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Fixed point theorems for multivalued contractions in
Kasahara spaces

ALEXANDRU-DARIUS FILIP

ABSTRACT. In this paper we present some fixed point results for multivalued α-contractions. Our results are
obtained in a more general setting, the so called Kasahara space. Some of them are generalizations of Maia’s type
fixed point result for multivalued α-contractions. As application, a fixed point theorem for integral inclusions is
given.

1. INTRODUCTION AND PRELIMINARIES

The contraction type mappings were defined on complete metric spaces as generaliza-
tions of the well known Banach’s contraction principle. Many fixed point theorems for
contractions were proved. If we carefully examine their proofs by the iteration method,
we can see that in some cases, the metric properties, in particular the axiom of triangle in-
equality, are not essentials. The same remark can be made also for the fixed point results
involving multivalued contractions defined on complete metric spaces.

In this paper we present some fixed point results for multivalued α-contractions. Our
results are obtained in a more general setting, the so called Kasahara space. Some of them
are generalizations of Maia’s type fixed point result for multivalued α-contractions. As
application, a fixed point theorem for integral inclusions is given.

Let us recall some notions and notations which will be used in our results.

Definition 1.1 (M. Fréchet [2]). Let X be a nonempty set. Let

s(X) :=
{

(xn)n∈N | xn ∈ X, n ∈ N
}
.

Let c(X) ⊂ s(X) be a subset of s(X) and Lim : c(X) → X be an operator. By definition,
the triple (X, c(X), Lim) is called an L-space if the following conditions are satisfied:

(i) If xn = x, for all n ∈ N, then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x.
(ii) If (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x, then for all subsequences (xni)i∈N of

(xn)n∈N we have that (xni
)i∈N ∈ c(X) and Lim(xni

)i∈N = x.

By definition, an element (xn)n∈N of c(X) is a convergent sequence and x = Lim(xn)n∈N
is the limit of this sequence. We shall write xn → x as n→∞.

We denote an L-space by (X,→).

Example 1.1 (I. A. Rus [8]). In general, an L-space is any set endowed with a structure
implying a notion of convergence for sequences. For example, Hausdorff topological
spaces, metric spaces, generalized metric spaces in Perov’ sense (i.e. d(x, y) ∈ Rm+ ), gen-
eralized metric spaces in Luxemburg’ sense (i.e. d(x, y) ∈ R+ ∪ {+∞}), K-metric spaces
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(i.e. d(x, y) ∈ K, where K is a cone in an ordered Banach space), gauge spaces, 2-metric
spaces,D-R-spaces, probabilistic metric spaces, syntopogenous spaces, are suchL-spaces.
For more details in this sense, we have the paper of I. A. Rus [8] and the references therein.

Definition 1.2 (I. A. Rus [9]). Let (X,→) be an L-space and d : X × X → R+ be a func-
tional. The triple (X,→, d) is a Kasahara space if and only if we have the following com-
patibility condition between→ and d:

xn ∈ X,
∑
n∈N

d(xn, xn+1) < +∞ ⇒ (xn)n∈N converges in (X,→).

Example 1.2 (The trivial Kasahara space). Let (X, d) be a complete metric space. Let d→
be the convergence structure induced by d on X . Then (X,

d→, d) is a Kasahara space.

Example 1.3 (S. Kasahara [4]). Let X denote the closed interval [0, 1] and→ be the usual
convergence structure on R. Let d : X ×X → R+ be defined by

d(x, y) =

{
|x− y|, if x 6= 0 and y 6= 0

1, otherwise .

Then (X,→, d) is a Kasahara space.

Example 1.4 (I. A. Rus [9]). Let (X, ρ) be a complete quasimetric space, with ρ : X ×X →
R+ a quasimetric. Let d : X × X → R+ be a functional such that there exists c > 0 with
ρ(x, y) ≤ c · d(x, y), for all x, y ∈ X . Then (X,

ρ→, d) is a Kasahara space.

