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Some examples of division symbol algebras of degree
3 and 5

CRISTINA FLAUT and DIANA SAVIN

ABSTRACT. In this paper we provide an algorithm to compute the product between two elements in a symbol
algebra of degree n and we find an octonion algebra (in general, without division) in a symbol algebra of degree
three. Moreover, using MAGMA software, we will provide some examples of division symbol algebras of degree
3 and of degree 5.

1. INTRODUCTION

Let K be a field which contains a primitive n-th root of unity, with n an arbitrary posi-
tive integer such that char(K) does not divide n. Let K* = K\{0}, a,b € K* and let S be
an algebra over K generated by the elements = and y, where

(1.1) e =a,y" = byr = Lry
and ¢ is a primitive root of order n of unity. This algebra is called a symbol algebra (also

known as a power norm residue algebra) and it is denoted by (?Tlg)) .In[17],J. Milnor calls

this algebra “the symbol algebra” because of its connection with the K-theory and with
the Steinberg symbol. Symbol algebras generalize the quaternion algebras (for n = 2).
Quaternion algebras and symbol algebras are important not only for the theory of associa-
tive algebras. They have many applications, some of them being studied by the authors
of this article: in algebra and number theory ([16], [18], [19], [22]), in representation theory
([6] ) or in analysis and mechanics ([11] ).

In this paper, we will study the symbol algebras from two points of view: from the
theory of associative algebras and from number theory.

The study of symbol algebras of degree n involves very complicated calculations and,
usually, can be hard to multiply two elements or find examples for some notions. In this
paper, we will provide an easy algorithm which allows us quickly compute the product
of two elements in a symbol algebra.

Since for n = 2 the quaternion algebras are symbol algebras, a natural question is: for
n = 3,what is the connection between the octonion algebras, algebras of dimension 8,
and symbol algebras of degree 3. An answer can be that we always can find an octonion
non-division algebra in a symbol algebra of degree three. Starting from this idea and from
results obtained in the paper [5] , in which, using the associated trace form for a symbol
algebra, the author studied some properties of such objects and gave some conditions for
a symbol algebra to be with division or not, only for n = 4k + 2 (and not for n € {3,5}),
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we intend to find examples of division symbol algebras of degree 3 and degree 5. Since
such an example is not easy to provide, we will use MAGMA software.

In the following, we will recall some general properties and definitions.

Let A be a finite dimensional unitary algebra over a field K with a scalar involution
A — A a — @, i.e. alinear map satisfying the following relations: ab = ba, a = a, and
a+a,aa € K -1foralla,b € A.-The element @ is called the conjugate of the element a, the
linear form ¢ : A — K, t(a) = a + @ and the quadratic formn : A — K, n(a) = aa are
called the trace and the norm of the element a.

Let v € K be a fixed non-zero element. We define the following algebra multiplication
on the vector space AdA: (al, ag) (bl, bg) = ((llbl + ’}/Eag, (ZQE + bgal) .
We obtain an algebra structure over A® A, denoted by (A4, v) and called the algebra obtained
from A by the Cayley-Dickson process. We have dim (A, v) = 2dim A.

Letz € (4,7), z = (a1,a2). Themap ~: (4,v) = (4,7) , © = & = (a1,-az2),
is a scalar involution of the algebra (A, v), extending the involution ~ of the algebra A.

If we take A = K and apply this process ¢ times, ¢ > 1, we obtain an algebra over
K, A= (S22).

By induction in this algebra, the set {1,ea,...,e,},n = 2!, generates a basis with the
properties: € = v;1, v; € K,7v; #0, i =2,...,n and
€ij = —e€j€; = ,Bijek, Bij € K, ﬁi]‘ 75 0,17 75 3y, = 2,..m, ,Bij and ey, being uniquely
determined by e; and e;. For n = 2, we obtain the quaternion algebra, for n = 3, we obtain
the octonion algebra, etc.

For details about the above process, the reader is referred to [20] or [21].

If an algebra A is finite-dimensional, then it is a division algebra if and only if A does
not contain zero divisors. (See [20])

A central simple algebra A over a field K is called split by L (where L is a field contain-
ing K), if A®g L is a matrix algebra over L. We also can say that its class is in the Brauer
group Br(K). (see [16] ) L is called a splitting field for A.

