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Fixed point results for multivalued operators with respect
to a c - distance

ENRIQUE LLORENS-FUSTER and CRISTINA URS

ABSTRACT. In this paper we present a fixed point theorem for contractive type multivalued operators in
cone metric spaces by using the concept of c-distance.

1. INTRODUCTION

Banach contraction principle, which appeared around 1922, is a very useful tool in the
theory of metric spaces, with several applications to differential and integral equations,
fractal theory and several other topics. In 1969, Nadler [23] extended the Banach contrac-
tion principle from singlevalued to multivalued mappings.

The existence of fixed points for various classes of multivalued contractive mappings
has been studied also by many authors under different conditions. See, for instance, [9]
and [10]. Nadler Theorem has been modified and generalized by many authors in metric
fixed point theory. These generalizations often consist in weaker forms of the assumption
of contractivity of the involved mappings, although quite often with some additional re-
quirements, as for instance to take compact values. See for example the fixed point results
for multivalued mappings of generalized contractive type of Reich (1972) [25], L. Ćirić
(1972) [9], V. M Sehgal and R. E. Smithson (1980) [28].

In 1976 J. Caristi proved the following famous generalization of the Banach contraction
theorem: Let (M,d) be a complete metric space, f : M → M , and φ : M → [0,∞) lower
semi-continuous. If d(x, f(x)) ≤ φ(x) − φ(f(x)) for all x ∈ M , then f has a fixed point.
The relevance of this theorem is their close relationship with several important results in
optimization theory as, for instance, the famous Ekeland variational principle. Mizoguchi
and Takahashi (1989) [22] gave a set valued version of Caristi theorem.

Y. Feng and S. Liu defined in [12] a kind of contractivity for multivalued mappings,
which again focuses the requirements on some orbits of the mapping under consideration.
The main fixed point theorem is also a proper generalization of Nadler’s Theorem.

In 2007 D. Klim and D. Wardowski [18] inspired by Mizoguchi-Takahashi and Feng-Liu
work, obtained a further generalization of the previous fixed point results given in [12],
[22], [25].

O. Kada, T. Suzuki and W. Takahashi [16] introduced in 1996 the concept of ω-distance
on a metric space and by using this notion they got an improvement of the Takahashi non-
convex optimization Theorem, as well as generalizations of Caristi fixed point theorem
and Ekeland variational principle. They also gave fixed point theorems for singlevalued
mappings of ω-contractive type.
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In 2009 J. Garcı́a-Falset, L. Guran and E. Llorens-Fuster [11] obtained a generalization
of the fixed point results presented by D. Klim and D. Wardowski (Theorem 2.1 of [18]),
for multivalued mappings of contractive type in complete metric spaces, but using the
concept of ω-distance. Similar results can be found in [20] (2001).

The fixed point theory for cone metric spaces was introduced by Huang and Zhang
[13] in 2007 and become a subject of interest for many authors. Cone metric spaces are
generalizations of metric spaces where the metric is replaced by a mapping taking values
in an ordered Banach space. For some more results regarding fixed point theory and
applications in cone metric spaces see for example [1]-[8], [14], [15], [17], [24], [29]-[31].
Huang and Zhang [13] introduced the basic definitions, (although this structure already
existed under the name of K-metric or K-normed spaces, see [15]), and proved several
properties of sequences in cone metric spaces.

Y. J. Cho, R. Saadati and S. Wang [7] introduced in 2011 a new concept of c-distance
in cone metric spaces, which is a cone version of ω-distance of O. Kada, T. Suzuki and
W. Takahashi [16]. They proved in [7] some fixed point theorems for contractive type
mappings in partially ordered cone metric spaces using c-distance.

In these notes we will use c-distances in order to obtain a fixed point theorem for mul-
tivalued mappings which allows us to give a generalization of Theorem 3.3 presented in
[11]. An example is presented which exhibits that a mapping which is not contractive with
respect to the ordinary distances, becomes of contractive type in terms of c-distances.