We give next some notions and notations concerning multivalued operators.
Let (X,→, d) be a Kasahara space, where d : X ×X → R+ is a functional. We consider

P (X) = {A ⊂ X | A 6= ∅} and Pcp(X) = {A ∈ P (X) | A is compact}.
We define:
(i) the gap functionalDd : P (X)×P (X)→ R+∪{+∞} byDd(A,B) = inf

a∈A, b∈B
d(a, b),

for all A,B ∈ P (X).
Note that Dd(x,B), where x ∈ X , will be understood as Dd({x}, B).

(ii) the delta functional δd : P (X)×P (X)→ R+∪{+∞} by δd(A,B) = sup
a∈A, b∈B

d(a, b),

for all A,B ∈ P (X).
(iii) the excess functional ed : P (X)×P (X)→ R+∪{+∞} by ed(A,B) = sup

a∈A
Dd(a,B),

for all A,B ∈ P (X).
(iv) the general Pompeiu-Hausdorff functional Hd : P (X)× P (X)→ R+ ∪ {+∞} by

Hd(A,B) = max{ed(A,B), ed(B,A)}, for all A,B ∈ P (X).

Definition 1.3. Let (X,→, d) be a Kasahara space and let x ∈ X . A set A ∈ P (X) is said
to be d-closed in X if for any sequence (xn)n∈N ⊂ A with d(xn, x)→ 0 as n→∞, we have
that x ∈ A.

We define P dcl(X) := {A ∈ P (X) | A is d-closed in X}.

Remark 1.1. Let (X,→, d) be a Kasahara space. Let A ∈ P dcl(X) and x ∈ X . Then
Dd(A, x) = 0⇒ x ∈ A.

Indeed, let x ∈ X such that Dd(A, x) = 0, i.e., inf
a∈A

d(a, x) = 0. Then there exists a

sequence (an)n∈N ⊂ A such that d(an, x) → 0 as n → ∞. Since A is d-closed in X , it
follows that x ∈ A.
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Lemma 1.1 (S. Kasahara [3]). If A,B ∈ P dcl(X) then Hd(A,B) = 0 if and only if A = B.

Let us recall also the following notions:

Let (X,→) be an L-space and F : X → P (X) be a multivalued operator.
An element x ∈ X is called a fixed point for F if x ∈ F (x). For the sake of the simplicity,

we will denote F (x) by Fx. Let Fix(F ) = {x ∈ X | x ∈ Fx} be the set of all fixed points
of F .

LetGraph(F ) = {(x, y) ∈ X×X | y ∈ Fx} be the graph of F . The multivalued operator
F is called closed ifGraph(F ) is a closed subset ofX×X , i.e., if (xn)n∈N, (yn)n∈N ⊂ X and
yn ∈ Fxn, for all n ∈ N with xn → x∗ ∈ X and yn → y∗ ∈ X as n→∞, then y∗ ∈ Fx∗.

A sequence (xn)n∈N ⊂ X is called sequence of successive approximations for F starting
from (x0, x1) ∈ Graph(F ) if and only if xn+1 ∈ Fxn, for all n ∈ N. The set-valued
operator F is called multivalued weakly Picard operator (MWPO) if for each x0 ∈ X
and any x1 ∈ Fx0, there exists a sequence of successive approximations for F starting
from (x0, x1), it is convergent in (X,→) and its limit is a fixed point for F . If, in addition,
Card(Fix(F )) = 1, then F is a multivalued Picard operator (MPO).

In this paper we consider the Kasahara space (X,→, d), where d : X × X → R+ is a
functional satisfying the property that for all x, y ∈ X , d(x, y) = 0⇒ x = y.

2. NADLER’S FIXED POINT THEOREM

The study of fixed point theorems for multivalued mappings has been initiated by J. T.
Markin [5] and S. B. Nadler [6]. The following result, usually referred as Nadler’s fixed
point theorem, extends Banach-Caccioppolli’s contraction principle from single-valued
maps to set-valued contractive maps.