Theorem 1.1. ([7]) LetK be a field such that { € K, £ = 1, a primitive root, and let o, 8 €
K*. Then the following statements are equivalent:

i) The cyclic algebra A = (?(55) is split.

ii) The element 3 is a norm from the extension K C K ({/«).

Theorem 1.2. ([9]) Let I be a natural number, | > 3 and & be a primitive root of the unity of I-
order. If p is a prime natural number, | is not divisible with p and f is the smallest positive integer
such that p? = 1 mod 1, then we have pZ[¢] = P, Ps....P,, where r = ﬂf”, o is the Euler’s
function and P;, j = 1, ..., r are different prime ideals in the ring Z[€].

Theorem 1.3. ([14]) Let £ be a primitive root of the unity of l—order, where | is a prime natural
number and let A be the ring of integers of the Kummer field Q(&,\/it) . A prime ideal P in the
ring Z[€] is in A in one of the situations:

i) It is equal with the I—power of a prime ideal from A, if the |—power character (%), = 0;

ii) It is a prime ideal in A, if (%), = a rot of order | of unity, different from 1.
iii) It decomposes in | different prime ideals from A, if (&), = 1.
Theorem 1.4. ([16]) Let K be a finite field and let Br (K) be the Brauer group of K. Then
Br(K)=0.

Theorem 1.5. ([1]) Let L/K be an extension of finite fields. Then the norm function N :
L* — K* is surjective .
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Remark 1.1. ([13] ) Let K be a field of characteristic # p, p prime, and let £€ K be a primi-
tive root of unity of order p. For a,be K*, the symbol algebra of degree p denoted by A =

(;—2) is either split or a division algebra. From here, in whole this paper, we will use the

notion “no-division” instead of “split”, for all symbol algebras of degree n, with n a prime
number.

2. MULTIPLICATION TABLE FOR SYMBOL ALGEBRAS

In [2], the author described how we can multiply the basis vectors in all algebras ob-
tained by the Cayley-Dickson process. Since the quaternion algebra is an algebra obtained
by this process and in the same time is a particular case of symbol algebras, we use some
ideas given in this paper for multiplication of two symbol elements.

Case n = 3.
Let S be a symbol algebra of degree three with the basis
(2.1) B = {1,z,2%,y,9% wy, 2y’ a®y, 2y}

Remark 2.2. The elements from the basis B will be denoted such as follows:

eo = Lier = y,ea = Y e3 = T,e4 = TY, 05 = {Cy?aeﬁ =226 = ‘x?y>€8 = 2%y> If we
use the lexicographic order for the monomials z’y?, we have that 2’y? > 2Py? if and only
ifi > pori = pandj > q. Therefore the elements from the basis B are lexicographic
ordered.

Remark 2.3. If wewrite4 =1-34+1=0113 — es = 2'y};5=1-3+2=0125 = e5 = x'y?
6=2-3=0203 e =2%T7=2-3+1=0213 = e; =22y’

8 =2-3+2=0223 - eg = v*y*, where 0ijs = i -3+ j = k,4,j € {1,2} is the ternary
decomposition of the natural number k € {4,5,6,7,8}, it results that e, = z'y’,with
k =134 j = 0ij3. If we compute two elements of the basis B, we obtain

(22) eiej = (Z,j) €i0j7

where « (i, ) is a function « : Z3 x Z3 — K and i o j represents the “sum” of i and j in the

group Z3 (here i and j are in the ternary forms!). Indeed, this last sentence results from
(1.1) . Therefore eres = a (7,8) es, since 0213 4 0223 = 0103 — 3.

