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Extensions of Perov theorem

MARIJA CVETKOVIĆ and VLADIMIR RAKOČEVIĆ

ABSTRACT. [Perov, A. I., On Cauchy problem for a system of ordinary diferential equations, (in Russian), Prib-
lizhen. Metody Reshen. Difer. Uravn., 2 (1964), 115-134] used the concept of vector valued metric space and
obtained a Banach type fixed point theorem on such a complete generalized metric space. In this article we
study fixed point results for the new extensions of Banach’s contraction principle to cone metric space, and we
give some generalized versions of the fixed point theorem of Perov. As corollaries some results of [Zima, M., A
certain fixed point theorem and its applications to integral-functional equations, Bull. Austral. Math. Soc., 46 (1992),
179–186] and [Borkowski, M., Bugajewski, D. and Zima, M., On some fixed-point theorems for generalized contrac-
tions and their perturbations, J. Math. Anal. Appl., 367 (2010), 464–475] are generalized for a Banach cone space
with a non-normal cone. The theory is illustrated with some examples.

1. INTRODUCTION

There exist many generalizations of the concept of metric spaces in the literature. Perov
[16] used the concept of vector valued metric space, and obtained a Banach type fixed
point theorem on such a complete generalized metric space. After that, fixed point results
of Perov type in vector valued metric spaces were studied by many other authors (see e.g.,
[9], [11], [18], [19], [21] for some works in this line of research). Let us point out that Perov
theorem and related results have many applications in coincidence problems, coupled
fixed point problems and systems of semilinear differential inclusions. In this article we
study fixed point results for the new extensions of Banach’s contraction principle to cone
metric space, and we give some generalized versions of the fixed point theorem of Perov.
As corollaries we generalized some results of Zima [24] and Borkowski, Bugajewski and
Zima [6] for a Banach space with a non-normal cone. The theory is illustrated with some
examples.

Consistent with [12] (see, e.g., [1], [2], [3], [7], [10], [13], [14], [20], [22] for more details
and recent results), the following definitions and results will be needed in the sequel.

Let E be a real Banach space. A subset P of E is called a cone if:
i) P is closed, nonempty and P 6= {0} ;
ii) a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply ax+ by ∈ P ;
iii) P ∩ (−P ) = {0}.
Given a cone P ⊆ E, we define the partial ordering ≤with respect to P by x ≤ y if and

only if y − x ∈ P . We shall write x < y to indicate that x ≤ y but x 6= y, while x � y will
stand for y − x ∈ intP (interior of P ).

There exist two kinds of cones: normal and non-normal ones.
The cone P in a real Banach space E is called normal if

(1.1) inf{‖x+ y‖ : x, y ∈ P and ‖x‖ = ‖y‖ = 1} > 0

or, equivalently, if there is a number K > 0 such that for all x, y ∈ P ,

(1.2) 0 ≤ x ≤ y implies ‖x‖ ≤ K ‖y‖ .
The least positive number satisfying (2.2) is called the normal constant of P . It is clear that
K ≥ 1.

Definition 1.1. [12] LetX be a nonempty set, and let P be a cone on a real ordered Banach
space E. Suppose that the mapping d : X ×X 7→ E satisfies:

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y ;
(d2) d(x, y) = d(y, x) for all x, y ∈ X ;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .
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Then d is called a cone metric on X and (X, d) is called a cone metric space.

It is known that the class of cone metric spaces is bigger than the class of metric spaces.

Example 1.1. Let E = l1, P =
{
{xn}n≥1 ∈ E : xn ≥ 0, for all n

}
, (X, ρ) be a metric space

and d : X ×X 7→ E defined by d (x, y) =
{
ρ(x,y)
2n

}
n≥1

. Then (X, d) is a cone metric space.

Example 1.2. Let X = R, E = Rn and P = {(x1, ..., xn) ∈ Rn : xi ≥ 0} . It is easy to see
that d : X×X 7→ E defined by d(x, y) = (|x−y|, k1|x−y|, . . . , kn−1|x−y|) is a cone metric
on X, where ki ≥ 0 for all i ∈ {1, ..., n− 1}.

Example 1.3. [7] Let E = C1[0, 1] with ‖x‖ = ‖x‖∞ + ‖x′‖∞ on P = {x ∈ E : x(t) ≥ 0
on [0, 1]}. This cone is not normal. Consider, for example,

xn(t) =
1− sinnt

n+ 2
and yn(t) =

1 + sinnt

n+ 2
.