Theorem 2.1. Let (X, d) be a complete metric space and F : X → Pb,cl(X) be a set-valued α-
contraction, i.e., a mapping for which there exists a constantα ∈]0, 1[ such thatHd(F (x), F (y)) ≤
α · d(x, y), for all x, y ∈ X . Then F has at least one fixed point.

In the above result, Pb,cl(X) stands for the set of all bounded and closed subsets of X .
We remark also that Nadler’s fixed point theorem is given in the context of metric

spaces. We adapt this result into the context of Kasahara spaces.
First we prove the following lemma:

Lemma 2.2. Let (X,→, d) be a Kasahara space, where d : X×X → R+ is a functional satisfying
d(x, y) = 0 ⇒ x = y, for all x, y ∈ X . Let A,B ∈ P dcl(X) and a real number q > 1. Then for
every a ∈ A, there exists b ∈ B such that d(a, b) ≤ q ·Hd(A,B).

Proof. If A = B then, by Lemma 1.1 we have Hd(A,B) = 0. Hence d(a, b) = 0 ⇒ a = b.
So, for every a ∈ A, there exists b := a ∈ B such that the conclusion holds.

Now let A,B ∈ P dcl(X) such that A 6= B. By Lemma 1.1 we get that Hd(A,B) > 0.
Supposing contrary: there exists q > 1 and there exists a ∈ A such that for every

b ∈ B, d(a, b) > q · Hd(A,B). By taking the inf
b∈B

in the above inequality, we get that

Hd(A,B) ≥ Dd(a,B) ≥ q ·Hd(A,B). Hence q ≤ 1 which is a contradiction. �

Theorem 2.2. Let (X,→, d) be a Kasahara space, where d : X × X → R+ is a functional
satisfying d(x, y) = 0 ⇒ x = y, for all x, y ∈ X . Let F : X → P dcl(X) be a multivalued
operator. Assume that Graph(F ) is closed in (X,→) and there exists Λ : R+ → [0, 1[ with
lim sup
s→t+

Λ(s) < 1, for all t ∈ R+ such that Hd(Fx, Fy) ≤ Λ(d(x, y)) · d(x, y), for all x, y ∈ X.

Then F is a multivalued weakly Picard operator.
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Proof. Let q > 1. Let x0 ∈ X and x1 ∈ Fx0.
If x0 = x1 then x0 ∈ Fix(F ) and the proof is complete. If x0 6= x1 then by Lemma 2.2,

there exists x2 ∈ Fx1 such that d(x1, x2) ≤ q ·Hd(Fx0, Fx1) ≤ q · Λ(d(x0, x1)) · d(x0, x1).
For x2 ∈ Fx1, we have the following cases:

If x1 = x2 then x1 ∈ Fix(F ) and the proof is complete. If x1 6= x2 then by Lemma 2.2,
there exists x3 ∈ Fx2 such that d(x2, x3) ≤ q ·Hd(Fx1, Fx2) ≤ q ·Λ(d(x1, x2)) · d(x1, x2) ≤
q2 · Λ(d(x1, x2)) · Λ(d(x0, x1)) · d(x0, x1).

By induction, we get that there exists a sequence (xn)n∈N of successive approximations
for F which starts from (x0, x1) ∈ Graph(F ) with xn+1 ∈ Fxn, for all n ∈ N such that

d(xn, xn+1) ≤ qn ·
n−1∏
k=0

Λ(d(xk, xk+1)) · d(x0, x1).

LetM = max
k=0,n−1

{Λ(d(xk, xk+1))} < 1. Then d(xn, xn+1) ≤ (qM)n ·d(x0, x1), for all n ∈ N.

