2, 2); (1, 2, 2, 3); (1, 2, 3, 1); (1, 2, 3, 2); (1, 2, 4, 1); (1, 3, 2, 2);
(1, 3, 1, 5); (1, 3, 1, 6); (1, 3, 1, 7); (1, 3, 1, 8); (1, 4, 1, 4); (1, 4, 1, 5); (1, 5, 1, 4);

(1, 4, 1, 3); (1, 5, 1, 3); (1, 6, 1, 3); (1, 7, 1, 3); (1, 8, 1, 3);
(2, 2, 2, 3); (2, 2, 3, 2); (2, 3, 1, 4); (2, 3, 1, 5); (2, 3, 1, 6); (2, 4, 1, 3); (2, 4, 1, 4);
(3, 2, 1, 7); (3, 2, 1, 8); (3, 2, 1, 9); (3, 2, 1, 10); (3, 2, 1, 11); (3, 2, 1, 12);

(4, 2, 1, 6); (4, 2, 1, 7); (4, 2, 1, 8)

5. COMPLETION OF THE PROOF OF THEOREM 1.1

By induction, we show that at most one component of an admissible r-tuple can be
excessively large. Thus, for a given k = (k1, . . . , kr) ∈ Ar we have to show that the mini-
mum of k1 and kr can not exceed a certain margin, while bounds for the other components
k2, . . . , kr−1 follow by the induction hypothesis. For this it is helpful to see that Tr[k] lies
at the intersection between Tr−1[k1, . . . , kr−1] and the angular region defined by the last
condition in the definition of Tr[k]:

V(k1, . . . , kr) :=
{

(x, y) ∈ T : kr =
[
1+xr−2

xr−1

]}

,

in which the xj = xj(k1, . . . , kj), for j ≥ 1, are defined by (3.1). We claim that if both k1
and kr were large enough, then the intersection Tr−1[k1, . . . , kr−1]∩V(k1, . . . , kr) is empty.
This would imply k 6∈ Ar, contradicting our assumption.

The main point of the proof is to show more than it is required. Namely, we shall show
that even the superset T1[k1] ∩ V(k1, . . . , kr) is empty when k1, kr both surpass a certain
magnitude. We do this by proving that the angle V(k1, . . . , kr) lies under T1[k1].

From (3.3) and (3.2) we know that for k1 ≥ 2, the line d′, the bottom edge of quadrangle
T1[k1] has equation y = (x+1)/(k1+1), and d′′, the top edge of V(k1, . . . , kr) has equation

y = pr−1(k2,...,kr)x+1
pr(k1,...,kr)

. The argument has two parts. Firstly we see that in our hypotheses,

the slope of d′′ is greater than the slope of d′ and secondly, we check the position of the
points of intersection of d′ and respectively d′′ with the vertical line {x = 1}.
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Let m′,m′′ be the slopes of d′, d′′ respectively. Then, m′′ > m′ is equivalent to

(5.1) k1pr−1(k2, . . . , kr) > pr(k1, . . . , kr) .

Here, by (R) and by the symmetry property (1.1), the right-hand side is

pr(k1, . . . , kr) = pr(kr, . . . , k1)

= k1pr−1(kr, . . . , k2)− pr−2(kr, . . . , k3)

= k1pr−1(k2, . . . , kr)− pr−2(k3, . . . , kr) .

(5.2)

Inserting (5.2) into (5.1) and reducing the terms, one finds that the inequality m′′ > m′ is
equivalent to pr−2(k3, . . . , kr) > 0, which is always true for (k3, . . . , kr) ∈ Ar−2.

Now, for the second part of the argument, let A and B be the points of intersection of
d′, d′′ with {x = 1} respectively, that is, {A} = d′ ∩ {x = 1} and {B} = d′′ ∩ {x = 1}. It
remains to show that B lies under A, which is the same as showing that

(5.3) (k1 + 1)
(
pr−1(k2, . . . , kr) + 1

)
< pr(k1, . . . , kr) .

In order to make apparent the influence of k1 and kr in this inequality, we extract them by
reducing the order. This is done by using several times (R), as in (5.2). Then (5.3) reduces
to the following inequality

k1pr−3(k2, . . . , kr−2) + kr

(

2pr−3(k3, . . . , kr−1) + pr−2(k2, . . . , kr−1)
)

< k1krpr−2(k2, . . . , kr−1) + pr−3(k2, . . . , kr−2) + 2pr−4(k3, . . . , kr−2) .

Here, since k2, . . . , kr−1 are bounded, the inequality becomes true as soon as both k1 and
kr get larger than a certain quantity, so B lies under A.

In conclusion, an admissible tuple has at most one very large component. On the other
hand there are many possible combinations that consist of small numbers that may form
a subsequence of an admissible tuple. Moreover, when the components of k follow a
regular pattern, the vertices of polygons Tr[k] can be expressed in closed formulas. Such
a pattern is . . . , 1, 4, 1, 4, . . . , but the meaningful example is the constant sequence of 2s
that appear in the neighborhood of a large peak. The formulas recorded in the following
proposition are obtained by recording the data, step by step, during an induction process
that resembles the one described above.

Proposition 5.1. Fix s ≥ 0 and t ≥ 0. Then there exists a positive integer k0 depending on s
and t only, such that for any integer k ≥ k0 the quadrangle Ts+1+t[ 2, . . . , 2, 1

︸ ︷︷ ︸

s components

, k, 1, 2, . . . , 2
︸ ︷︷ ︸

t components

]

has vertices given by:

(5.4)







{(
k

k+2 ,
2

k+2

)

;
(

k+1
k+1 ,

2
k+1

)

;
(

k
k
, 2
k

)

;
(

k−1
k+1 ,

2
k+1

)}

, for s = 0,

{(
k−2s
k+2 ,

k−2s+2
k+2

)

;
(

k−2s+1
k+1 , k−2s+3

k+1

)

;
(

k−2s
k

, k−2s+2
k

)

;
(

k−2s−1
k+1 , k−2s+1

k+1

)}

, for s ≥ 1 .

Notice the two ’attractors’ (1, 0) and (1, 1) of the shrinking quadrangles Tr[k] with one
component large. They are indicated by the first and second case of relation (5.4), respec-
tively. In particular, since polygons Tr[k, ∗] are subsets of T1[k], Proposition 5.1 shows that
when a component k of an admissible tuple k is large enough, it should be followed by
1, and next, the more distant close neighbors should be 2s. By symmetry, this pattern
identifies uniquely the components that precede the very large component, also, and this
concludes the proof of the theorem.
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