2. PRELIMINARIES

Here we introduce some notions which will be used in the next section.
Let (E, ‖ · ‖) be a real Banach space and θ denote the zero vector in E. The set P ⊂ E is

called a cone if the following conditions are satisfied:
(i) P is closed and P 6= {θ},
(ii) if a, b are nonnegative real numbers and x, y ∈ P , then ax+ by ∈ P ,
(iii) x ∈ P ∩ (−P ) implies x = θ.

We will always assume that if P 6= ∅ is such a cone, then int P 6= ∅. In other words, we
only deal with the so called solid cones.

Example 2.1. Let `2 be the the classical real sequence space

`2 := {(xn) :
∞∑

n=1

|xn|2 <∞}

endowed with the (Euclidean) norm

‖(xn)‖2 :=

( ∞∑
n=1

|xn|2
) 1

2

It can be easily checked that the set

P := {(xn) ∈ `2 : xn ≥ 0 (n = 1, 2, . . . )}
is a cone in the Hilbert space `2, but intP = ∅.

Notice that, if P is a cone, from (ii) it follows that θ ∈ P and that P + P ⊂ P . For a
cone P ⊂ E, a partial ordering � with respect to P is defined on E by putting v � w if and
only if w − v ∈ P. The notation v ≺ w stands for v � w, but v 6= w. Also, we use v � w to
indicate that w− v ∈ intP . It is straightforward to check that, if v1, v2, w1, w2 ∈ E, v1 � v2
and w1 � w2, then v1 + w1 � v2 + w2.
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A cone P is called normal if there exists a number K > 0 such that for all v, w ∈ E,

θ � v � w =⇒ ‖v‖ ≤ K ‖w‖ .
The smallest positive number K satisfying the above condition is called the normal con-
stant of P.

The cone P is called regular if every increasing sequence in P which is bounded from
above is convergent. That is, if (dn) is a sequence in P such that

d1 � d2 � · · · � dn � · · · � y
for some y ∈ E, then there is x ∈ E such that ‖dn − x‖ → 0. Equivalently the cone
P is regular if and only if every decreasing sequence which is bounded from below is
convergent. It is well known that every regular cone is a normal cone. (See, for instance,
[26, Lemma 1.1.]).

Definition 2.1. (See [13]).
LetX be a nonempty set and E be a real Banach space equipped with the partial order-

ing �with respect to the cone P ⊂ E. Suppose that the mapping d : X ×X → E satisfies
the following conditions:

(1) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, y) � d(x, z) + d(y, z) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Notice that, in particular, from (1) it follows that for every x, y ∈ X d(x, y) − θ =
d(x, y) ∈ P .

Now we give an example of cone metric space.

Example 2.2. Let X = R2, E = (R3, ‖ · ‖2), where ‖ · ‖2 stands for the Euclidean ordinary
norm in R3. Let P = {(z1, z2, z3) ∈ E : zi ≥ 0, i = 1, 2, 3}, and d : X ×X → E defined as

d(x, y) = (d∞(x, y), d2(x, y), d1(x, y)),

where d∞ is the Chebyshev metric, d2 is the Euclidean metric and d1 is the Minkowski
metric in R2. Then (R2, d) is a cone metric space. Notice that d((1, 2)(−1, 0)) = (2, 2

√
2, 4),

while d((1, 2)(1,−1)) = (3, 3, 3). Hence, d((1, 2)(−1, 0)) 6� d((1, 2)(1,−1)) and
d((1, 2)(1,−1)) 6� d((1, 2)(−1, 0)).

On the other hand, if z = (z1, z2, z3) and z′ = (z′1, z
′
2, z
′
3) are vectors in R3 such that

(0, 0, 0) � (z1, z2, z3) � (z′1, z
′
2, z
′
3)

then
0 ≤ z1 ≤ z′1
0 ≤ z2 ≤ z′2
0 ≤ z3 ≤ z′3

and hence
‖z‖2 ≤ ‖z′‖2.

Thus, the cone P is normal, with normal constant M = 1. Notice that, according with [26,
Lemma 2.1.], there is no normal cone with normal constant M < 1. It is also straightfor-
ward to check that the cone P is regular.