We take q > 1 such that θ := qM < 1 and hence, d(xn, xn+1) ≤ θn ·d(x0, x1), for all n ∈ N.
We have next the following estimations:∑

n∈N
d(xn, xn+1) ≤

∑
n∈N

θn · d(x0, x1) =
1

1− θ
d(x0, x1) < +∞.

Since (X,→, d) is a Kasahara space, we get that the sequence (xn)n∈N is convergent in
(X,→). So, there exists an element x∗ ∈ X such that xn → x∗ as n → ∞. In addition,
since Graph(F ) is closed, we have that x∗ ∈ Fix(F ). �

Remark 2.2. Note that if in the above theorem, Λ(s) = α, for all s ∈ R+, then we get
Nadler’s fixed point theorem for multivalued α-contractions in Kasahara spaces.

Remark 2.3. Due to the context of Kasahara spaces, some Maia type fixed point results,
obtained for multivalued contractions defined on a nonempty set X endowed with two
metrics, can be generalized. Usually, in these results, the set X is equipped with a com-
plete metric ρ and another metric d used in the contractive condition satisfied by a sin-
glevalued or multivalued operator. In the following result, we can see that d must not
necessarily be a metric.

Corollary 2.1. Let X be a nonempty set and ρ : X ×X → R+ be a complete metric on X . Let
d : X ×X → R+ be a functional with the property that for all x, y ∈ X , d(x, y) = 0 ⇒ x = y.
Let F : X → P dcl(X) be a multivalued operator. We assume that:

(i) there exists α ∈ [0, 1[ such that Hd(Fx, Fy) ≤ α · d(x, y), for all x, y ∈ X ;
(ii) Graph(F ) is closed in (X,

ρ→);
(iii) there exists c > 0 such that ρ(x, y) ≤ c · d(x, y), for all x, y ∈ X .

Then Fix(F ) 6= ∅ and there exists θ ∈ [0, 1[ such that

ρ(xn, x
∗) ≤ c θn

1− θ
d(x0, x1), for all n ∈ N,(2.1)

where x∗ ∈ Fix(F ) and (xn)n∈N is the sequence of successive approximations for F starting from
(x0, x1) ∈ Graph(F ).

Proof. By (i) and by following the proof of Theorem 2.2 with Λ = α, there exists a sequence
(xn)n∈N ⊂ X of successive approximations for F starting from (x0, x1) ∈ Graph(F ) such
that xn+1 ∈ Fxn and d(xn, xn+1) ≤ θn · d(x0, x1), for all n ∈ N. By (iii), there exists c > 0
such that ρ(xn, xn+1) ≤ c · d(xn, xn+1) ≤ c · θn · d(x0, x1), for all n ∈ N.
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Let p ∈ N, p > 0. Since ρ is a metric, we have that

ρ(xn, xn+p) ≤ ρ(xn, xn+1) + ρ(xn+1, xn+2) + . . .+ ρ(xn+p−1, xn+p)

≤ c · θn · d(x0, x1) + c · θn+1 · d(x0, x1) + . . .+ c · θn+p−1 · d(x0, x1).

So, the following estimation holds

ρ(xn, xn+p) ≤ c · θn ·
1− θp

1− θ
· d(x0, x1), for all n ∈ N and all p ∈ N with p > 0.(2.2)

By letting n→∞, we get that ρ(xn, xn+p)→ 0, so (xn)n∈N is a Cauchy sequence in the
complete metric space (X, ρ). Therefore (xn)n∈N is convergent in (X, ρ), so there exists
x∗ ∈ X such that xn

ρ→ x∗. By (ii), it follows that x∗ ∈ Fix(F ). By letting p→∞ in (2.2),
we get the estimation (2.1). �

Remark 2.4. Corollary 2.1 generalizes the Maia type fixed point result for multivalued
contractions in complete metric spaces, given by A. Petruşel and I.A. Rus [7] (Theorem
2.1).

