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A new approach to fixed point theorems for multivalued
contractive maps

GÜLHAN MINAK, MURAT OLGUN and ISHAK ALTUN

ABSTRACT. In the present paper, considering the Wardowski’s technique we give many fixed point results
for multivalued maps on complete metric space without using the Hausdorff metric. Our results are real gener-
alization of some related fixed point theorems including the famous Feng and Liu’s result in the literature. We
also give some examples to both illustrate and show that our results are proper generalizations of the mentioned
theorems.

1. INTRODUCTION AND PRELIMINARIES

Let (X, d) be a metric space. P (X) denotes the family of all nonempty subsets of X,
C(X) denotes the family of all nonempty, closed subsets of X, CB(X) denotes the family
of all nonempty, closed and bounded subsets of X and K(X) denotes the family of all
nonempty compact subsets of X. It is clear that, K(X) ⊆ CB(X) ⊆ C(X) ⊆ P (X). For
A,B ∈ C(X), let

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
,

where d(x,B) = inf {d(x, y) : y ∈ B}. Then H is called generalized Pompeiu-Hausdorff
distance onC(X). It is well known that,H is a metric onCB(X), which is called Pompeiu-
Hausdorff metric induced by d. We can find detailed information about the Pompeiu-
Hausdorff metric in [4, 9]. Let T : X → CB(X) be a map, then T is called multivalued
contraction (see [13]) if for all x, y ∈ X there exists L ∈ [0, 1) such that

H(Tx, Ty) ≤ Ld(x, y).
In 1969, Nadler [13] proved that every multivalued contraction on a complete metric space
has a fixed point.

Then various fixed point theorems concerning with for multivalued contractions ap-
peared in the last decades; see, for instance, [3, 5, 6, 7, 10, 11, 12, 15, 16]. Concerning these,
the following theorem was given by Feng and Liu [8].

Theorem 1.1 ([8]). Let (X, d) be a complete metric space, T : X → C(X) be a multi-valued
mapping. If there exists a constant c ∈ (0, 1) such that for any x ∈ X there is y ∈ Ixb , where

Ixb = {y ∈ Tx : bd(x, y) ≤ d(x, Tx)} and b ∈ (0, 1),

satisfying
d(y, Ty) ≤ cd(x, y)

then T has a fixed point in X provided c < b and the function x → d(x, Tx) lower semi-
continuous.
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In the present paper, we give some fixed point results, which extend and general-
ize many fixed point theorems including Theorem 1.1 in the literature, for multivalued
mappings without using the Pompeiu-Hausdorff metric. Our results are based on the
new approach to contraction mapping, which is called F -contraction. The concept of
F -contraction for single valued maps on complete metric space was introduced by War-
dowski [17]. First, we recall this new concept and some related results.

Let F : (0,∞) → R be a function. For the sake of completeness, we will consider the
following conditions:

(F1) F is strictly increasing, i.e., for all α, β ∈ (0,∞) such that α < β, F (α) < F (β),
(F2) For each sequence {αn} of positive numbers

lim
n→∞

αn = 0 if and only if lim
n→∞

F (αn) = −∞,

(F3) There exists k ∈ (0, 1) such that limα→0+ α
kF (α) = 0,

(F4) F (inf A) = inf F (A) for all A ⊂ (0,∞) with inf A > 0.
We denote by F and F∗ be the set of all functions F satisfying (F1)-(F3) and (F1)-(F4),

respectively. It is clear that F∗ ⊂ F and some examples of the functions belonging F∗
are F1(α) = lnα, F2(α) = α + lnα, F3(α) = − 1√

α
and F4(α) = ln

(
α2 + α

)
. If we define

F5(α) = lnα for α ≤ 1 and F5(α) = 2α for α > 1, then F5 ∈ F\F∗.

Remark 1.1. If F satisfies (F1), then it satisfies (F4) if and only if it is right continuous.

Definition 1.1 ([17]). Let (X, d) be a metric space and T : X → X be a mapping. Then, we
say that T is an F -contraction if F ∈ F and there exists τ > 0 such that

(1.1) ∀x, y ∈ X [d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y))].

