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Existence of three solutions for a three-point boundary
value problem via a three-critical-point theorem

XIAOJIE LIN

ABSTRACT. In this paper, we study the existence of at least three solutions for a three-point boundary value
problem. By constructing and showing an appropriate separable and reflexive Banach space, a new multiplicity
result of the three-point boundary value problem is established. Our main tool is based upon variational method
and three-critical-point theorem.

1. INTRODUCTION

The aim of this paper is to establish a multiplicity result for the following three-point
boundary value problem

(1.1)
{
u′′ + λf(t, u) = 0,
u(0) = 0, u(1) = αu(η),

where α ∈ R, η ∈ (0, 1), λ is a positive parameter and f : [0, 1] × R → R is a continuous
function.

In [12-14], Ricceri proposed and developed an innovative minimal method for the
study of nonlinear eigenvalue problems. After that, Bonannao [1] gave an application
of the method to the two point boundary value problem

(1.2)
{
u′′ + λf(u) = 0,
u(0) = u(1) = 0.

Candito [3] extended the main results of [1] to the nonautonomous case

(1.3)
{
u′′ + λf(t, u) = 0,
u(a) = u(b) = 0.

In [6], He and Ge extended the main results of [1,3] to the quasilinear problem

(1.4)
{

(ϕp(u
′))′ + λf(t, u) = 0,

u(a) = u(b) = 0.

Livrea [8] extended the main results of [1,3] to the following boundary value problem

(1.5)
{
u′′ + λh(u′)f(t, u) = 0,
u(0) = u(1) = 0.
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Du, Lin and Tisdell [5] discussed a two point boundary value problem with p-Lapacian
operator via critical points theorem. Bonannao and Livrea [2] studied the following Dirich-
let problems involving the p-Lapacian

(1.6)
{

∆pu+ λf(t, u) = 0, in Ω,
u(0) = 0, on ∂Ω.

In the above papers, in order to use the three-critical-point theorem obtained by Ric-
ceri [12] to study the above two-point boundary value problems, the authors all used
the Sobolve space W 1,2

0 ((0, 1)) or W 1,p
0 ((0, 1))(p > 1) since it satisfies the condition in the

three-critical-point theorem.
However, if the boundary condition is u(0) = 0, u(1) = αu(η), then the Sobolev space

W 1,2
0 ((0, 1)) is not valid. In order to solve the difficulty, we need to construct an appro-

priate space W 1,2
1 ((0, 1)) = {u ∈ W 1,2((0, 1)) : u(0) = 0, u(1) = αu(η)} and show it is a

separable and reflexive real Banach space (i.e.,Theorem 3.2).
In the past few years, there has been increasing interest in studying three-point bound-

ary value problems (1.1); to identify a few, we refer the reader to [4, 7, 9, 10]. The methods
and techniques employed in these papers are the Leray-Schauder continuation theorem,
upper and lower solutions method, the nonlinear alternative of Leray-Schauder, the coin-
cidence degree theory, or some fixed point theorem, for example, Du et al. [4] studied the
following second-order three-point boundary value problem

(1.7)
{
u′′ + f(t, u, u′) = 0,
u(0) = 0, u(1) = αu(η).

They assumed that boundary value problem (1.7) exists two pairs of lower and upper
solutions to ensure the existence of at least three solutions under 0 < α and the non-
resonance case 0 < αη < 1. He and Ge [7] discussed the existence of at least three solutions
to boundary value problem (1.1) when λ = 1 under the non-resonance case 0 < αη < 1 by
using the the Leggett-Williams fixed-point theorem. Ma [9] considered the the following
second-order three-point boundary value problem

(1.8)
{
u′′ + a(t)f(u) = 0,
u(0) = 0, u(1)− αu(η) = b,

and required the assumption that f is sublinear or superlinear to obtained the existence
of at least one positive solutions for boundary value problem (1.8) under 0 < α and the
non-resonance case 0 < αη < 1. Ma [10] dealt with the multiplicity results for boundary
value problem (1.1) when λ = 1 and satisfying the resonance case αη = 1 by employing
the methods of lower and upper solutions by the connectivity properties of the solution
set of parameterized families of compact vector fields.