General case
Using the above notations, a basis in a symbol algebra of degree n is of the form
(2.3) B={z'y /0<i<n,0<j<n}

The elements from the basis B are lexicographic ordered, as in Remark 2.2. We denote
an element from the basis B, given by (2.3) with e, = 2%y?,0 < k < n, such that k =
0ijn, = i -n + j, where 0ij, is the n—ary decomposition of the natural number k. Then,
using relation (1) , if we compute two elements of the basis B, we obtain

(24) €6 =« (’L,j) €ioj;

where « (7, j) is a function « : Z! x Z? — K and i o j represents the “sum” of ¢ and j in
the group Z7 (with ¢ and j are in the n—nary forms!). If e; = z’'y*> and e; = 271372, then
we have

(2.5) €;e; = sy piiydz gy g a0 5 hyy..x yz...x y?

i2 J1 i2 J1
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and y will commute with x from j; times. Since we do this from i, times, we obtain the
below formula for the function

§i2j1, if 71 +ji<nandis+js <n

E2iig, ifi; + 751 >nandis +jo <n

E2hp ifiy + 5 <nandip +jo>n

§i2j1ab,if 21 +]1 >n and ig +j2 >n

(2.6) a(i,j) :{

The algorithm

Input: n,e;, ej,il,ig,jl,jg

Step 1. Find n—ary decomposition i,, and j, for the numbers i and j.
Step 2. Compute i, o j, in the group Zj,.

Step 3. Compute « (4, j) using formula (2.6).

Output: e;e;.

3. OCTONION ALGEBRA IN A SYMBOL ALGEBRA OF DEGREE THREE

In the following, we will prove that in all symbol algebra of degree three we can find
an octonion algebra without division.

Let S be an associative algebra of degree three. For z € S, let P (X, z) be the character-
istic polynomial for the element z

(3.7) PX,2)=X3—7(2) X?+7(2) X —n(2)-1,

where 7 is the linear form, 7 is the quadratic form and # the cubic form.

Proposition 3.1. ([4], Lemma) With the above notations, denoting by
2* =22 —7(2) 2+ 7 (2) - 1, for an associative algebra of degree three, we have:
r(z)=71(z%).

ii) 2** =n(z) 2.

An associative finite dimensional K-algebra A is semisimple if it can be expressed as a
finite and unique direct sum of simple algebras. An associative K -algebra A is separable if
for every field extension K C L the algebra A ®x L is semisimple. We have that any cen-
tral simple algebra is a separable algebra over its center (see [8] , p.463). A Hurwitz algebra
A is a unitary (not necessarily associative) algebra over K together with a nondegenerate
quadratic form n which satisfies n (zy) = n(z)n (y),z,y € A.

Theorem 3.6. ([10], Theorem 6.2.3) Let A be a finite-dimensional algebra with unity over the
field K and ¢ : A — K be a nondegenerate quadratic form such that ¢ (zy) = ¢ (z) ¢ (y) for all
x,y € A.Then the algebra A has dimension 1,2,4 or 8. If dim A € {4.8}, A is a quaternion or an
octonion algebra.

Let S = (;%) be a symbol algebra of degree n. For n = 3, the obtained symbol algebra

has dimension 9 over the field K and, since an octonion algebra generalizes the quaternion
algebra and has dimension 8 less than 9, we ask if we can find a relation between a symbol
algebra of degree three and an octonion algebra.

Proposition 3.2. ([4], Theorem) If A is an associative algebra of degree three over a field K
containing the cubic root of the unity, £, then, using notations from Proposition 3.1, the quadratic
form 7 permits compositions, m (zow) = w(z)w(w),on A ={u € A/ 7 (u) = 0} relative to

the product z o w = 2w — 2wz — @7’ (zw) - 1, z,w € A.
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If Ais separable over K, therefore the quadratic form  is nondegenerate and we can find a new
product ”<7” on (A, o) such that (A, v) is @ Hurwitz algebra.

Since S is separable over K it results that 7 is a nondegenerate quadratic form on S and
it is also nondegenerate on .S, then there is an element u € S such that 7 (u) # 0. Using
some ideas given in [12] , let v = #i)

Proposition 3.3. The linear maps RS : S — S, RS (z) = xovand LS : S — S, LS (x) =z o
are bijective.

Proof. Let RS : S — S, RS (x) = x o v. Since 7 (RS (z)) = 7 (zov) = 7 (z) 7 (v) = 7 (x),
if RS (z) = 0 it results that 7 (z) = 0, Using that 7 is nondegenerate, we obtain = = 0,
therefore R; is bijective. O

From the above proposition, on S , we define a new multiplication
zvw= (R (2) o (LY (w)),w,z € 5.

