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Uniform approximation of functions by Bernstein-Stancu
operators

ADRIAN HOLHOŞ

ABSTRACT. For the class of bounded and continuous functions on (0, 1) we give a characterization of the
functions which can be uniformly approximated by Bernstein-Stancu operators. We also study the possibility of
uniform approximation of unbounded functions by Bernstein-Stancu operators in weighted spaces with Jacobi
weights.

1. INTRODUCTION

Uniform approximation of continuous functions by using polynomials was a problem
studied by K. Weierstrass [13]. A construction of a sequence of polynomials uniformly
converging to every continuous function defined on the compact [0, 1] was obtained by
S. N. Bernstein [1] in 1912. The operators introduced by Bernstein were generalized in
1969 by D. D. Stancu [10] and now these operators are called Bernstein-Stancu operators.
They are defined by

(1.1) Pn,α,β(f, x) =

n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k + α

n+ β

)
, x ∈ [0, 1], n ≥ 1

where 0 ≤ α ≤ β. For α = β = 0 we obtain the classical Bernstein operators. They
approximate uniformly every continuous function f defined on the compact [0, 1], i.e.

‖Pn,α,βf − f‖ = sup
x∈[0,1]

|Pn,α,β(f, x)− f(x)| → 0, when n→∞.

One problem studied in this paper is the following: if we restrict to the class of bounded
and continuous functions defined on (0, 1) does the uniform approximation property of
Bernstein-Stancu operators still hold? It is possible to uniformly approximate sin 1

x? We
give in Theorem 3.1 the characterization of the functions from this class which can be
uniformly approximated by Pn,α,β .

The second problem studied is whether we can uniformly approximate continuous
and unbounded functions defined on (0, 1) by using Bernstein-Stancu operators. We use
the Jacobi weights ρ(x) = x−γ(1 − x)−δ with γ, δ ≥ 0 to approximate functions with
singularities located at the endpoints of the interval (0, 1). Let Bγ,δ be the space of all
functions f : (0, 1) → R with the property that there exists a constant M > 0 such that
|f(x)| ≤Mρ(x), for every x ∈ (0, 1)- a space which can be endowed with the norm

‖f‖γ,δ = sup
x∈(0,1)

xγ(1− x)δ|f(x)|.
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We consider also the subspaces

Cγ,δ(0, 1) = Cγ,δ = { f ∈ Bγ,δ | f is continuous on (0, 1) }
Cγ,δ[0, 1] = { f ∈ Cγ,δ | f/ρ has finite limits at x = 0 and x = 1 }

Cγ,δ,0[0, 1] =
{
f ∈ Cγ,δ[0, 1] | lim

x→0
f(x)/ρ(x) = 0 and lim

x→1
f(x)/ρ(x) = 0

}
This paper is motivated by the article [9], where the author studies the weighted uniform
approximation by a class of Bernstein-type operators using the weight ρ, but only for
γ, δ ∈ (0, 1). The author uses K-functionals to estimate the error of approximation. We
will use a different approach. Another article is [12], where the author gave pointwise
approximation results using Bernstein operators.

The main results of this paper for the weighted approximation are Theorems 3.2 and
3.3 and Remark 3.2, which prove that only the functions which belong to Cγ,δ,0 can be
uniformly approximated. We use in the proof a generalization of the modulus of continu-
ity, which is something ”between” the local and the global modulus of continuity. Other
related results were obtained in [2, 5, 6, 7, 8].

2. PRELIMINARIES

The operators Pn,α,β have the properties (see [10])

Pn,α,β(1, x) = 1,

Pn,α,β(t, x) =
nx+ α

n+ β
,

Pn,α,β(t
2, x) =

(nx+ α)2 + nx(1− x)
(n+ β)2

.

From these relations we easily deduce the relation

Pn,α,β

(
(t− x)2 , x

)
=
nx(1− x) + (βx− α)2

(n+ β)2
≤ C

n+ β
, for every x ∈ [0, 1],(2.2)

where C is a constant independent on x and n.
Denote by pn,k the polynomials

(
n
k

)
xk(1− x)n−k.