Since, ‖xn‖ = ‖yn‖ = 1 and ‖xn + yn‖ = 2
n+2 → 0, it follows by (1.1) that P is non-normal.

Let X be a nonempty set and n ∈ N.

Definition 1.2. A mapping d : X × X 7→ Rn is called a vector-valued metric on X if the
following statements are satisfied for all x, y, z ∈ X .

(d1) d(x, y) ≥ 0n and d(x, y) = 0n if and only if x = y, 0n = (0, . . . , 0) ∈ Rn;
(d2) d(x, y) = d(y, x);
(d3) d(x, y) ≤ d(x, z) + d(z, y).

If x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, then x ≤ y means that xi ≤ yi, i = 1, . . . , n.
This partial order determines normal cone P = {x = (x1, . . . , xn) ∈ Rn : xi ≥ 0, i =
1, 2, . . . , n} on Rn, with the normal constant K = 1. A nonempty set X with a vector-
valued metric d is called a generalized metric space.

Throughout this paper we denote byMn,n the set of all n × n matrices, byMn,n(R+)
the set of all n× n matrices with nonegative elements. It is well known that if A ∈ Mn,n,
then A(P ) ⊆ P if and only if A ∈Mn,n(R+). We write Θ for the zero n× n matrix and In
for the identity n × n matrix. For the sake of simplicity we will identify row and column
vector in Rn.
A matrix A ∈Mn,n(R+) is said to be convergent to zero if An → Θ as n→∞.

Theorem 1.1. (Perov [16], [17]) Let (X, d) be a complete generalized metric space, f : X 7→ X
and A ∈Mn,n(R+) is a matrix convergent to zero, such that

d(f(x), f(y)) ≤ A(d(x, y)), x, y ∈ X.
Then:

i) f has a unique fixed point x∗ ∈ X ;

ii) the sequence of successive approximations xn = f(xn−1), n ∈ N converges to x∗ for all
x0 ∈ X ;

iii) d(xn, x
∗) ≤ An(In −A)−1(d(x0, x1)), n ∈ N;

iv) if g : X 7→ X satisfies the condition d(f(x), g(x)) ≤ c for all x ∈ X and some c ∈ Rn,
then by considering the sequence yn = gn(x0), n ∈ N, one has

d(yn, x
∗) ≤ (In −A)−1(c) +An(In −A)−1(d(x0, x1)), n ∈ N.

For completeness of the paper and convenience of the reader, we collect some basic
definitions and facts which are applied in subsequent sections. In the following we sup-

pose that E is a Banach space, P is a cone in E with intP 6= ∅ and ≤ is the partial order on
E with respect to P.

Let {xn} be a sequence in X , and x ∈ X . If for every c in E with 0� c, there is n0 such
that for all n > n0, d(xn, x) � c, then it is said that {xn} converges to x, and we denote
this by limn→∞ xn = x, or xn → x, n→∞. If for every c in E with 0� c, there is n0 such
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that for all n,m > n0, d(xn, xm)� c, then {xn} is called a Cauchy sequence in X . If every
Cauchy sequence is convergent in X , then X is called a complete cone metric space.

Let us recall [12] that if P is a normal cone then {xn} ⊆ X converges to x ∈ X if and
only if d(xn, x) → 0, n → ∞. Further, {xn} ⊆ X is a Cauchy sequence if and only if
d(xn, xm)→ 0, n,m→∞.

Let (X, d) be a cone metric space. Then the following properties are often used (partic-
ulary when dealing with cone metric spaces in which the cone need not be normal):

(p1) If u ≤ v and v � w then u� w.
(p2) If 0 ≤ u� c for each c ∈ intP then u = 0.
(p3) If a ≤ b+ c for each c ∈ intP then a ≤ b.
(p4) If 0 ≤ x ≤ y, and a ≥ 0, then 0 ≤ ax ≤ ay.
(p5) If 0 ≤ xn ≤ yn for each n ∈ N, and limn→∞ xn = x, limn→∞ yn = y, then 0 ≤ x ≤ y.
(p6) If 0 ≤ d(xn, x) ≤ bn and bn → 0, then xn → x.
(p7) IfE is a real Banach space with a cone P and if a ≤ λa, where a ∈ P and 0 < λ < 1,

then a = 0.
(p8) If c ∈ intP , 0 ≤ an and an → 0, then there exists n0 such that for all n > n0 we

have an � c.
From (p8) it follows that the sequence {xn} converges to x ∈ X if d(xn, x) → 0 as

n → ∞ and {xn} is a Cauchy sequence if d(xn, xm) → 0 as n,m → ∞. In the situation
with a non-normal cone we have only one part of Lemmas 1 and 4 from [12]. Also, in this
case the fact that d(xn, yn)→ d(x, y) if xn → x and yn → y is not applicable.