Corollary 2.2. Let X be a nonempty set and ρ : X ×X → R+ be a complete metric on X . Let
d : X ×X → R+ be a functional with the property that for all x, y ∈ X , d(x, y) = 0 ⇒ x = y.
Let F : X → P dcl(X) be a multivalued operator. We assume that:

(i) there exists α ∈ [0, 1[ such that Hd(Fx, Fy) ≤ α · d(x, y), for all x, y ∈ X ;
(ii) Graph(F ) is closed in (X,

ρ→);
(iii) there exists c > 0 such that δρ(Fx, Fy) ≤ c · d(x, y), for all x, y ∈ X .

Then Fix(F ) 6= ∅ and there exists θ ∈ [0, 1[ such that ρ(xn, x
∗) ≤ c θ

n−1

1−θ d(x0, x1), for all n ∈
N, where x∗ ∈ Fix(F ) and (xn)n∈N is the sequence of successive approximations for F starting
from (x0, x1) ∈ Graph(F ).

Proof. By (i) and by following the proof of Theorem 2.2 with Λ = α, there exists a sequence
(xn)n∈N ⊂ X of successive approximations for F starting from (x0, x1) ∈ Graph(F ) such
that xn ∈ Fxn−1 and d(xn−1, xn) ≤ θn−1 · d(x0, x1), for all n ∈ N, n ≥ 1. By (iii), we have
ρ(xn, xn+1) ≤ δρ(Fxn−1, Fxn) ≤ c · d(xn−1, xn) ≤ c · θn−1d(x0, x1), for all n ∈ N, n ≥ 1.

Let p ∈ N, p > 0.

Then ρ(xn, xn+p) ≤
p−1∑
i=0

ρ(xn+i, xn+i+1) ≤
p−1∑
i=0

c · θn+i−1d(x0, x1) ≤ c θ
n−1

1− θ
d(x0, x1).

By letting n → ∞, we get ρ(xn, xn+p) → 0. So (xn)n∈N is a Cauchy sequence in the
complete metric space (X, ρ). Therefore, there exists x∗ ∈ X such that xn → x∗ as n→∞.
By (ii), it follows that x∗ ∈ Fix(F ).

On the other hand, by letting p→∞, we get the desired estimation. �

3. INTEGRAL INCLUSIONS

In this section we present an application to Corollary 2.2, concerning the existence of
fixed points for a Fredholm-type integral inclusion.

Let C([a, b],Rn) =
{
x : [a, b]→ Rn | x is a continuous function on [a, b]

}
endowed with

the following metrics
• ρ : C[a, b]× C[a, b]→ R+, ρ(x, y) = max

t∈[a,b]
|x(t)− y(t)|, for all x, y ∈ C[a, b];

• d : C[a, b]× C[a, b]→ R+, d(x, y) =
( ∫ b

a
|x(t)− y(t)|2dt

) 1
2 , for all x, y ∈ C[a, b].
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Let x0 ∈ C([a, b],Rn) and r > 0.
We denote by Bρ(x0, r) =

{
x ∈ C([a, b],Rn) | ρ(x0, x) < r

}
the open ball centered in x0

with radius r.
Let Pcp,cv(Rn) := {Y ∈ P (Rn) | Y is compact and convex}.

Theorem 3.3. We consider the Fredholm-type integral inclusion

x(t) ∈
∫ b

a

K(t, s, x(s))ds+ g(t), for all t ∈ [a, b].(3.3)

Assume that:
(i) K : [a, b]× [a, b]× Rn → Pcp,cv(Rn) is lower semi-continuous;

(ii) g ∈ C([a, b],Rn);
(iii) for all ε > 0 and t ∈ [a.b], there exists some η(t, ε) > 0 such that for all u, v ∈ Rn and all

s ∈ [a, b], |u− v|Rn < η(t, ε) ⇒ Hρ(K(t, s, u),K(t, s, v)) < ε;
(iv) H|·|Rn (K(t, s, u),K(t, s, v)) ≤ l(t, s) · |u − v|Rn , for all t, s ∈ [a, b], u, v ∈ Rn, where

l ∈ C[a, b] and
∫ b
a

∫ b
a
l2(t, s)ds dt < 1.