In this paper, to show the existence of solutions an open interval Λ ⊆ (0,+∞) such
that for every λ ∈ Λ, the problem (1.1) has at least three solutions (i.e., Theorem 4.3), we
will use a three-critical-point- theorem of B. Ricceri, which is different from the above-
mentioned references [4, 7, 9, 10]. Our results are new and different from those of [4, 7,
9, 10], we do not require the assumption that f is sublinear or superlinear and the non-
resonance case 0 < αη < 1 or the resonance case αη = 1. In our work, we shall remove
the restriction 0 < αη < 1 or αη = 1.
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2. PRELIMINARY

First, we recall the three-critical-point theorem [12] and some definitions [11, 15] which
shall help us to obtain our main results.

Theorem 2.1. ([12]) Let X be a separable and reflexive real Banach space, Φ : X → R a con-
tinuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose
Gâteaux derivative admits a continuous inverse on X∗, and Ψ : X → R a continuously Gâteaux
differentiable functional whose Gâteux derivative is compact. Assume that

lim
‖u‖→∞

Φ(u) + λΨ(u) = +∞

for all λ ∈ [0,+∞), and that there exists a continuous concave function h : [0,+∞) → R such
that

sup
λ≥0

inf
u∈X

(Φ(u) + λΨ(u) + h(λ)) < inf
u∈X

sup
λ≥0

(Φ(u) + λΨ(u) + h(λ)).

Then there exists an open interval Λ ⊆ (0,+∞) and a positive real number q such that, for each
λ ∈ Λ, the equation

Φ′(u) + λΨ′(u) = 0

has at least three solutions in X whose norms are less than q.

Proposition 2.1. ([13]) Let X be a nonempty set and Φ, Ψ two real functions on X . Assume that
there are r > 0 and x0, x1 ∈ X such that

Φ(x0) = Ψ(x0) = 0, Φ(x1) > r, sup
x∈Φ−1((−∞,r])

Ψ(x) < r
Ψ(x1)

Φ(x1)
.

Then, for each ρ satisfying

sup
x∈Φ−1((−∞,r])

(Ψ(u)) < ρ < r
Ψ(x1)

Φ(x1)
,

one has
sup
λ≥0

inf
x∈X

(Φ(x) + λ(ρ−Ψ(x))) < inf
x∈X

sup
λ≥0

(Φ(x) + λ(ρ−Ψ(x))).

Definition 2.1. Let (E, ρ) and (E1, ρ1) be metric spaces, the operator ϕ : E −→ E1 is called
an isometric isomorphic mapping if

(i) the mapping ϕ is surjective;
(ii) ρ(x, y) = ρ1(ϕx, ϕy), for all x, y ∈ E.

The metric space (E, ρ) is said to be isometric isomorphic to (E1, ρ1).

Remark 2.1. From the condition (ii) in the definition 2.1, ϕ is also a single-valued map-
ping.

Definition 2.2. A normed space E is uniformly convex, provided that for any ε ∈ (0, 2),
there exists a δ = δ(ε) > 0 such that ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε imply

‖x+ y

2
‖ ≤ 1− δ(ε).

Here and in the sequel, we take

X = W 1,2
1 ((0, 1)) = {u ∈W 1,2((0, 1)) : u(0) = 0, u(1) = αu(η)}

endowed with the norm ‖u‖ = (
∫ 1

0
|u′|2dt) 1

2 .
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3. X IS A SEPARABLE AND REFLEXIVE REAL BANACH SPACE

Theorem 3.2. W 1,2
1 ((0, 1)) is a separable and reflexive real Banach space.

We prove this result via the following lemmas.

Lemma 3.1. X is a Banach space.

Proof. Clearly, X is a normed linear space. Suppose sequence of {un} ∈ X is an arbitrary
cauchy sequence. Since {un} is also a cauchy sequence of W 1,2((0, 1)) and W 1,2((0, 1))
is a Banach space, then there exists a u ∈ W 1,2((0, 1)) with limn−→+∞ un = u. From
limn−→+∞ un(0) = u(0) = 0, limn−→+∞ un(1) = u(1), limn−→+∞ αun(η) = αx(η), un(1) =
αun(η), we obtain u(0) = 0, u(1) = αu(η). Hence X is a Banach space. �

Lemma 3.2. X is separable.