From now, we will assume that a real Banach space E and a solid cone P are given, as
well as that a cone metric space (X, d) is also given with respect to E and P . For the sake
of brevity we will omit hereafter to mention E and P if no confusion arises.
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Definition 2.2. (See [13]).
Let (X, d) be a cone metric space. Let (xn) be a sequence in X and x ∈ X .
(1) If, for any c ∈ E with θ � c, there exists N ∈ N such that d(xn, x)� c for all n ≥ N,

then the sequence (xn) is said to be convergent to the point x ∈ X and x is the (d-)limit of
(xn). We denote this by lim

n→∞
xn = x or xn → x.

(2) If, for any c ∈ E with θ � c, there exists N ∈ N such that d(xn, xm) � c for all
n,m ≥ N , then (xn) is called a Cauchy sequence in X.

(3) The space (X, d) is called a complete cone metric space if every Cauchy sequence is
convergent to a point of X .

Lemma 2.1. [13, Lemmata 1, 4 and 5]
Let (X, d) be a cone metric space and P be a normal cone with normal constant K.
(1) Let (xn) be a sequence in X . Then (xn) converges to x ∈ X if and only if d(xn, x) → θ

in E.
(2) Let (xn) be a sequence inX . Then (xn) is a Cauchy sequence if and only if d(xn, xm)→ θ

in E (m,n→∞).
(3) Let (xn) and (yn) be two sequences in X with xn → x and yn → y. Then d(xn, yn) →

d(x, y).

Indeed, in this setting some more can be said.

Lemma 2.2. See [15, Sect. 4].
Let (X, d) be a cone metric space and P be a normal cone with normal constant K ≥ 1. Then

the mapping δ : X ×X → [0,∞) defined as δ(x, y) = ‖d(x, y)‖ has the following properties:
(1) For all x, y ∈ X , δ(x, y) = 0 if and only if x = y;
(2) For all x, y ∈ X , δ(x, y) = δ(y, x);
(3) For all x, y, z ∈ X , δ(x, y) ≤ K(δ(x, z) + δ(z, y)).

If (X, d) is a cone metric space, a setA ⊂ X is called closed if for any sequence {xn} ⊂ A
convergent to x we have x ∈ A.

A set A ⊂ X is said to be sequentially compact if for any sequence {xn} ⊂ A, there
exists a subsequence {xnk

} of {xn} such that {xnk
} is convergent to an element of A.

We denote N(X) the collection of all nonempty subsets of X and C(X) the collection
of all nonempty closed subsets ofX andK(X) the collection of all nonempty sequentially
compact subsets of X.

For further definitions and properties of cone metric spaces see [13, 26] and [24].

The concept of c-distance on a cone metric space (X, d), which was introduced by Y. J.
Cho, R. Saadati and S. Wang in [7], is a generalization of the concept of ω-distance given
by O. Kada, T. Suzuki and W. Takahashi in [16].

Definition 2.3. (See [7]). Let (X, d) be a cone metric space. Then a function q : X×X → E
is called a c-distance on X if the following conditions are satisfied:

(q1) For all x, y ∈ X , θ � q(x, y).
(q2) For all x, y, z ∈ X , q(x, z) � q(x, y) + q(y, z).
(q3) For each x ∈ X and n ≥ 1, if there exists u = ux ∈ P such that q(x, yn) � u, then

q(x, y) � u whenever (yn) is a sequence in X converging to y ∈ X .
(q4) For any c ∈ E with θ � c, there exists e ∈ E with θ � e such that q(z, x) � e and

q(z, y)� e imply d(x, y)� c.

Now we give some examples of c-distances on the cone metric space (R2, d) which we
considered in Example 2.2.
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Example 2.3. Let q : X × X → R3, defined by q(x, y) = d(x, y), for all x, y ∈ X . Then q
is a c-distance. Indeed, q obviously satisfies conditions (q1) and (q2). From Lemma 2.1 it
follows that q satisfies (q3). Indeed, if (yn) is a sequence in X with yn → y ∈ X and for
x, u ∈ X one has that

q(x, yn) � u ,
that is, u − d(x, yn) ∈ P for n ≥ 1. Taking xn = x for n = 1, 2, . . ., according Lemma 2.1
one has that d(xn, yn)→ d(x, y), and hence

u− d(xn, yn)→ u− d(x, y)
in (R3, ‖ · ‖). Since q(x, yn) � u, then for each positive integer n

u− q(x, yn) = u− d(xn, yn) ∈ P.
Therefore, tacking into account that P is a closed set, one follows that u−d(x, y) ∈ P , that
is, q(x, y) � u.