If we take F (α) = lnα in Definition 1.1, the inequality (1.1) turns to

(1.2) d(Tx, Ty) ≤ e−τd(x, y), for all x, y ∈ X,Tx 6= Ty.

It is clear that for x, y ∈ X such that Tx = Ty, the inequality d(Tx, Ty) ≤ e−τd(x, y) also
holds. Thus T is an ordinary contraction with contractive constant L = e−τ . Therefore
every ordinary contraction is also F -contraction, but the converse may not be true as
shown in the Example 2.5 of [17]. If we choose F (α) = α+ lnα, the inequality (1.1) turns
to

(1.3)
d(Tx, Ty)

d(x, y)
ed(Tx,Ty)−d(x,y) ≤ e−τ , for all x, y ∈ X,Tx 6= Ty.

In addition, Wardowski showed that every F -contraction T is a contractive mapping, i.e.,

d(Tx, Ty) < d(x, y), for all x, y ∈ X,Tx 6= Ty.

Thus, everyF -contraction is a continuous map. Also, Wardowski concluded that ifF1, F2 ∈
F with F1(α) ≤ F2(α) for all α > 0 and G = F2 − F1 is nondecreasing, then every F1-
contraction T is an F2-contraction. He noted that for the mappings F1(α) = lnα and
F2(α) = α + lnα, F1 < F2 and the mapping F2 − F1 is strictly increasing. Hence, every
Banach contraction satisfies the contractive condition (1.3). On the other side, Example
2.5 in [17] shows that the mapping T is not F1-contraction (Banach Contraction), but still
is an F2-contraction. Thus, the following theorem is a proper generalization of Banach
Contraction Principle.

Theorem 1.2 ([17]). Let (X, d) be a complete metric space and T : X → X be an F -contraction.
Then T has a unique fixed point in X.
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By combining the ideas of Wardowski and Nadler, Altun et al [2] introduced the con-
cept of multivalued F -contractions and obtained some fixed point results for these type
mappings on complete metric space.

Definition 1.2 ([2]). Let (X, d) be a metric space and T : X → CB(X) be a mapping. Then
we say that T is a multivalued F -contraction if F ∈ F and there exists τ > 0 such that

∀x, y ∈ X [H(Tx, Ty) > 0⇒ τ + F (H(Tx, Ty)) ≤ F (d(x, y))].

By the considering F (α) = lnα, then every multivalued contraction in the sense of
Nadler is also multivalued F -contraction.

Theorem 1.3 ([2]). Let (X, d) be a complete metric space and T : X → K(X) be a multivalued
F -contraction, then T has a fixed point in X.

Here, the following question may come to mind: Can we take CB(X) instead of K(X)
in Theorem 1.3? By adding the condition (F4) on F , this question has been solved as
follows:

Theorem 1.4 ([2]). Let (X, d) be a complete metric space and T : X → CB(X) be a multivalued
F -contraction. Suppose F ∈ F∗, then T has a fixed point in X.

2. MAIN RESULTS

Let T : X → P (X) be a multivalued map, F ∈ F and σ > 0. For x ∈ X with
d(x, Tx) > 0, define the set F xσ ⊆ X as

F xσ = {y ∈ Tx : F (d(x, y)) ≤ F (d(x, Tx)) + σ}.

We need to consider the following cases:
If T : X → K(X), then for all σ > 0 and x ∈ X with d(x, Tx) > 0, we have F xσ 6= ∅.

Indeed, since Tx is compact, for every x ∈ X we have y ∈ Tx such that d(x, y) = d(x, Tx).
Therefore, for every x ∈ X with d(x, Tx) > 0, we have F (d(x, y)) = F (d(x, Tx)). Thus
y ∈ F xσ for all σ > 0.

If T : X → C(X), then F xσ may be empty for some x ∈ X and σ > 0. For example, let
F (α) = lnα for α ≤ 1 and F (α) = 2α for α > 1 and let X = {0} ∪ (1, 2) with the usual
metric. Define T : X → C(X) by T0 = (1, 2) and Tx = {0} for x ∈ (1, 2). Then, for x = 0
we have (note that d(0, T0) = 1 > 0)

F 0
1 = {y ∈ T0 : F (d(0, y)) ≤ F (d(0, T0)) + 1}

= {y ∈ (1, 2) : F (y) ≤ F (1) + 1}
= {y ∈ (1, 2) : 2y ≤ 1}
= ∅.