We write B(E) for the set of all bounded linear operators on E and L(E) for the set
of all linear operators on E. B(E) is a Banach algebra, and if A ∈ B(E) let r(A) =

limn→∞ ‖An‖1/n = infn ‖An‖1/n be the spectral radius of A. Let us remark that if r(A) <
1, then the series

∑∞
i=0A

n is absolutely convergent, I − A is invertible in B(E) and
∞∑
i=0

An = (I −A)−1.

2. MAIN RESULTS

In this section we prove our main results. We start with some auxiliary results.

Lemma 2.1. Let (X, d) be a cone metric space. Suppose that {xn} is a sequence in X and that
{bxn} is a sequence in E. If 0 ≤ d(xn, xm) ≤ bn for m > n and bn → 0, n→∞, then {xn} is a
Cauchy sequence.

Proof. For every c � 0 there exists n0 ∈ N such that bn � c, n > n0. It follows that
0 ≤ d(xn, xm)� c,m > n > n0, i.e., {xn} is a Cauchy sequence. �

Lemma 2.2. Let E be Banach space, P ⊆ E cone in E and A : E 7→ E a linear operator. The
following conditions are equivalent:

i) A is increasing, i.e., x ≤ y implies A(x) ≤ A(y).

ii) A is positive, i.e., A(P ) ⊆ P .

Proof. If A is monotonically increasing and p ∈ P , then, by definitions, it follows p ≥ 0
and A(p) ≥ A(0) = 0. Thus, A(p) ∈ P , and A(P ) ⊆ P .
To prove the other implication, let us assume that A(P ) ⊆ P and x, y ∈ E are such that
x ≤ y. Now y − x ∈ P , and so A(y − x) ∈ P . Thus A(x) ≤ A(y). �

The results in the next theorem are applied to the cone metric spaces in the case when
cone is not necessary normal, and Banach space should not be finite dimensional. This
extends the results of Perov for matrices and also as a corollary we generalize Theorem 1
of Zima [24].

Theorem 2.2. Let (X, d) be a complete cone metric space, d : X × X 7→ E, f : X 7→ X ,
A ∈ B(E), with r(A) < 1 and A(P ) ⊆ P , such that

(2.3) d(f(x), f(y)) ≤ Ad(x, y), x, y ∈ X.

Then:
i) f has a unique fixed point z ∈ X ;
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ii) For any x0 ∈ X the sequence xn = f(xn−1), n ∈ N converges to z and

d(xn, z) ≤ An(I −A)−1(d(x0, x1)), n ∈ N;

iii) Suppose that g : X 7→ X satisfies the condition d(f(x), g(x)) ≤ c for all x ∈ X and some
c ∈ P . Then if yn = gn(x0), n ∈ N, we have

d(yn, z) ≤ (I −A)−1(c) +An(I −A)−1(d(x0, x1)), n ∈ N.

Proof. i) For n,m ∈ N,m > n, we have

0 ≤ d(xn, xm) ≤
m−1∑
i=n

Ai(d(x0.x1)) ≤
∞∑
i=n

Ai(d(x0, x1)).

Now, r(A) < 1, implies

‖
∞∑
i=n

Ai(d(x0, x1))‖ ≤
∞∑
i=n

‖Ai‖ · ‖(d(x0, x1))‖ → 0, n→∞.

Thus an =
∞∑
i=n

Ai(d(x0, x1)) → 0, n → ∞, and by Lemma 2.1 {xn} is a Cauchy sequence.

Since X is a complete cone metric space, we know that there exists z ∈ X such that
xn → z, n→∞.

Let us prove that f(z) = z. Set p = d(z, f(z)), and suppose that c � 0 and ε � 0.
Hence, there exists n0 ∈ N such that

d(z, xn)� c and d(z, xn)� ε for all n ≥ n0.