Finally, let c := (c1, c2, c3) ∈ R3 with (0, 0, 0)� (c1, c2, c3). This means that (c1, c2, c3) ∈
intP , and hence e := (e1, e2, e3) := ( c12 ,

c2
2 ,

c3
2 ) ∈ intP . Let us suppose that, for x, y, z ∈ X ,

q(z, x)� e and q(z, y)� e.
Then q(x, y) � q(x, z)+q(z, y)� (e1, e2, e3)+(e1, e2, e3) = c. So (q4) is satisfied. Hence

q is a c-distance.

Example 2.4. Let q : X ×X → R3, defined by

q(x, y) = d(θ, x) + d(θ, y)

for x, y ∈ X , and θ = (0, 0) ∈ R2. Hence

q(x, y) = (d∞(θ, x), d2(θ, x), d1(θ, x)) + (d∞(θ, y), d2(θ, y), d1(θ, y))

= (‖x‖∞ + ‖y‖∞, ‖x‖2 + ‖y‖2, ‖x‖1 + ‖y‖1).
Then q is a c-distance. Indeed, it immediately satisfies condition (q1). Since

q(x, z) := d(θ, x) + d(θ, z) ≤ d(θ, x) + d(θ, y) + d(θ, y) + d(θ, z) = q(x, y) + q(y, z),

also (q2) holds for q.
If (yn) is a sequence in X with yn → y ∈ X and for x, u ∈ X one has that

q(x, yn) � u ,
that is,

d(θ, x) + d(θ, yn) � u ,
Then u − (d(θ, x) + d(θ, yn)) ∈ P for n ≥ 1. Taking xn = θ for n = 1, 2, . . ., according
Lemma 2.1 one has that d(θ, yn)→ d(θ, y), and hence

u− (d(θ, x) + d(θ, yn))→ u− (d(θ, x) + d(θ, y)

in (R3, ‖ · ‖). Tacking into account that P is a closed set, one follows that u − (d(θ, x) +
d(θ, y) ∈ P , that is, q(x, y) � u.

Let c := (c1, c2, c3) ∈ R3 with (0, 0, 0) � (c1, c2, c3). As in the above examples, this
means that (c1, c2, c3) ∈ intP , and hence e := (e1, e2, e3) := ( c12 ,

c2
2 ,

c3
2 ) ∈ intP . Let us

suppose that, for x, y, z ∈ X , q(z, x)� e and q(z, y)� e. Then

d(x, y) � d(x, θ) + d(θ, y)
� d(θ, x) + d(θ, z) + d(θ, y) + d(θ, z)
= q(x, z) + q(y, z)
� e+ e = c.
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This shows that the mapping q satisfies (q4). Thus, we have obtained that q is a c-distance.

Example 2.5. Let q : X ×X → R3, defined by

q(x, y) = d(θ, y) = (‖y‖∞, ‖y‖2, ‖y‖1).

for all x, y ∈ X . Indeed, q immediately satisfies condition (q1). Since for all x, y, z ∈ X

q(x, z) = q(y, z) ≤ q(x, y) + q(y, z),

one has that q satisfies condition (q2). Let c := (c1, c2, c3) ∈ R3 with (0, 0, 0)� (c1, c2, c3).
As in the above examples, this means that (c1, c2, c3) ∈ intP , and hence e := (e1, e2, e3) :=
( c12 ,

c2
2 ,

c3
2 ) ∈ intP . Let us suppose that, for x, y, z ∈ X , q(z, x)� e and q(z, y)� e. Then

d(x, y) � d(x, θ) + d(θ, y) = d(θ, x) + d(θ, y) = q(z, x) + q(z, y)

� e+ e = c.

We get that q satisfies (q4), and hence it is a c-distance.