Lemma 2.1 (Hoeffding’s inequalities [4]). For a ∈ (0, 1) and x ∈ (0, 1− a) we have∑
k
n−x>a

pn,k(x) ≤ e−2na
2

,(2.3)

∑
| kn−x|>a

pn,k(x) ≤ 2e−2na
2

,(2.4)

Lemma 2.2. For α > 0, for every x ∈ (0, 1] and for every γ ≥ 0, we have

(2.5) Pn,α,β

(
1

tγ
, x

)
≤ C0

xγ
.

where C0 = bγ + 1c!(β + 1)γ max (1, α−γ).

Proof. Starting from the inequalities

1

k + α
≤ max

(
1,

1

α

)
· i+ 1

k + i+ 1
and n+ β ≤ (n+ i+ 1)(β + 1),
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which are true for every nonnegative integers k and i, we deduce that

pn+i,k+i(x) ·
n+ β

k + α
≤ pn+i+1,k+i+1(x) ·

(i+ 1)(β + 1)max(1, α−1)

x
(2.6)

Consider m = bγc. Using (2.6) we have

Pn,α,β

(
1

tγ
, x

)
=

n∑
k=0

pn,k(x)
(n+ β)m

(k + α)m
· (n+ β)γ−m

(k + α)γ−m

≤ Cm
xm

n∑
k=0

pn+m,k+m(x) · (n+ β)γ−m

(k + α)γ−m

where Cm = m!(β + 1)mmax
(
1, 1

αm

)
.

If γ −m = 0, then, using the inequality
∑n
k=0 pn+m,k+m(x) ≤ 1, we obtain inequality

(2.5). Otherwise, γ −m ∈ (0, 1). Setting p = 1/(γ −m) > 1 and considering q > 1 such
that 1/p+ 1/q = 1, we can apply Hölder inequality and obtain

Pn,α,β

(
1

tγ
, x

)
≤ Cm
xm

(
n∑
k=0

pn+m,k+m(x) · n+ β

k + α

) 1
p

·

(
n∑
k=0

pn+m,k+m(x)

) 1
q

Applying one more time the inequality (2.6) we get

Pn,α,β

(
1

tγ
, x

)
≤ Cm
xm

(
(m+ 1)(β + 1)max(1, α−1)

x

n∑
k=0

pn+m+1,k+m+1(x)

)γ−m
which implies (2.5). �

Remark 2.1. Inspecting, the proof of Lemma 2.2 more carefully, we can notice that the

upper bound for Pn,α,β(t−γ , x) =
∑n
k=0 pn,k(x)

(
n+β
k+α

)γ
is

C0

xγ

(
n∑
k=0

pn+bγc+1,k+bγc+1(x)

)γ−bγc( n∑
k=0

pn+bγc,k+bγc(x)

)1−γ+bγc

.

This inequality remains true if the summation is taken on a subset of { 0, 1, . . . , n }.

Lemma 2.3. For β − α > 0 and for every δ ≥ 0 we have

(2.7) Pn,α,β

(
1

(1− t)δ
, x

)
≤ C1

(1− x)δ
, for every x ∈ [0, 1).

where C1 = (β + 1)δmax
(
1, (β − α)−δ

)
· bδ + 1c!.

Proof. Using the relation

Pn,α,β

(
1

(1− t)δ
, x

)
= Pn,β−α,β

(
1

tδ
, 1− x

)
.

we can use the same argument as in the proof of relation (2.5). �

Lemma 2.4. For 0 < α < β and for every γ, δ ≥ 0 we have

Pn,α,β

(
1

tγ(1− t)δ
, x

)
≤ C

xγ(1− x)δ
, for every x ∈ (0, 1),

where C is a constant depending only on α, β, γ, δ.
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Proof. Using the Hölder inequality for positive linear operators for p = γ+δ
γ and q = γ+δ

δ

and using the relations (2.5) and (2.7) we obtain the result. �

Corollary 2.1. For every f ∈ Cγ,δ the polynomials Pn,α,βf belong to Cγ,δ .

Proof.

|Pn,α,β(f(t), x)| ≤ Pn,α,β(|f(t)|, x) ≤ Pn,α,β(‖f‖γ,δ ρ(t), x) ≤ C ‖f‖γ,δ · ρ(x).
�

In the proof of the main results we will use the following moduli of continuity intro-
duced in [11]. Consider the interval I ⊆ R, the function f : I → R and the nonempty set
J ⊆ I . The modulus of continuity of f with respect to J is defined by

ω(f, I, J, δ) = ω(f, J, δ) = sup
|t−x|≤δ
t∈I, x∈J

|f(t)− f(x)| , δ ≥ 0.