Proof. Owing toW 1,2((0, 1)) be separable, there exists an enumerable subsetA ⊂W 1,2((0, 1))
such that ∀x ∈ W 1,2((0, 1)), ∃{yn} ⊂ A satisfying yn → x, as n → +∞. For ∀y ∈ A, we
define φ : A −→ X as

(φy)(t) =

{
y(t)− y(0)η−tη , 0 ≤ t ≤ η,
y(t) + [αy(η)− y(1)] t−η1−η , η ≤ t ≤ 1.

Let z = φ(y), then z ∈ X . Thus the setA1 = {z = φ(y) : y ∈ A} is an enumerable subset
of X .

Now we shall prove that ∀x ∈ X , there exists {zn} ⊂ A1 such that ‖zn − x‖ −→ 0, as
n→ +∞. By x ∈W 1,2((0, 1)), then there exists ∃{yn} ⊂ A satisfying

(3.9) ‖yn − x‖ −→ 0, as n→ +∞.
Since

(3.10) ‖zn − x‖ ≤ ‖zn − yn‖+ ‖yn − x‖.
Let zn = φ(yn), one has

‖zn − yn‖ = (

∫ 1

0

|(zn − yn)′|2dt) 1
2

= (

∫ η

0

(
yn(0)

η
)2dt+

∫ 1

η

(
αyn(η)− yn(1)

1− η
)2dt)

1
2

= (
y2
n(0)

η
+

(αyn(η)− yn(1))2

1− η
)

1
2

−→ (
x2(0)

η
+

(αx(η)− x(1))2

1− η
)

1
2 = 0, n→ +∞.

i.e.,

(3.11) ‖zn − yn‖ −→ 0, n→ +∞.
Then from (3.9), (3.10) and (3.11), we show ‖zn − x‖ −→ 0, as n → +∞. Therefore X is
separable. �

Lemma 3.3. (Milman Theorem [11]) A uniformly convex Banach space is reflexive.

Lemma 3.4. (Clakson Inequality [11]) For u, v ∈ Lp((0, 1)), 2 ≤ p < + +∞, then

‖u+ v

2
‖p + ‖u− v

2
‖p ≤ 1

2
(‖u‖p + ‖v‖p).
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Lemma 3.5. W 1,2
1 ((0, 1)) is reflexive.

Proof. We define the operator J : W 1,2
1 ((0, 1)) −→ L2((0, 1)) as follows

for every u ∈W 1,2
1 ((0, 1)), J : u 7−→ u′ ∈ L2((0, 1)).

Let
W1(1, 2) = {u′|u ∈W 1,2

1 ((0, 1))}.
Then W1(1, 2) is a subspace of L2((0, 1)).

Now we show the operator J is a isometric isomorphic mapping onto W 1,2
1 ((0, 1)) to

W1(1, 2). It is obvious that the mapping J is surjective, we only need to show the mapping
J is isometric. In the space W1(1, 2), we define the norm ‖v‖ = (

∫ 1

0
|v|2dt) 1

2 . From the
mapping

J : W 1,2
1 ((0, 1)) −→W1(1, 2),

u 7−→ u′ = v,

we obtain ‖u‖ = ‖Ju‖. Then the operator J : W 1,2
1 ((0, 1)) −→ W1(1, 2) is a isometric iso-

morphic mapping and the spaceW 1,2
1 ((0, 1)) is isometric isomorphic to the spaceW1(1, 2).

We shall show W1(1, 2) is uniformly convex. for any ε > 0, u, v ∈ W1(1, 2), such that
‖u‖ = ‖v‖ = 1, ‖u−v‖ ≥ ε, we choose δ(ε) = (

ε

2
)2. In Lemma 3.4, selecting p = 2, one has

‖u+ v

2
‖2 ≤ 1

2
(‖u‖2 + ‖v‖2)− ‖u− v

2
‖2 ≤ 1− δ(ε)

which implies that W1(1, 2) is uniformly convex. Then W 1,2
1 ((0, 1)) is also uniformly con-

vex since W 1,2
1 ((0, 1)) is isometric isomorphic to the space W1(1, 2). �

The proof of Theorem 3.2 is now an easy consequence of the above lemmata.