In [7] some further nontrivial examples of c-distances are given. The above example
can be used to check the following warnings, regarding the concept of c-distance, as Y. J.
Cho, R. Saadati and S. Wang [7] remarked.

Remark 2.1. Let q be a c-distance on a cone metric space (X, d). Then
(1) q(x, y) = q(y, x) does not necessarily hold for all x, y ∈ X ,
(2) q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X.

An important result in order to obtain fixed point theorems by using c-distances is the
following.

Lemma 2.3. (See [7, Lemma 2.12]).
Let (X, d) be a cone metric space, and let q be a c-distance onX . Let (xn) and (yn) be sequences

in X and x, y, z ∈ X . Suppose that (un) is a sequence in P converging to θ. Then the following
hold:

(1) if q(xn, y) � un and q(xn, z) � un, then y = z;
(2) if q(xn, yn) � un and q(xn, z) � un, then (yn) converges to a point z ∈ X;
(3) if q(xn, xm) � un for each m > n, then (xn) is a Cauchy sequence in X;
(4) if q(y, xn) � un, then (xn) is a Cauchy sequence in X.

Y. Feng and S. Liu [12] obtained an extension of Nadler’s fixed point theorem in com-
plete metric spaces in the following way:

Let (X, d) be a metric space. Let T : X → N(X) be a multivalued mapping. Define the
function f : X → R as f(x) = d(x, T (x)).

For a constant b ∈ (0, 1) and x ∈ X , define the set Ixb ⊂ X as

Ixb = {y ∈ T (x) : bd(x, y) ≤ d(x, T (x))}.

Theorem 2.1. (See [12]).
Let (X, d) be a complete metric space, T : X → C(X) be a multivalued mapping. If there

exists a constant c ∈ (0, 1) such that for any x ∈ X there is y ∈ Ixb satisfying

d(y, T (y)) ≤ cd(x, y),

then T has a fixed point in X provided c < b and f is lower semi-continuous.
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D. Wardowski, in [33], inspired by the work of Y. Feng and S. Liu [12], introduced
the concept of set-valued contractions in cone metric spaces and obtained a fixed point
theorem, considering the distance between a point and a set in the following way:

Let (X, d) be a cone metric space. Let T : X → C(X). For x ∈ X , we denote

D(x, Tx) = {d(x, z) ∈ E : z ∈ Tx},
S(x, Tx) = {u ∈ D(x, Tx) : ‖u‖ = inf{‖v‖ : v ∈ D(x, Tx)}}.

Recall that a mapping f : X → R is said to be lower semi-continuous at x ∈ X (lsc for
short), with respect to d, if for any sequence (xn) in X and x ∈ X with xn → x, the
inequality f(x) ≤ lim

n→∞
inf f(xn) holds. We say that the mapping f : X → R is lsc on X if

it is lcs at each point x ∈ X .

Theorem 2.2. (See [32]).
Let (X, d) be a complete cone metric space, P be a normal cone with normal constant K, and

let T : X → K(X). Assume that the function I : X → R defined by I(x) = infy∈Tx ‖d(x, y)‖,
x ∈ X , is lower semi-continuous. Then, the following statements hold:

(i) If there exists λ ∈ [0, 1), b ∈ (λ, 1] such that

∀x∈X∃y∈Tx∃v∈S(y,Ty)∀u∈S(x,Tx) {[bd(x, y) � u] ∧ [v � λd(x, y)]} ,
then Fix(T ) 6= ∅.
(ii) If there exist λ ∈ [0, 1), b ∈ (λ, 1] such that

∀x∈X∃y∈Tx∃v∈S(y,Ty)∀u∈S(x,Tx) {[bd(x, y) � u] ∧ [v � λd(x, y)]} ,
then Fix(T ) = End(T ) = ∅.

Let T : X → K(X), b ∈ (0, 1] and x ∈ X . We will consider the following set:

Ixb := {y ∈ T (x) : bd(x, y) ≤ S(x, T (x))},

3. FIXED POINT RESULTS

We present now a fixed point theorem for multivalued operators on cone metric spaces
endowed with a c-distance.