If J = { a } we obtain the local modulus of continuity ω(f, a, δ). If J = I we obtain the
global modulus of continuity ω(f, δ).

This modulus has the property of monotony with respect to the set J : if J ⊆ J ′ ⊆ I
then ω(f, J, δ) ≤ ω(f, J ′, δ).

3. MAIN RESULTS

Theorem 3.1. If f ∈ C0,0 then

‖Pn,α,βf − f‖ → 0, when n→∞
if and only if

f is uniformly continuous on (0, 1).

Proof. Suppose ‖Pn,α,βf − f‖ → 0, when n → ∞. We prove that f must be uniformly
continuous on (0, 1).

We have (see [3, p. 305]) p′n,k(x) = n [pn−1,k−1(x)− pn−1,k(x)]. So,

P ′n,α,β(f, x) = n

n∑
k=1

pn−1,k−1(x)f

(
k + α

n+ β

)
− n

n−1∑
k=0

pn−1,k(x)f

(
k + α

n+ β

)
.

Because
∑n
k=0 pn,k(x) = 1, we deduce that

∣∣∣P ′n,α,β(f, x)∣∣∣ ≤ 2n ‖f‖. Using the properties
of the global modulus of continuity (see [3]) we have

ω(f, δn) ≤ ω(f − Pn,α,βf, δn) + ω(Pn,α,βf, δn)

≤ 2 ‖f − Pn,α,βf‖+ sup
|t−x|≤δn
t,x∈(0,1)

|Pn,α,β(f, t)− Pn,α,β(f, x)|

≤ 2 ‖f − Pn,α,βf‖+ δn sup
c∈(0,1)

∣∣P ′n,α,β(f, c)∣∣ ≤ 2 ‖f − Pn,α,βf‖+ 2 ‖f‖n δn.

If we choose the sequence δn such that δn · n tends to zero, we deduce from the above
inequality that ω(f, δn)→ 0 when n→∞. This proves that f is uniformly continuous on
(0, 1).

For the converse part, if f is uniformly continuous on (0, 1) then the one-sided limits
at 0 and 1 exist and so f can be extended to a continuous function on [0, 1] and we can
apply [10, Theorem 2] and deduce that ‖Pn,α,βf − f‖ → 0 tends to zero, when n tends to
infinity. �
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Example 3.1. The functions f(x) = sin 1
x and g(x) = lnx for x ∈ (0, 1) cannot be uniformly

approximated by the Bernstein-Stancu operators in the norm of C0,0.

Theorem 3.2. For every f ∈ Cγ,δ with the property

lim
x→0

xγ(1− x)δf(x) = `0 ∈ R \ { 0 } or

lim
x→1

xγ(1− x)δf(x) = `1 ∈ R \ { 0 } ,

the sequence (‖Pn,α,βf − f‖γ,δ)n≥1 does not tend to zero when n tends to infinity.

Proof. This follows easily from the inequalities:

‖Pn,α,βf − f‖γ,δ = sup
x∈(0,1)

xγ(1− x)δ |Pn,α,β(f, x)− f(x)|

≥ lim
x→0

xγ(1− x)δ |Pn,α,β(f, x)− f(x)| = |`0| > 0,

‖Pn,α,βf − f‖γ,δ ≥ lim
x→1

xγ(1− x)δ |Pn,α,β(f, x)− f(x)| = |`1| > 0.

�

Remark 3.2. If one of the limits `0 or `1 from Theorem 3.2 does not exist, we can apply
lim sup and deduce the imposibility of uniform approximation of such functions.

Theorem 3.3. If γ and δ are positive real numbers and f ∈ Cγ,δ is a function having the properties

lim
x→0

xγ(1− x)δf(x) = 0 and lim
x→1

xγ(1− x)δf(x) = 0,

then ‖Pn,α,βf − f‖γ,δ → 0, when n→∞.