4. TRIPLE SOLUTIONS RESULTS

Let the positive constant

M =
1− η + 2α2η

η(1− η)
,

and define the real function g(t, ξ) by

g(t, ξ) =

∫ ξ

0

f(t, u)du, for all (t, ξ) ∈ [0, 1]×R,

and f : [0, 1]×R→ R is a continuous function.
Our main results fully depend on the following lemma.

Lemma 4.6. We assume that there exist two positive constants d, c, with c < 1
2

√
Md, such that

(i) g(t, ξ) ≥ 0 for each (t, ξ) ∈ [0, η] ∪ [ 1+η
2 , 1]× [0, d];

(ii) max
(t,ξ)∈[0,1]×[−c,c]

g(t, ξ) <
4

M
(
c

d
)2

∫ 1+η
2

η

g(t, d)dt.

Then there exist r > 0 and u ∈ X such that 2r < ‖u‖2 and

max
(t,ξ)∈[0,1]×[−c,c]

g(t, ξ) < 2r

∫ 1

0
g(t, u(t))dt

‖u‖2
.
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Proof. Define the function u(t) as

u(t) =


1

η
dt, for t ∈ [0, η],

d, for t ∈ [η, 1+η
2 ],

d(
α(1 + η)

η − 1
− 2α

η − 1
t), for t ∈ [ 1+η

2 , 1].

Selecting r = 2c2. It is clear that u ∈ X and

‖u‖2 =

∫ 1

0

|u′(t)|2dt =

∫ η

0

(
d

η
)2dt+

∫ 1

1+η
2

(
2αd

η − 1
)2dt =

1− η + 2α2η

η(1− η)
d2 = Md2.

By the assumption c < 1
2

√
Md, the we obtain 2r < ‖u‖2. From assumption (ii), we have∫ 1

0
g(t, u(t))dt

‖u‖2
2r ≥ 4c2

‖u‖2

∫ 1+η
2

η

g(t, d)dt =
4

M
(
c

d
)2

∫ 1+η
2

η

g(t, d)dt

> max
(t,ξ)∈[0,1]×[−c,c]

g(t, ξ).

�

Our main result is the following theorem.

Theorem 4.3. Suppose that there exist four positive constants c, d, µ, l with l < 2 and c <
1
2

√
Md such that

(i) g(t, ξ) ≥ 0 for each (t, ξ) ∈ [0, η] ∪ [ 1+η
2 , 1]× [0, d];

(ii) max
(t,ξ)∈[0,1]×[−c,c]

g(t, ξ) <
4

M
(
c

d
)2

∫ 1+η
2

η

g(t, d)dt;

(iii) g(t, ξ) ≤ µ(1 + |ξ|l) for each t ∈ [0, 1] and ξ ∈ R.
Then there exist an open interval Λ ⊆ (0,+ +∞) and a positive real number q such that, for each
λ ∈ Λ, problem (1.1) has at least three solutions belonging to X whose norms in W 1,2

1 ((0, 1)) are
less than q.

Proof. For each u ∈ X , we define

Φ(u) =
1

2
‖u‖2 and Ψ(u) = −

∫ 1

0

(

∫ u(t)

0

f(t, x)dx)dt, J(u) = Φ(u) + λΨ(u).

It is well known that the critical points of J are the generalized solutions of (1.1). So,
our end is to verify that Φ and Ψ satisfy the assumptions of Theorem 2.1. It is easy to see
that Φ is a continuously Gâteaux differentiable and sequentially weakly lower semicon-
tinuous functional whose Gâteaux derivative admits a continuous inverse on X∗, and Ψ
is a continuous Gâteaux differentiable functional whose Gâteaux derivative is compact.