We need the following notation:
Let T : X → K(X) be a multivalued mapping, and let q be a c-distance on X. Define

the function f : X → R by
f(x) := Dq(x, T (x)),

where
Dq(x, T (x)) = inf

y∈T (x)
‖q(x, y)‖ .

Given x ∈ X , for each b ∈ [0, 1]

Ixb,q := {y ∈ T (x) : b ‖q(x, y)‖ ≤ Dq(x, T (x))}.

Remark 3.2. If T : X → K(X) is a multivalued mapping and 0 < b < 1, it is clear that,
for every x ∈ X , the set Ixb,q is nonempty.

Theorem 3.3. Let (X, d) be a complete cone metric space, P be a regular cone and let q be a
c-distance on X and let T : X → K(X) be a multivalued mapping. Assume that the mapping
g : X → R defined by g(x) = ‖q(x, y)‖, x ∈ X , is lower semicontinuous. If the following
conditions hold:

1. There exist b ∈ (0, 1) and ϕ : [0,∞[→ [0, b[ such that
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(1i) for each t ∈ [0,∞[,
lim
r→t+

supϕ(r) < b;

(1ii) for every x ∈ X , there exists y ∈ Ixb,q such that

Dq(y, T (y)) ≤ ϕ(‖q(x, y)‖) ‖q(x, y)‖ ;
2. for every y ∈ X with y /∈ T (y)

inf{‖q(x, y)‖+Dq(x, T (x)) : x ∈ X} > 0

3. If (εn) is a sequence of non negative real numbers with εn → 0, and (xn) is a sequence in X
with ‖q(xn, xm)‖ ≤ εn for m > n and n large enough, then (xn) is a Cauchy sequence in (X, d).

Then T has a fixed point.

Proof. For x0 ∈ X , by (1ii) there exists x1 ∈ Ix0

b,q ⊂ T (x0) which satisfies the following two
conditions:

(3.1) b ‖q(x0, x1)‖ ≤ Dq(x0, T (x0))

and

(3.2) Dq(x1, T (x1)) ≤ ϕ(‖q(x0, x1)‖) ‖q(x0, x1)‖
Inequalities (3.1) and (3.2) yield

Dq(x0, T (x0))−Dq(x1, T (x1)) ≥ b ‖q(x0, x1)‖ − ϕ(‖q(x0, x1)‖) ‖q(x0, x1)‖
= (b− ϕ(‖q(x0, x1)‖)) ‖q(x0, x1)‖ ≥ 0

Given x1, there exists x2 ∈ Ix1

b,q ⊂ T (x1) such that

(3.3) b ‖q(x1, x2)‖ ≤ Dq(x1, T (x1))

and

(3.4) Dq(x2, T (x2)) ≤ ϕ(‖q(x1, x2)‖) ‖q(x1, x2)‖
From (3.3) and (3.4) we have

Dq(x1, T (x1))−Dq(x2, T (x2)) ≥ b ‖q(x1, x2)‖ − ϕ(‖q(x1, x2)‖) ‖q(x1, x2)‖
= (b− ϕ(‖q(x1, x2)‖)) ‖q(x1, x2)‖ ≥ 0

From (3.3) and (3.2) we get the following inequality:

‖q(x1, x2)‖ ≤
1

b
Dq(x1, T (x1)) ≤

1

b
ϕ(‖q(x0, x1)‖) ‖q(x0, x1)‖

After an inductive process we get a sequence (xn) of elements of X satisfying the fol-
lowing conditions:

(i) for every n ∈ N, xn+1 ∈ T (xn);
(ii) b ‖q(xn, xn+1)‖ ≤ Dq(xn, T (xn));

(iii) Dq(xn+1, T (xn+1)) ≤ ϕ(‖q(xn, xn+1)‖) ‖q(xn, xn+1)‖ .
Applying these conditions (i), (ii), (iii) we have that for each n ∈ N, the following

inequalities:

(3.5)
{
Dq(xn, T (xn)) ≥ Dq(xn+1, T (xn+1)),
‖q(xn, xn+1)‖ ≤ ‖q(xn−1, xn)‖

Dq(xn, T (xn))−Dq(xn+1, T (xn+1)) ≥ (b− ϕ(‖q(xn, xn+1)‖)) ‖q(xn, xn+1)‖ ≥ 0

hold.
Inequalities (3.5) in turn implies that (‖(q(xn, xn+1))‖) is convergent to t ∈ [0,∞[.
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By assumption (1i) we may find p ∈ [0, b) such that

lim
n→∞

supϕ(‖q(xn, xn+1)‖) ≤ lim
r→t+

supϕ(r) = p.