If T : X → C(X) (even if T : X → P (X)) and F ∈ F∗, then for all σ > 0 and x ∈ X
with d(x, Tx) > 0, we have F xσ 6= ∅. Indeed, by (F4), we have

F xσ = {y ∈ Tx : F (d(x, y)) ≤ F (d(x, Tx)) + σ}
= {y ∈ Tx : F (d(x, y)) ≤ F (inf{d(x, y) : y ∈ Tx}) + σ}
= {y ∈ Tx : F (d(x, y)) ≤ inf{F (d(x, y)) : y ∈ Tx}+ σ}
6= ∅.

By considering the above facts we give the following theorems:
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Theorem 2.5. Let (X, d) be a complete metric space, T : X → K(X) be a multivalued map and
F ∈ F . If there exists τ > 0 such that for any x ∈ X with d(x, Tx) > 0, there exists y ∈ F xσ
satisfying

τ + F (d(y, Ty)) ≤ F (d(x, y)),
then T has a fixed point in X provided σ < τ and x→ d(x, Tx) is lower semi-continuous.

Proof. Suppose that T has no fixed point. Then, for all x ∈ X we have d(x, Tx) > 0. Since
Tx ∈ K(X) for every x ∈ X , the set F xσ is nonempty for any σ > 0. Let x0 ∈ X be any
initial point, then there exists x1 ∈ F x0

σ such that

τ + F (d(x1, Tx1)) ≤ F (d(x0, x1))
and for x1 ∈ X , there exists x2 ∈ F x1

σ satisfying

τ + F (d(x2, Tx2)) ≤ F (d(x1, x2)).
Continuing this process we get an iterative sequence {xn}, where xn+1 ∈ F xn

σ and

(2.4) τ + F (d(xn+1, Txn+1)) ≤ F (d(xn, xn+1)).

We will verify that {xn} is a Cauchy sequence. Since xn+1 ∈ F xn
σ we have

(2.5) F (d(xn, xn+1)) ≤ F (d(xn, Txn)) + σ.

From (2.4) and (2.5) we have

(2.6) F (d(xn+1, Txn+1)) ≤ F (d(xn, Txn)) + σ − τ
and

(2.7) F (d(xn+1, xn+2)) ≤ F (d(xn, xn+1)) + σ − τ.
By the way we can obtain

(2.8) F (d(xn, xn+1)) ≤ F (d(x0, x1)) + n(σ − τ)
and

(2.9) F (d(xn, Txn)) ≤ F (d(x0, Tx0)) + n(σ − τ).
From (2.8), we get limn→∞ F (d(xn, xn+1)) = −∞. Thus, from (F2), we have

lim
n→∞

d(xn, xn+1) = 0.

Therefore, from (F3) there exists k ∈ (0, 1) such that

lim
n→∞

[d(xn, xn+1)]
k
F (d(xn, xn+1)) = 0.

Again, by (2.8), the following holds for all n ∈ N

[d(xn, xn+1)]
k
F (d(xn, xn+1))− [d(xn, xn+1)]

k
F (d(x0, x1))(2.10)

≤ [d(xn, xn+1)]
k
n(σ − τ) ≤ 0.

Letting n→∞ in (2.10), we obtain that

(2.11) lim
n→∞

n [d(xn, xn+1)]
k
= 0.

From (2.11), there exits n1 ∈ N such that n [d(xn, xn+1)]
k ≤ 1 for all n ≥ n1. So, we have,

for all n ≥ n1

(2.12) d(xn, xn+1) ≤
1

n1/k
.
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In order to show that {xn} is a Cauchy sequence consider m,n ∈ N such that m > n ≥ n1.
Using the triangular inequality for the metric and from (2.12), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

=

m−1∑
i=n

d(xi, xi+1) ≤
∞∑
i=n

d(xi, xi+1) ≤
∞∑
i=n

1

i1/k

By the convergence of the series
∞∑
i=1

1
i1/k

, passing to limit n,m→∞,we get d(xn, xm) → 0.