Then the integral inclusion (3.3) has a solution in C[a, b].

Proof. Let A : C[a, b]→ P (C[a, b]) defined by

Ax =

{
v ∈ C[a, b]

∣∣∣∣ v(t) ∈
∫ b

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b]

}
.

We prove successively that:
(a) Ax 6= ∅, for all x ∈ C([a, b],Rn);
(b) Ax ∈ P dcl(C[a, b]), for all x ∈ C([a, b],Rn);
(c) Graph(A) is closed in (C[a, b],

ρ→);
(d) there exists c > 0 such that for each x, y ∈ C([a, b],Rn) and each u ∈ Ax there

exists v ∈ Ay such that ρ(u, v) ≤ c · d(x, y);
(e) there exists α ∈ [0, 1[ such that Hd(Ax,Ay) ≤ α · d(x, y), for all x, y ∈ C([a, b],Rn).

Then by Corollary 2.2 it follows that there exists x∗ ∈ Ax∗, i.e., the integral inclusion (3.3)
has a solution in C[a, b].

(a). Let x ∈ C([a, b],Rn). The multivalued operator Kx defined by Kx(t, s) = K(t, s, x(s))
being lower semi-continuous, it has a continuous selection, say k(t, s) ∈ Kx(t, s), for all
t, s ∈ [a, b]. Let v(t) =

∫ b
a
k(t, s)ds + g(t) ∈

∫ b
a
K(t, s, x(s))ds + g(t). It is clear that v ∈ Ax

and thus Ax 6= ∅.
(b). Let (xn)n∈N ⊂ Ax such that d(xn, x̃)→ 0 as n→∞. We show that x̃ ∈ Ax.
Since (xn)n∈N ⊂ (C[a, b],Rn) and (C[a, b],Rn) is a closed space with respect to d, it follows
that x̃ ∈ (C[a, b],Rn). On the other hand, for all t ∈ [a, b], xn(t) ∈

∫ b
a
K(t, s, x(s))ds+ g(t),

and since the set
∫ b
a
K(t, s, x(s))ds is compact and d(xn, x̃) → 0 as n → ∞, it follows that

x̃(t) ∈
∫ b
a
K(t, s, x(s))ds+ g(t). So x̃ ∈ Ax.

(c). Suppose that (xn)n∈N, (yn)n∈N ⊂ C([a, b],Rn) such that xn
ρ→ x̃ ∈ C([a, b],Rn), yn

ρ→
ỹ ∈ C([a, b],Rn) as n→∞ and yn ∈ Axn, for all n ∈ N. We show that ỹ ∈ Ax̃.

Fix t ∈ [a, b] and let m ∈ Z+ be arbitrary. Since xn
ρ→ x̃ as n → ∞, there exists some

nm ∈ N such that for all n ≥ nm, ρ(xn, x̃) < η(t, 1
m ). It follows that |xn(t) − x̃(t)|Rn ≤

max
t∈[a,b]

|xn(t)− x̃(t)|Rn < η(t, 1
m ). By (iii), we get Hρ(K(t, s, xn(s)),K(t, s, x̃(s))) < 1

m , so

K(t, s, xn(s)) ⊆ Bρ(K(t, s, x̃(s)), 1
m ), for all n ≥ nm.
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Since yn ∈ Axn we have that yn(t) ∈
∫ b
a
K(t, s, xn(s))ds + g(t) and therefore yn(t) =∫ b

a
Kn(t, s)ds + g(t), where Kn(t, s) ∈ K(t, s, xn(s)), for all s ∈ [a, b]. It follows that

Kn(t, s) ∈ Bρ(K(t, s, x̃(s)), 1
m ) for all s ∈ [a, b].