Therefore, p = d(z, f(z)) ≤ d(z, xn+1)+d(xn+1, f(z)) ≤ d(z, xn+1)+A(d(z, xn)) ≤ c+A(ε)
for n ≥ n0. Thus, p ≤ c + A(ε) for each c � 0, and so p ≤ A(ε). Now, for ε = ε/n,
n = 1, 2, . . . , we get

0 ≤ p ≤ A
(
ε

n

)
=
A(ε)

n
, n = 1, 2, . . . .

Because A(ε)
n → 0, n→∞, this shows that p = 0, i.e., z = f(z).

If f(y) = y, for some y ∈ X , then d(z, y) ≤ A(d(z, y)). Thus, d(z, y) ≤ An(d(z, y)), for
each n ∈ N. Furthermore, r(A) < 1 implies

‖An(d(z, y)‖ ≤ ‖An‖ · ‖(d(z, y)‖ → 0, n→∞,

so, d(z, y) = 0, i.e., z = y.

ii) By i), for arbitrary n ∈ N, we have

(2.4) d(xn, z) ≤ A(d(xn−1, z)) ≤ · · · ≤ An(d(x0, z)).

On the other hand,

d(x0, z) ≤ d(x0, xn) + d(xn, z)

≤
n−1∑
i=0

d(xi, xi+1) +An(d(x0, x1)) +An(d(x1, z))

≤
i=n∑
i=0

Ai(d(x0, x1)) +An(d(x1, z)).

Because An(d(x1, z))→ 0, n→∞, we get

d(x0, z) ≤
∞∑
i=0

Ai(d(x0, x1)) = (I −A)−1(d(x0, x1)).

That implies d(xn, z) ≤ An(I −A)−1(d(x0, x1)).
iii) Let us remark that for any n ∈ N,d(yn, z) ≤ d(yn, xn) + d(xn, z), and ii) imply

d(yn, z) ≤ d(yn, xn) +An(I −A)−1(d(x0, x1)).
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Now,

d(yn, xn) ≤ d(yn, f(yn−1)) + d(f(yn−1), xn)

≤ c+A(d(yn−1, xn−1))

≤ c+A

(
d(yn−1, f(yn−2)) + d(f(yn−2), xn−1)

)
≤ c+A(c) +A2(d(yn−2, xn−2)) ≤ . . . ≤

n−1∑
i=0

Ai(c) ≤ (I −A)−1(c),

implies iii). �

Investigations of the existence of fixed points of set-valued contractions in metric spaces
were initiated by S. B. Nadler [15]. The following theorem is motivated by Nadler’s re-
sults and also generalizes the well-known Banach contraction theorem in several ways.
Furthermore, it is a generalization of the recent result Theorem 3.2 of Borkowski, Buga-
jewski and Zima [6] for a Banach space with a non-normal cone.

Theorem 2.3. Let (X, d) be a complete cone metric space, d : X × X 7→ E, and let T be a set-
valued d–Perov contractive mapping (i.e. there exists A ∈ B(E), such that r(A) < 1, A(P ) ⊆ P
and for any x1, x2 ∈ X and y1 ∈ Tx1 there is y2 ∈ Tx2 with d(y1, y2) ≤ A(d(x1, x2)) from
X into itself such that for any x ∈ X, Tx is a nonempty closed subset of X. Then there exists
x0 ∈ X such that x0 ∈ Tx0, i.e., x0 is a fixed point of T .

Proof. Suppose that u0 ∈ X and u1 ∈ Tu0. Then there exists u2 ∈ Tu1 such that d(u1, u2) ≤
A(d(u0, u1)). Thus, we have a sequence {un}n≥1 inX such that un+1 ∈ Tun and d(un, un+1)
≤ A(d(un−1, un)) for every n ∈ N. For any n ∈ N, we have,

(2.5) d(un, un+1) ≤ A(d(un−1, un)) ≤ . . . ≤ An(d(u0, u1)).

So for m > n,

d(un, um) ≤ d(un, un+1) + d(un+1, un+2) + . . .+ d(um−1, um)

≤ (An +An+1 + . . .+Am−1)(d(u0, u1))

≤ An(I −A)−1(d(u0, u1))→ 0, n→∞.
Thus, {un}n≥1 is a Cauchy sequence in X . Since X is a complete space there exists

v0 ∈ X such that un → v0 as n→∞. Furthermore, for any ε� 0 there exists m0 ∈ N such
that d(um, v0)� ε, m ≥ m0. Thus, we have (for m ≥ max{n,m0})

d(un, v0) ≤ d(un, um) + d(um, v0)

≤ An(1−A)
−1

(d(u0, u1)) + ε, for n ≥ 1.