We have that v o v is the unity element and 7 (z v w) = 7 (2) 7 (w). Indeed, it results
2V (vow) = (Ry™ (2)) o (Ly™! (vow)) = (Ry™ (2)) o LTTH (L] (v)) =
= (Ry™'(2)ov =Ry (R (2)) =2=(vov) v zand
m(zvw) = (B! (2) o (L5H (w)) = m (RG™H (2)) m (LS (w)) =
= 7(2)m(w), since 7 (2) = m (R, (R (2))) = 7 (RS (2)). Therefore the algebra
(§ , v) is a Hurwitz algebra of dimension 8 and, from Theorem 3.6, we obtain that (§ , v)
is an octonion algebra with the norm 7. An octonion algebra A with the norm = is a di-
vision algebra if 7 () = 0 implies « = 0, for € A. This algebra, in general, is a not a
division algebra since. Indeed, if we can find an element z € S such that 7 (z*) = 0, using
Proposition 3.1, it results 0 = 7(n(z)z) = 7((«*)*) = 7 (z*), for the element x € S.
Example of such an element & € S with 7 (2*) = 0 can be found in [4] , Example.

From the above, we proved the following theorem:

Theorem 3.7. Let S = (;‘(%) be a symbol algebra of degree 3. On the vector space S, we define

the following products: z o w = zw — 2wz — %T (zw) - 1,2,w € S and
27 w= (RS (2)) o (L (w)),z,w € S. Therefore (5, v) is an octonion algebra, in general
without division.

Since always we can find an octonion algebra, in general without division, in a symbol
algebra of degree three, a natural question appears: if we can find some conditions which
can determine when a symbol algebra of degree three is with division or not, or, more
simple, if we can find examples of division symbol algebras of degree three. Such as
conditions was given in [5] for symbol algebras of degrees n = 4k + 2 (but not for n = 3
or n = 5), in which the author found some trace form criteria to determine if a symbol
algebra is with division. In the mentioned paper, the author don’t provide examples, as
will do in the next section.

4. EXAMPLES OF DIVISION SYMBOL ALGEBRAS OF DEGREE 3 AND 5

In this section, we determine certain class of non-division symbol algebras using The-
orem 1.1 and some properties of ramification theory in algebraic number fields, for exam-
ple the decomposition of a prime ideal in Z in the ring of integers of a cyclotomic field or
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the decomposition of a prime ideal in the ring Z [{] in the ring of integers of a Kummer
field (see Theorem 1.2. and Theorem 1.3.). We also provide examples of division symbol
algebras of degree 3 and 5.

Proposition 4.4. Let € be a primitive root of order 3 of unity and let K = Q (¢) be the cyclotomic
field. Let o € K*, p be a prime rational integers, p # 3 and let L = K ({/a) be the Kummer
field such that o is a cubic residue modulo p. Let hy, be the class number of L. Then, the symbol

hr ..
algebras A = (“lg . ) are non-division.

Proof. Since p is a prime integer, p # 3, it results p = 1 (mod 3) or p = 2 (mod 3).

Case 1: p = 2 (mod 3).

We know that the ring of integers of K is Z [¢] and it is a principal ring. According to The-
orem 1.2 it results that p is inert in the ring Z [¢] . If we denote with Oy, the ring of integers
of the Kummer field L and knowing that the cubic residual symbol is (%) , = 1, if we
apply Theorem 1.3, we get pO;, = P, P>P3, where Py, P>, P3 are conjugate prime ideals
from Oy. We obtain that (pO,)"* = Pl Pt Pl Therefore, there exists a principal ideal
I in the ring Oy, such that (pO )" =Ny /i (I) . It results that there exists z€ Op, such that
p"t = Nyp K (z) . Applying Theorem 1.1 and Remark 1.1, we get that the symbol algebras

A= (“}gh: ) are non-division.
Case 2: p = 1 (mod 3).
Applying Theorem 1.2, it results that pZ [¢] = p1Z [¢] p2Z €] , where p1,ps are prime ele-

ments from Z [e] .