This yields that {xn} is a Cauchy sequence in (X, d). Since (X, d) is a complete metric
space, the sequence {xn} converges to some point z ∈ X , that is, limn→∞ xn = z. On the
other hand, from (2.9) and (F2) we have

lim
n→∞

d(xn, Txn) = 0.

Since x→ d(x, Tx) is lower semi-continuous, then

0 ≤ d(z, Tz) ≤ lim inf
n→∞

d(xn, Txn) = 0.

This is a contradiction. Hence T has a fixed point. �

In the following theorem we replace C(X) by K(X), but we need to take F ∈ F∗.

Theorem 2.6. Let (X, d) be a complete metric space, T : X → C(X) and F ∈ F∗. If there exists
τ > 0 such that for any x ∈ X with d(x, Tx) > 0, there exists y ∈ F xσ satisfying

τ + F (d(y, Ty)) ≤ F (d(x, y))

then T has a fixed point in X provided σ < τ and x→ d(x, Tx) is lower semi-continuous.

Proof. Suppose that T has no fixed point. Then, for all x ∈ X we have d(x, Tx) > 0. Since
F ∈ F∗, for any x ∈ X the set F xσ is nonempty for any σ > 0. The rest of the proof can be
completed as in the proof of Theorem 2.5 by considering the closedness of Tz. �

Corollary 2.1 (Theorem 1.1). Let (X, d) be a complete metric space, T : X → C(X). If there
exists c ∈ (0, 1) such that for any x ∈ X , there exists y ∈ Ixb (b ∈ (0, 1)) satisfying

d(y, Ty) ≤ cd(x, y),

then T has a fixed point in X provided c < b and x→ d(x, Tx) is lower semi-continuous.

Proof. Suppose that T has no fixed point. Then, for all x ∈ X we have d(x, Tx) > 0. If
we define F (α) = lnα, τ = − ln c and σ = − ln b in Theorem 2.6, then T has a fixed point,
which is a contradiction. �

Remark 2.2. Theorem 2.5 is a generalization of Theorem 1.3. In fact, let T satisfies the
conditions of Theorem 1.3. Since every multivalued F -contractions are multivalued non-
expansive and every multivalued nonexpansive maps are upper semi-continuous, then T
is upper semi-continuous. Therefore, the function x→ d(x, Tx) is lower semi-continuous
(see the Proposition 4.2.6 of [1]). On the other hand, for any x ∈ X with d(x, Tx) > 0 and
y ∈ F xσ , we have

τ + F (d(y, Ty)) ≤ τ + F (H(Tx, Ty)) ≤ F (d(x, y)).

Hence T satisfies conditions of Theorem 2.5, the existence of a fixed point has been proved.
There is the similar relation between Theorem 1.4 and Theorem 2.6.
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The following example shows that Theorem 2.5 (resp. Theorem 2.6) is a proper gener-
alization of Theorem 1.3 (resp. Theorem 1.4).

Example 2.1. LetX = { 1
2n−1 : n ∈ N}∪{0}with the usual metric d, then (X, d) is complete

metric space. Define a mapping T : X → C(X) as

Tx =

 {
1
2n , 1} , x = 1

2n−1

{0, 12} , x = 0
.

Since H(T 1
2 , T0) =

1
2 = d( 12 , 0), then for all F ∈ F and τ > 0 we have

τ + F (H(T
1

2
, T0)) > F (d(

1

2
, 0)).

Thus T is not multivalued F -contraction. Therefore Theorem 1.3 and Theorem 1.4 can not
be applied to this example.

On the other hand, it is easy to compute that

d(x, Tx) =


1
2n , x = 1

2n−1 , n > 1

0 , x = 0, 1
,

hence x → d(x, Tx) is lower semi-continuous. Now, let F (α) = lnα. If d(x, Tx) > 0 then
x = 1

2n−1 , n > 1. Thus for y = 1
2n ∈ Tx we have

F (d(x, y))− F (d(x, Tx)) = 0

and

F (d(y, Ty))− F (d(x, y)) = ln(
1

2n+1
)− ln(

1

2n
)

= ln(
2n

2n+1
)

= ln
1

2
= − ln 2.