Hence,

(2.6) d(un, v0) ≤ An(1−A)
−1

(d(u0, u1)), for n ≥ 1.

Let us define wn ∈ Tv0 such that d(un, wn) ≤ A(d(un−1, v0)), for n ≥ 1. So, for any n ∈ N,

(2.7) d(un, wn) ≤ A(d(un−1, v0)) ≤ An(I −A)−1(d(u0, u1)).

Moreover,

d(wn, v0) ≤ d(wn, un) + d(un, v0) ≤ 2 ·An(I −A)−1(d(u0, u1)).

Thus, {wn} converges to v0. Since Tv0 is closed, it follows v0 ∈ Tv0. �

Example 2.4. Let X = E and E be with non normal cone P as in Example 1.3. Let us
define cone metric d : X ×X 7→ E by

d(f, g) = f + g, for f 6= g; d(f, f) = 0, f, g ∈ X.
If T : X 7→ X is defined by T (f) = f/2, f ∈ X , then

d(T (f), T (g)) ≤ A(d(f, g)), f, g ∈ X,
where A : E 7→ E is a bounded linear operator defined by A(f) = f/2, f ∈ E. Clearly,
‖A‖ = 1/2, and all the assumptions from Theorem 2.3 are satisfied. Hence, T has a unique
fixed point f = 0 ∈ X .
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Remark 2.1. Let us remark that the initial assumption A ∈ Mn,n(R+), in Perov theorem,
is unnecessary. The latest remark will be illustrated by the following example.

Example 2.5. Let

A =


1
2 − 1

4 0
1
4 − 1

2 0

0 0 1
2

 ,
X =


x11
x3

 | x1, x3 ∈ R

 and f : X 7→ X , f

x11
x3

 =

x1+1
2
1

x3+2
3

. Set ‖x‖ = max{|x1|, |x2|, |x3|}

for x =

x1x2
x3

 , xi ∈ R, i = 1, 2, 3.

For arbitrary x ∈ X , we have

‖Ax‖ = max

{
|1
2
x1 −

1

4
x2|, |

1

4
x1 −

1

2
x2|, |

1

2
x3|
}

≤ max

{
1

2
‖x‖+

1

4
‖x‖, 1

4
‖x‖+

1

2
‖x‖, 1

2
‖x‖
}

=
3

4
‖x‖.

Thus, ‖A‖ ≤ 3
4 . If x =

−1
1
1

, ‖x‖ = 1, then ‖Ax‖ = 3
4 . Hence, ‖A‖ = 3

4 .

Now r(A) ≤ ‖A‖ = 3/4 and d(f(x), f(y)) ≤ A(d(x, y)), x, y ∈ X . Clearly, A(P ) * P ,
and (1, 1, 1) is a unique fixed point of f in X .

Based on the previous comments, we obtain the next result, where we do not suppose
that A(P ) ⊂ P.

Theorem 2.4. Let (X, d) be a complete cone metric space, d : X × X 7→ E, P a normal cone
with normal constant K, A ∈ B(E) and K‖A‖ < 1. If the condition (2.3) holds for a mapping
f : X 7→ X , then f has a unique fixed point z ∈ X and the sequence xn = f(xn−1), n ∈ N,
converges to z for any x0 ∈ X .

Proof. Let x0 ∈ X be arbitrary, xn = f(xn−1), n ∈ N. Inequality

d(xn, xn+1) ≤ A(d(xn−1, xn)), n ∈ N,

implies

‖d(xn, xn+1)‖ ≤ K‖A(d(xn−1, xn))‖ ≤ K‖A‖‖d(xn−1, xn)‖
≤ K2‖A‖2‖d(xn−2, xn−1)‖ ≤ . . . ≤ Kn‖A‖n‖d(x0, x1)‖.

If n,m ∈ N, n < m, then

‖d(xn, xm)‖ ≤
m−1∑
i=n

‖d(xi, xi+1)‖ ≤
m−1∑
i=n

Ki‖A‖i‖d(x0, x1)‖.

Clearly,K‖A‖ < 1, implies that the series
∞∑
i=0

Ki‖A‖i is convergent. Hence, ‖d(xn, xm)‖ →

0, as n,m → ∞. This shows that {xn} is a Cauchy sequence, and so there exists z ∈ X
such that lim

n→∞
xn = z. Let us prove that f(z) = z. From d(f(z), xn+1) ≤ A(d(z, xn)), we

get
‖d(f(z), xn+1)‖ ≤ K‖A(d(z, xn))‖ ≤ K‖A‖‖d(z, xn)‖.