Since o is a cubic residue modulo p, we obtain that the cubic residual symbols are (p%) .=
(%) s = 1. Applying Theorem 1.3, it results that pOr=p1Op2Or=Pi1 P12 P13 P21 P2 Po3,
where Py; and P»;, i = 1, 3 are conjugate prime ideals from O,. We obtain that

(pOL)hL:(PHPgl)hL (P12P22)hL (P13P23)hL . From this, as in Case 1, we obtain that the

symbol algebras A = (a}’(’h: ) are non-division. O

Corollary 4.1. Let q be an odd prime positive integer and £ be a primitive root of order q of unity
and let K = Q (§) be the cyclotomic field. Let o € K*, p a prime rational integers, p # 3 and let
L = K (¥/«) be the Kummer field such that « is a q power residue modulo p. Let hy, be the class

number of L. Then, the symbol algebras A = (‘“’hL ) are non-division.

K.

Proof. The proof is similar with the proof of Proposition 4.4. O

In the following, we give some examples of division symbol algebras. Using the com-
puter algebra system MAGMA ([15] , [3] ), we found some examples of division symbol
algebras of degree 3 and of degree 5.

In the Example 4.1, we declare (in input) the cyclotomic field E = Q (¢) , where €3 = 1,
€ # 1 and the Kummer field K = Q (\?ﬁ , e) . With a simple calculation in MAGMA, we
obtain that the class number of the Kummer field K is equal with 3. In output, with the
procedure NormEquation(K, 11+ a) we test if 11 + € is or not a norm of an element from
the Kummer field K. The answer in negative and applying Theorem 1.1, we obtain that

the algebra (T@%g :) is a non-split symbol algebra, therefore it is a division algebra of de-

gree 3. With the same procedure, for the element 112 (NormEquation(K, 11%)) we obtain
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that the algebra (Q(e) E) is a split (i.e non-division) symbol algebra of degree 3, confirm-

ing our result from Proposition 4.4.
In Examples 4.1 and 4.2 we also give another exemples of division symbol algebras or
non-division symbol algebras of degree 3 or 5.

Example 4.1. Q:=Rationals(); E:=CyclotomicField(3); a:=RootOfUnity(3); a;

Et < t >:=PolynomialRing(E); E; f:=t> — 7; K < b >:=NumberField(f); K; b3;
NormEquation(K,11); NormEquation(K,11+a);NormEquation(K,1 13);
NormEquation(K,(11 + a)3); NormEquation(K,5); NormEquation(K,5+a);
NormEquation(K,53); NormEquation(K,(5 + a)?);

Evaluate zetas; Cyclotomic Field of order 3 and degree 2

Number Field with defining polynomial 3 — 7 over E

7 false; false

true [—11 * zetas — 11] ; true [10 * zetas — 1] false; false

true [5 * zetas] ; true [zetas + 5]

Example 4.2. Q:=Rationals(); F:=CyclotomicField(5); a:=RootOfUnity(5); a;

Ft < t >:=PolynomialRing(F); F; f := t°> — 13; K < b >:=NumberField(f); K; b*;
NormEgquation(K,11); NormEquation(K,11+a);

Evaluate zetas

Cyclotomic Field of order 5 and degree 4

Number Field with defining polynomial t> — 13 over F

13 false; false

From the above examples, using Theorem 1.1 and Remark 1.1, we obtain that the sym-

bol algebras ((@7(3)16) , (T@E;“ :) , (Q&ie) , (6;(5« J)’Z) are division symbol algebras of degree

3 and ( 13515) (%) are division symbol algebras of degree 5.

In the following we determine some split symbol algebras.

Proposition 4.5. Let n > 2 be an arbitrary positive integer and let £ be a primitive root of order
n of unity. Let K be a finite field whose char(K') does not divide n, a,b € K* and let S be the

symbol algebra S = ( RO 5) Then S is a split algebra.

Proof. Applying Theorem 1.5 and Theorem 1.1 we obtain that S is a split algebra.
Another solution is to apply Theorem 1.4 and Remark 1.1. O

Remark 4.4. For n a prime number, all symbol algebras from the above proposition are
non-division algebras.

5. CONCLUSIONS

In this paper, we gave an algorithm for compute quickly the elements from the basis in
a symbol algebra of degree n and we find an octonion algebra, in general without division,
in a symbol algebra of degree three. We also provide some examples of division symbol
algebras of degree three and five. Starting from results obtained in this paper, we intend
to find, in a further research, more conditions for a symbol algebra of degree n to be with
division.
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