Thus, given b0 ∈ (p, b) there exists n0 ∈ N such that for any n ≥ n0
(3.6) ϕ(‖q(xn, xn+1)‖) < b0.

Consequently, for any n ≥ n0 we have:

Dq(xn, T (xn))−Dq(xn+1, T (xn+1))(3.7)
≥ [b− ϕ(‖q(xn, xn+1)‖)] ‖q(xn, xn+1)‖ ≥ α ‖q(xn, xn+1)‖

where α = b− b0.
For each n > n0, inequalities (ii), (iii) and (3.6) yield.

Dq(xn+1, T (xn+1)) ≤ ϕ(‖q(xn, xn+1)‖) ‖q(xn, xn+1)‖(3.8)

≤ b0
1

b
Dq(xn, T (xn)) ≤ ... ≤

(
b0
b

)n−n0

Dq(x0, T (x0)).

Since b0 < b, lim
n→∞

(
b0
b

)n−n0
= 0. This means that lim

n→∞
Dq(xn, T (xn)) = 0.

If m > n > n0, by (3.7) we get that

‖q(xn, xm)‖ =

m−1∑
s=n

‖q(xs, xs+1)‖ ≤
1

α

m−1∑
s=n

(Dq(xs, T (xs))−Dq(xs+1, T (xs+1)))

=
1

α
(Dq(xn, T (xn))−Dq(xm, T (xm)))

≤ 1

α
Dq(xn, T (xn)).

We obtain that ‖q(xn, xm)‖ → 0. From assumption 3 we get that (xn) is a Cauchy
sequence in (X, d).

Since (X, d) is complete, then (xn) is a convergent sequence.
Let z ∈ X be the limit of the sequence (xn).Assume that z /∈ T (z). Since for each x ∈ X ,

g(x) = ‖q(x, y)‖ is lower semicontinuous, for every n > n0 we have that

(3.9) ‖q(xn, z)‖ ≤ lim
m→∞

inf ‖q(xn, xm)‖ ≤ 1

α
Dq(xn, T (xn))

By asumption (2) and using (3.9) we get that

0 < inf {‖q(x, z)‖+Dq(x, T (x)) : x ∈ X}
≤ inf {‖q(xn, z)‖+Dq(xn, T (xn)) : n > n0}

≤ inf

{
(1 +

2

α
)Dq(xn, T (xn)) : n > n0

}
= lim

n→∞
(1 +

2

α
)Dq(xn, T (xn)) = 0

This is a contradiction, so we conclude that z ∈ T (z). �

Example 3.6. Consider the set X := [0, 1]× [0, 1]. On this set we assume defined the cone
metric d introduced in Example 2.2, i.e. d : X ×X → R3 defined for x, y ∈ X as

d(x, y) = (d∞(x, y), d2(x, y), d1(x, y)) = (‖x− y‖∞, ‖x− y‖2, ‖x− y‖1).
On R3 we suppose defined the Euclidean norm ‖ · ‖, and the cone P under consideration
is just the positive octant P = {(u1, u2, u3) : u1 ≥ 0, u2 ≥ 0, u3 ≥ 0}. For a sequence (xn)
in X , and x ∈ it is easy to check that xn → x in the cone metric space (X, d) if and only if
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‖xn − x‖2 → 0. Hence a subset A of X is closed (sequentially compact) if and only if A is
closed (compact) in the usual topology of X .

With respect to the cone metric space (X, d) we define the c-distance considered in
Example 2.4, that is q : X → R3

q(x, y) = (‖x‖∞ + ‖y‖∞, ‖x‖2 + ‖y‖2, ‖x‖1 + ‖y‖1).