Moreover, thanks to (iii) and to Poincaré inequality, one has

lim
‖u‖→++∞

(Φ(u) + λΨ(u)) = + +∞,

for all λ ∈ (0,+ +∞).
we claim that there exist r > 0 and u ∈ X such that

sup
u∈Φ−1(−+∞,r]

(−Ψ(u)) < r
(−Ψ(u))

Φ(u)
.
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Now, taking into account that

max
0≤t≤1

|u(t)| ≤ ‖u‖, for each u ∈ X.

It follows that for each r > 0

Φ−1(−+∞, r] ⊆ {u ∈ X : |u(t)| <
√

2r, and every t ∈ [0, 1]}.

On the other hand , we have

sup
u∈Φ−1(−+∞,r]

(−Ψ(u)) = sup
‖u‖2≤2r

∫ 1

0

g(t, u(t))dt ≤ max
(t,ξ)∈[0,1]×[−

√
r
2 ,
√

r
2 ]
g(t, ξ).

Now, owing to Lemma 4.6, there exists r > 0 and u ∈ X such that

max
(t,ξ)∈[0,1]×[−

√
r
2 ,
√

r
2 ]
g(t, ξ) < 2r

∫ 1

0
g(t, u(t))dt

‖u‖2
= r

(−Ψ(u))

Φ(u)
.

Finally, owing to Proposition 2.1, choosing h(λ) = ρλ, we obtain

sup
λ≥0

inf
x∈X

(Φ(x) + λΨ(x) + h(λ)) < inf
x∈X

sup
λ≥0

(Φ(x) + λΨ(x) + h(λ)).

Hence, by Theorem 2.1 �

Now, our conclusion follows from Theorem 4.3.
Let a ∈ C[0, 1] and h ∈ C(R) be two nonnegative functions. Put

A(t) =

∫ t

0

a(τ)dτ,H(ξ) =

∫ ξ

0

h(x)dx.

We consider the special case of problem (1.1)

(4.12)
{
u′′ + λa(t)h(u) = 0,
u(0) = 0, u(1) = αu(η).

Corollary 4.1. Suppose that there exist four positive constants c, d, σ, l with l < 2 and c <
1
2

√
Md such that

(i) max
t∈[0,1]

a(t) ≤ 4
M ( cd )2H(d)

H(c) [A( 1+η
2 )−A(η)],

(ii) H(ξ) ≤ σ(1 + |ξ|l) for each ξ ∈ R.
Then there exists an open interval Λ ⊆ (0,++∞) and a positive real number q such that, for each
λ ∈ Λ, problem (4.12) has at three solutions belonging to X , whose norms in W 1,2

1 ((0, 1)) are less
than q.

Proof. In order to apply Theorem 4.3, we choose

f(t, u) = a(t)h(u), for each (t, u) ∈ [0, 1]×R.

Then we have

max
(t,ξ)∈[0,1]×[−c,c]

g(t, ξ) = max
(t,ξ)∈[0,1]×[−c,c]

∫ ξ

0

f(t, x)dx = max
t∈[0,1]

a(t)H(c).

Taking µ = σ max
t∈[0,1]

a(t), it is easy to verify that all the assumptions of Theorem 4.3 are

satisfied. So the proof is finished. �

Finally, we give an example as application.
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Example 4.1. We consider the following problem

(4.13)
{
u′′ + λf(t, u) = 0,
u(0) = 0, u(1) = 1

4u( 1
2 ),

where α = 1
4 , η = 1

2 , f(t, u) = th(u), and let d = 10

h(u) =

{
eu, u ≤ d,
u+ ed − d, u > d.

In this case one has A(t) =
t2

2
, and

H(ξ) =

{
eξ − 1, ξ ≤ d,
1
2ξ

2 + (ed − d)ξ + 1
2d

2 + ed(1− d)− 1, ξ > d.

It is easy to verify that with M = 9
4 , c = 1, σ = ed, l = 3

2 , all conditions of Corollary 4.1 are
satisfied. Therefore, there exist an open interval Λ ⊆ (0,+∞) and a positive real number
q such that, for each λ ∈ Λ, BVP (4.13) has at three solutions belonging toX , whose norms
in W 1,2

1 ((0, 1)) are less than q.
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