Thus, lim
n→∞

xn = f(z), and so f(z) = z.
It remains to show that z is a unique fixed point of f .
If f(y) = y, y ∈ X , then d(z, y) = d(f(z), f(y)) ≤ A(d(z, y)) it follows ‖d(z, y)‖ ≤
K‖A‖‖d(z, y)‖. Now, K‖A‖ < 1 implies d(z, y) = 0, i.e., z = y. �

Following the work of Berinde ([4], [5]), in the next theorem we investigate the weak
contraction of Perov type.
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Theorem 2.5. Let (X, d) be a complete cone metric space, d : X × X 7→ E, f : X 7→ X ,
A ∈ B(E), with r(A) < 1 and A(P ) ⊆ P , B ∈ L(E) with B(P ) ⊆ P , such that

(2.8) d(f(x), f(y)) ≤ A(d(x, y)) +B(d(x, f(y))), x, y ∈ X.

Then
i) f : X 7→ X has a fixed point in X and for any x0 ∈ X the sequence xn = f(xn−1), n ∈ N,

converges to a fixed point of f .
ii) If, under the previous conditions,

(2.9) B ∈ B(E) and r(A+B) < 1,

or

(2.10) d(f(x), f(y)) ≤ Ad(x, y) +B(d(x, fn0(x))), x, y ∈ X, for some n0 ∈ N,

then f has a unique fixed point.

Proof. i) For an arbitrary x0 ∈ X observe xn = f(xn−1), n ∈ N. Since

d(xn, xn+1) ≤ A(d(xn−1, xn)) +B(d(xn, f(xn−1))) = A(d(xn−1, xn))

≤ A2(d(xn−2, xn−1)) ≤ . . . ≤ An(d(x0, x1)),

then, as in the proof of Theorem 2.3, we conclude that {xn} converges to some z ∈ X .
Let us prove that f(z) = z. Set p = d(z, f(z)), and suppose that c � 0 and ε � 0.

Hence, there exists n0 ∈ N such that d(z, xn)� c and d(z, xn)� ε for all n ≥ n0. Now

p = d(z, f(z)) ≤ d(z, xn+1) + d(xn+1, f(z))

≤ d(z, xn+1) +A(d(z, xn)) +B(d(z, xn+1))

≤ c+A(ε) +B(ε), n ≥ n0.

Thus, p ≤ c+A(ε)+B(ε) for each c� 0, and so p ≤ A(ε)+B(ε). For ε = ε/n, n = 1, 2, . . . ,
we get

0 ≤ p ≤ A
(
ε

n

)
+B

(
ε

n

)
=
A(ε)

n
+
B(ε)

n
, n = 1, 2, . . . .

Because A(ε)/n+B(ε)/n→ 0, n→∞, this shows that p = 0, i.e., z = f(z).

ii) If f(y) = y, for some y ∈ X , then

d(z, y) ≤ A(d(z, y)) +B((d(z, y)) = (A+B)((d(z, y)).

Thus d(z, y) ≤ (A+B)n(d(z, y)), for each n ∈ N. Moreover, r(A+B) < 1 implies

‖(A+B)n(d(z, y)‖ ≤ ‖(A+B)n‖ · ‖(d(z, y)‖ → 0, n→∞.

Hence, d(z, y) = 0, i.e., z = y. Let us remark that (2.10) implies d(z, y) ≤ A(d(z, y)), and so

d(z, y) ≤ An(d(z, y)), for each n ∈ N.

The rest of the proof follows from the proof of Theorem 2.3 i). �

Remark 2.2. Let us remark that in the works of [8] and [23] the authors have studied
(2.3) with more general approach where A is a nonlinear operator and A(P ) ⊆ P . Their
results are given for the case where cone P is a normal cone. For example, the ”policeman
lemma” is essential in their results (see p.p. 369 of [8]) while the policeman lemma is not
true it the case where P is non normal cone. Furthermore, we do not suppose thatA(P ) ⊆
P where cone P is normal. If A is a linear operator and obeys (2.3) then results in [23] are
given under special assumptions on A and on a cone P (such that X is a sequentially
complete (in the Weierstrass sense)) and in our results we do not need such assumptions.
Thus, our results and results from ([8], [23]) are independent from each other.
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