From the continuity of the norms in R2 and R3 it follows that (for each y ∈ X) the functions
x 7→ g(x) := ‖q(x, y)‖ are continuous and hence lsc.

Notice also that if x, y ∈ X

‖d(x, y)‖ = ‖(‖x− y‖∞, ‖x− y‖2, ‖x− y‖1)‖
≤ ‖(‖x‖∞ + ‖y‖∞, ‖x‖2 + ‖y‖2, ‖x‖1 + ‖y‖1)‖
= ‖q(x, y)‖.

Thus, q satisfies Assumption 3 of the above theorem.
We define the multivalued operator T : X → K(X) given by

T (x) = T ((x1, x2) = conv{(0, 0), (x1, 0), (0, x2)}.

Notice that the set T (x) is the solid triangle of vertices (0, 0), (x1, 0) and (0, x2). It is
obvious to check that the set of fixed points of T is just Fix(T ) = {(x1, x2) ∈ X : x1x2 =
0}, which is not convex in R2.

If x ∈ X , bearing in mind that y = (0, 0) ∈ T (x) and that the Euclidean norm is
monotone,

Dq(x, T (x)) := inf{‖q(x, y)‖ : y ∈ T (x)}
= inf{‖(‖x‖∞ + ‖y‖∞, ‖x‖2 + ‖y‖2, ‖x‖1 + ‖y‖1)‖ : y ∈ T (x)}
= ‖(‖x‖∞, ‖x‖2, ‖x‖1)‖ .

Given x ∈ X , for each b ∈ [0, 1] we have that:

Ixb,q := {y ∈ T (x) : b ‖q(x, y)‖ ≤ Dq(x, T (x))}
= {y ∈ T (x) : b ‖(‖x‖∞ + ‖y‖∞, ‖x‖2 + ‖y‖2, ‖x‖1 + ‖y‖1)‖ ≤ ‖(‖x‖∞, ‖x‖2, ‖x‖1)‖}

Therefore, y = (0, 0) ∈ Ixb,q . In summary, taking, for instance ϕ(t) = 1
2 t and b = 1

2 , given
x ∈ X , there exists y = (0, 0) ∈ Ixb,q such that

Dq(y, T (y)) ≤ ϕ(‖q(x, y)‖) ‖q(x, y)‖

because T (0, 0) = {(0, 0)} and we know that, Dq((0, 0), T ((0, 0))) = ‖q((0, 0), (0, 0))‖ =
‖(0, 0, 0)‖ = 0.

Finally we will check that the mapping T satisfies assumption 2 of the above theorem,
that is, for every y ∈ X with y /∈ T (y)

inf{‖q(x, y)‖+Dq(x, T (x)) : x ∈ X} > 0

Indeed it holds because, if y ∈ X such that y 6∈ T (y) then we know that y 6= (0, 0) and
hence

‖q(x, y)‖+Dq(x, T (x)) = ‖(‖x‖∞ + ‖y‖∞, ‖x‖2 + ‖y‖2, ‖x‖1 + ‖y‖1)‖
+ ‖(‖x‖∞, ‖x‖2, ‖x‖1)‖

≥ ‖(‖y‖∞, ‖y‖2, ‖y‖1)‖ .

Thus,
inf{‖q(x, y)‖+Dq(x, T (x)) : x ∈ X} ≥ ‖(‖y‖∞, ‖y‖2, ‖y‖1)‖ > 0.
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Remark 3.3. The set-valued mapping T considered in the above example was first defined
by K. M. Ko in [19]. Let us point out that this mapping is nonexpansive on X , that is, it
satisfies that for every x, y ∈ X

H2(T (x), T (y)) ≤ d2(x, y)
whereH2 stands for the well known Hausdorff-Pompeiu metric onC(X) associated to the
Euclidean metric d2. Therefore, the operator T falls into the scope of the corresponding
fixed point theorems for nonexpansive set-valued operators, for instance those which are
due to Markin (1965) [21].

However, is should be noted that our main theorem lies upon the notion of contractiv-
ity, which is deeply different than the notion of nonexpansivity. Thus, in this example it
is exhibited that an operator which is not contractive with respect to the ordinary notions
of distance, can become of contractive type under c-distances.
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