Proof. We have

‖Pn,α,βf − f‖γ,δ = sup
x∈(0,1)

xγ(1− x)δ |Pn,α,β(f, x)− f(x)| ≤ max(An, Bn, Cn),

where the sequences (An), (Bn) and (Cn) are defined by

An = sup
x∈(0,εn)

xγ(1− x)δ |Pn,α,β(f, x)− f(x)|

Bn = sup
x∈(εn,1−εn)

xγ(1− x)δ |Pn,α,β(f, x)− f(x)|

Cn = sup
x∈(1−εn,1)

xγ(1− x)δ |Pn,α,β(f, x)− f(x)| ,

for a suitable sequence (εn). We prove that (An), (Bn) and (Cn) converge to 0.
Consider the function

f?(x) =

{
xγ(1− x)δf(x), x ∈ (0, 1)
0, x = 0 and x = 1.

From the properties of f given in the statement of the theorem we deduce that f? ∈ C[0, 1].
We have

(3.8) An ≤ sup
x∈(0,εn)

xγ(1− x)δ |Pn,α,β(f, x)|+ sup
x∈(0,εn)

xγ(1− x)δ |f(x)| .

The second term from the right-hand side of the above inequality can be evaluated using
the local modulus of continuity

sup
x∈(0,εn)

xγ(1− x)δ |f(x)| ≤ sup
x∈(0,εn)

|f?(x)− f?(0)| = ω(f?, 0, εn).
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This quantity will converge to 0 if we choose (εn) to be a sequence converging to 0.
The first term of the right-hand side of (3.8) can be evaluated as follows:

|Pn,α,β(f, x)| ≤
N∑
k=0

pn,k(x)

∣∣∣∣f (k + α

n+ β

)∣∣∣∣+ n∑
k=N+1

pn,k(x)

∣∣∣∣f (k + α

n+ β

)∣∣∣∣
≤ max

0≤k≤N

∣∣∣∣f?(k + α

n+ β

)∣∣∣∣ · N∑
k=0

pn,k(x) · ρ
(
k + α

n+ β

)

+ ‖f?‖
n∑

k=N+1

pn,k(x) · ρ
(
n+ β

k + α

)

≤ sup
x∈(0,N+α

n+β )

|f?(x)| · Pn,α,β(ρ, x) + ‖f?‖
n∑

k=N+1

pn,k(x)ρ

(
k + α

n+ β

)

Using Lemma 2.4 and the Remark 2.1 we get

xγ(1− x)δ |Pn,α,β(f, x)| ≤ C · ω
(
f?, 0,

N + α

n+ β

)
+ C ‖f‖γ,δ Sn,

where Sn is the product of(
n∑

k=N+1

pn+m+1,k+m+1(x)

) aγ
γ+δ

·

(
n∑

k=N+1

pn+m,k+m(x)

) (1−a)γ
γ+δ

with (
n∑

k=N

pn+m+1,k(x)

) aδ
γ+δ

·

(
n∑

k=N+1

pn+m,k(x)

) (1−a)δ
γ+δ

,

where m = bγ + δc and a = γ + δ −m. Choosing N = b(n +m)(x + εn)c and using the
relation (2.3) we obtain

Sn ≤

(
n∑

k=N+1

pn+m,k(x)

)1−a

≤

 ∑
(n+m)(x+εn)<k≤n+m

pn+m,k(x)

1−a

≤ e−2(1−a)(n+m)ε2n .

Choosing n ≥ 2m + β we obtain (N + α) ≤ 3εn(n + β). All these give us the bound for
An:

An ≤ (3C + 1) · ω(f?, 0, εn) + C ‖f‖γ,δ · e
−2(1−a)(n+m)ε2n .

If we choose εn ∈ (0, 12 ) such that εn → 0 and ε2n · n→∞ then An → 0, when n→∞.
Next we prove that (Cn) is convergent to 0. This can be done using the above argument

and the following representation of Cn:

Cn = sup
x∈(1−εn,1)

xγ(1− x)δ |Pn,α,β(f(t), x)− f(x)|

= sup
y∈(0,εn)

(1− y)γyδ |Pn,α,β(f(t), 1− y)− f(1− y)|

= sup
y∈(0,εn)

(1− y)γyδ |Pn,β−α,β(g(t), y)− g(y)| , where g(t) = f(1− t).
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We obtain

Cn ≤ (3C + 1) · ω(g?, 0, εn) + C ‖g‖γ,δ · e
−2(1−a)(n+m)ε2n

≤ (3C + 1) · ω(f?, 1, εn) + C ‖f‖γ,δ · e
−2(1−a)(n+m)ε2n ,

where g?(t) = f?(1− t). The same conditions on (εn) (εn → 0 and ε2n · n→∞) assure that
Cn → 0, when n goes to the infinity.