Therefore, y ∈ F xσ and
τ + F (d(y, Ty)) ≤ F (d(x, y))

is satisfied for 0 < σ < τ ≤ ln 2. Hence all conditions of Theorem 2.5 and Theorem 2.6 are
satisfied and so T has a fixed point.

In the following theorem we replace P (X) by C(X), but we need to add an extra con-
dition.

Theorem 2.7. Let (X, d) be a complete metric space, T : X → P (X) and F ∈ F∗. Suppose
there exists τ > 0 such that for any x ∈ X with d(x, Tx) > 0, there exists y ∈ F xσ satisfying
d(y, Ty) > 0 and

τ + F (d(y, Ty)) ≤ F (d(x, y)).
If there exists x0 ∈ X with d(x0, Tx0) > 0 such that for all convergent sequence {xn} with
xn+1 ∈ Txn, we have T (limxn) is closed, then T has a fixed point in X provided σ < τ and
x→ d(x, Tx) is lower semi-continuous.
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Proof. Since d(x0, Tx0) > 0, then there exists x1 ∈ F x0
σ such that d(x1, Tx1) > 0 and

τ + F (d(x1, Tx1)) ≤ F (d(x0, x1)).

Also, since d(x1, Tx1) > 0, there exists x2 ∈ F x1
σ satisfying d(x2, Tx2) > 0 and

τ + F (d(x2, Tx2)) ≤ F (d(x1, x2)).

Continuing this process we get an iterative sequence {xn} as in the proof of Theorem 2.5
such that xn+1 ∈ Txn and {xn} is Cauchy. Since X is complete, {xn} converges to a point
of X , say z. By the hypotheses, we have Tz is closed. On the other hand from (2.9) and
(F2) we have

lim
n→∞

d(xn, Txn) = 0.

Since x→ d(x, Tx) is lower semi-continuous, then

0 ≤ d(z, Tz) ≤ lim inf
n→∞

d(xn, Txn) = 0

and so z ∈ Tz. Hence T has a fixed point. �

Corollary 2.2. Let (X, d) be a complete metric space, T : X → P (X). Suppose there exists
c ∈ (0, 1) such that for any x ∈ X with d(x, Tx) > 0 there exists y ∈ Ixb (b ∈ (0, 1)) satisfying

(2.13) 0 < d(y, Ty) ≤ cd(x, y).

If there exists x0 ∈ X with d(x0, Tx0) > 0 such that for all convergent sequence {xn} with
xn+1 ∈ Txn, we have T (limxn) is closed, then T has a fixed point in X provided c < b and
x→ d(x, Tx) is lower semi-continuous.

Proof. If we take F (α) = lnα, τ = − ln c and σ = − ln b in Theorem 2.7, then the proof is
complete. �

Example 2.2. Let X = [0, 2] with the usual metric. Define T : X → P (X) as

Tx =

 (x4 ,
x
2 ] , x ∈ (0, 1]

{x2} , x ∈ {0} ∪ (1, 2]
.

Since Tx is not closed for some x ∈ X , both Nadler’s result and Theorem 1.1 can not be
applied to this example. On the other hand if we take 1

2 ≤ c < b and x0 ∈ (0, 2], then all
conditions of Corollary 2.2 are satisfied. Indeed, if d(x, Tx) > 0, then x ∈ (0, 2] and so, for
y = x

2 ∈ Tx, we have

bd(x, y) = bd(x,
x

2
) = b

x

2
≤ x

2
= d(x, Tx)

and
d(y, Ty) = d(

x

2
, T
x

2
) =

x

4
≤ cx

2
= cd(x, y).

That is, y ∈ Ixb for any x ∈ X with d(x, Tx) > 0 and (2.13) is satisfied. Now, let x0 ∈ (0, 2],
then we have, for all n ∈ N, 0 < xn ≤ x0

2n for the sequence {xn} with xn+1 ∈ Txn.
Therefore {xn} converges to 0 and T0 is closed. Finally, the function f(x) = d(x, Tx) = x

2
is lower semi-continuous. Therefore all conditions of Corollary 2.2 are satisfied and so T
has a fixed point.
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