Now, we consider the multivalued function G(s) = Bρ(Kn(t, s), 1
m )∩K(t, s, x̃(s)) for t

fixed. SinceK(t, s, x̃(s)) is closed and convex valued for t fixed, it follows thatK(t, s, x̃(s))
is Carathéodory in s and x̃(s), i.e., measurable in x̃(s) and continuous in s. By Theorem
8.2.8. in [1], we get thatK(t, s, x̃(s)) is measurable in s. AlsoBρ(Kn(t, s), 1

m ) is measurable
with closed images. Hence G(s) is measurable with closed images. By Theorem 8.1.3
in [1], there exists a measurable selection K(m)(t, s) ∈ G(s) (measurable in s) such that
|Kn(t, s)−K(m)(t, s)| < 1

m , for all s ∈ [a, b].
We have the following estimations

∣∣ỹ(t) −
( ∫ b

a
K(m)(t, s)ds + g(t)

)∣∣ ≤ |ỹ(t) − yn(t)| +∣∣yn(t)−
( ∫ b

a
K(m)(t, s)ds+ g(t)

)∣∣= |ỹ(t)− yn(t)|+
∣∣ ∫ b
a

(
Kn(t, s)−K(m)(t, s)

)
ds
∣∣ ≤ |ỹ(t)−

yn(t)|+
∫ b
a

∣∣Kn(t, s)−K(m)(t, s)
∣∣ds ≤ ρ(yn, ỹ) + b−a

m , for all n ≥ nm.
Now, let ε > 0 be arbitrary and choose m such that b−a

m < ε
2 and choose ñ ≥ nm such

that ρ(yn, ỹ) < ε
2 for all n > ñ. Then, if n > ñ we have

∣∣ỹ(t)−
( ∫ b

a
K(m)(t, s)ds+ g(t)

)∣∣ < ε

for t fixed. Since K is convex valued and integrably bounded,
∫ b
a
K(t, s, x̃(s))ds + g(t) is

closed (by Theorem 8.6.4. of [1]). Since ỹ(t) is arbitrary close to the set
∫ b
a
K(t, s, x̃(s))ds+

g(t), it must be a limit point and hence (since the set is closed), ỹ(t) ∈
∫ b
a
K(t, s, x̃(s))ds+

g(t). Since t ∈ [a, b] was arbitrary, this shows that ỹ ∈ Ax̃.

(d). Let x, y ∈ C([a, b],Rn) and u ∈ Ax. Then u(t) ∈
∫ b
a
K(t, s, x(s))ds + g(t), for all t ∈

[a, b]. It follows that there exists a continuous selection k1(t, s) ∈ Kx(t, s) = K(t, s, x(s))

such that u(t) =
∫ b
a
k1(t, s)ds+ g(t), for all t ∈ [a, b].

By (iv) it follows thatHRn(K(t, s, x(s)),K(t, s, y(s))) ≤ l(t, s)·|x(s)−y(s)|Rn and hence,
there exists a continuous selection v ∈ Ky(t, s) = K(t, s, y(s)) such that |k1(t, s) − v|Rn ≤
l(t, s) · |x(s)− y(s)|Rn .

LetU : [a, b]×[a, b]→ P (Rn), U(t, s) = {v ∈ Rn | |k1(t, s)−v|Rn ≤ l(t, s)·|x(s)−y(s)|Rn}.
Since the multivalued operator V (t, s) = U(t, s) ∩K(t, s, y(s)) is lower semi-continuous,
there exists k2(t, s) ∈ Ky(t, s) = K(t, s, y(s)) a continuous selection for V and

|k1(t, s)− k2(t, s)|Rn ≤ l(t, s) · |x(s)− y(s)|Rn , for all t, s ∈ [a, b].(3.4)

Let v(t) =
∫ b
a
k2(t, s)ds+ g(t), for all t ∈ [a, b].