It remains to prove that (Bn) is convergent to 0. Consider the intervals Jn = (εn, 1−εn)
and denote by

Mn = sup
x∈Jn

xγ(1− x)δ
∑

| k+αn+β−x|≤ηn
pn,k(x)

∣∣∣∣f (k + α

n+ β

)
− f(x)

∣∣∣∣
Tn = sup

x∈Jn
xγ(1− x)δ

∑
| k+αn+β−x|>ηn

pn,k(x)

∣∣∣∣f (k + α

n+ β

)
− f(x)

∣∣∣∣
the middle part and the tail part of Bn. Then, Bn ≤Mn + Tn.

If we consider (ηn) a sequence converging to 0 such that ηn < εn and denote the inter-
vals In = (εn − ηn, 1− εn + ηn), the inclusion Jn ⊂ In is true. Using the relation

|f(t)− f(x)| ≤ |f(t)|
ρ(t)

· |ρ(t)− ρ(x)|+ ρ(x)

∣∣∣∣fρ (t)− f

ρ
(x)

∣∣∣∣
we obtain

Mn ≤ ‖1/ρ‖Jn ‖f
?‖ · ω(ρ, In, Jn, ηn) + ω(f?, In, Jn, ηn).

The second term from the right-hand side of the above inequality converges to 0 because
is less than the global modulus of continuity of f? on [0, 1] and because the function f? is
continuous on the compact [0, 1].

The generalized modulus of continuity of ρ can be evaluated using the Mean Value
Theorem:

ω(ρ, In, Jn, ηn) ≤ ηn ·max (|ρ′(εn − ηn)| , |ρ′(1− εn + ηn)|) ≤
Cηn

(εn − ηn)max(γ,δ)+1
.

Choosing ηn = ε
max(γ,δ)+2
n we obtain that ω(ρ, In, Jn, ηn) → 0 when n → ∞ and so Mn

converges to 0.
It remains to prove that the tail part Tn converges to 0. We have

Tn ≤ sup
x∈Jn

xγ(1− x)δ
∑

| k+αn+β−x|>ηn
pn,k(x)

(∣∣∣∣f (k + α

n+ β

)∣∣∣∣+ |f(x)|)

≤ sup
x∈Jn

‖f?‖
ρ(x)

∑
| k+αn+β−x|>ηn

pn,k(x) · ρ
(
k + α

n+ β

)
+ ‖f?‖

∑
| k+αn+β−x|>ηn

pn,k(x).

The inequality
∣∣∣ k+αn+β − x

∣∣∣ > ηn implies
∣∣ k
n − x

∣∣ > ηn − β−α
n . Using the inequality (2.4) we

obtain ∑
| k+αn+β−x|>ηn

pn,k(x) ≤
∑

| kn−x|>ηn− β−αn
pn,k(x) ≤ e−

n
2 (ηn− β−αn )2 .

This converges to 0 if n · η2n tends to 0. But this condition is satisfied if we choose (εn) to
be a sequence that converges to 0 and ε2max(γ,δ)+4

n · n→∞.
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The inequality
∣∣∣ k+αn+β − x

∣∣∣ > ηn implies also
∣∣∣ k
n+m − x

∣∣∣ > ηn − β−α
n+m . Using Lemma 2.4

and the Remark 2.1 we obtain as in the evaluation of Sn:

sup
x∈Jn

‖f?‖
ρ(x)

∑
| k+αn+β−x|>ηn

pn,k(x) · ρ
(
k + α

n+ β

)
≤ C ‖f‖γ,δ

 ∑
| k
n+m−x|>ηn− β−α

n+m

pn,k(x)


(1−a)δ
γ+δ

.

Using the inequality (2.4) we obtain ∑
| k
n+m−x|>ηn− β−α

n+m

pn,k(x)


(1−a)δ
γ+δ

≤ e−
2(1−a)δ
γ+δ n(ηn− β−α

n+m )
2

,

and this converges to 0.
We have proved that Tn converges to 0 and so the proof is complete. �

Example 3.2. The functions f(x) = sin 1
x and g(x) = lnx for x ∈ (0, 1) can be uniformly

approximated by the Bernstein-Stancu operators in the norm ofCγ,0 for an arbitrary γ > 0.
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