By (3.4), we have the following estimations: |u(t)−v(t)|Rn =
∫ b
a
|k1(t, s)−k2(t, s)|Rnds ≤∫ b

a
l(t, s) · |x(s)− y(s)|Rnds

Hölder’s
inequality
≤

( ∫ b
a
l2(t, s)ds

) 1
2
( ∫ b

a
|x(s)− y(s)|2Rnds

) 1
2 = α(t) · d(x, y),

where α(t) :=
( ∫ b

a
l2(t, s)ds

) 1
2 , for all t ∈ [a, b]. In the above estimations, we take next

max
t∈[a,b]

and we get that ρ(u, v) ≤ c · d(x, y), where c := max
t∈[a,b]

α(t), for all t ∈ [a, b].

(e). We consider Hölder’s inequality obtained previously:

|u(t)−v(t)|Rn ≤
( ∫ b

a
l2(t, s)ds

) 1
2
( ∫ b

a
|x(s)−y(s)|2Rnds

) 1
2 = α(t) ·d(x, y), for all t ∈ [a, b].

We have next d(u, v) =
( ∫ b

a
|u(t)− v(t)|2Rndt

) 1
2 ≤

( ∫ b
a
α2(t) ·d2(x, y)dt

) 1
2 =

( ∫ b
a
α2(t)dt

) 1
2 ·

d(x, y). So, there exists α :=
( ∫ b

a
α2(t)dt

) 1
2 < 1, such that d(u, v) ≤ αd(x, y). Similarly, by

interchanging the roles of x and y, we get that d(v, u) ≤ αd(y, x), for u ∈ Ax and v ∈ Ay.
It follows that Hd(Ax,Ay) ≤ α · d(x, y), for all x, y ∈ C([a, b],Rn). �
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Example 3.5. In the above result, let us consider n = 1, [a, b] = [12 , 1] andK : [ 12 , 1]×[ 12 , 1]×
R→ Pcp,cv(R) be defined by K(t, s, u) := t · s · [u, u+ 1], for all t, s ∈ [ 12 , 1] and all u ∈ R.

It is clear that K is continuous on [ 12 , 1]× [ 12 , 1]×R, so K is also lower semi-continuous
on its definition domain. Hence, the assumption (i) of Theorem 3.3 is satisfied.

Let ε > 0 and t ∈ [ 12 , 1]. There exists η(t, ε) := ε
t+1 > 0 such that if |u − v| < η(t, ε) for

all u, v ∈ R, we have

Hρ(K(t, s, u),K(t, s, v)) = Hρ(ts[u, u+ 1], ts[v, v + 1]) =

= ts ·max{|v − u|, |(v + 1)− (u+ 1)|} = ts|u− v| < ts
ε

t+ 1
≤ t

t+ 1
ε < ε,

for all s ∈ [ 12 , 1], so the assumption (iii) of Theorem 3.3 is satisfied.
Finally, let t, s ∈ [ 12 , 1] and u, v ∈ R. Consider the continuous function l : [ 12 , 1]×[ 12 , 1]→

R, be defined by l(t, s) = ts + 1
t+1 , for all t, s ∈ [ 12 , 1]. Then HR(K(t, s, u),K(t, s, v)) =

ts|u − v| ≤ (ts + 1
t+1 )|u − v| = l(t, s)|u − v|, for all t, s ∈ [ 12 , 1] and u, v ∈ R. In addition,

it can be shown that
∫ 1

1
2

∫ 1
1
2
l2(t, s) dt ds < 1, so the assumption (iv) of Theorem 3.3 is

satisfied.
Applying Theorem 3.3 it follows that the Fredholm-type integral inclusion

x(t) ∈
∫ 1

1
2

t · s · [x(s), x(s) + 1]ds+ g(t)

for all t ∈ [ 12 , 1] and any function g ∈ C([ 12 , 1],R), has a solution in C[ 12 , 1].
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