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The metric dimension of strong product graphs

JUAN A. RODRIGUEZ-VELAZQUEZ!, DOROTA KUZIAK!, ISMAEL G. YERO? and JOSE M.
SIGARRETA®

ABSTRACT. For an ordered subset S = {s1, s2,... sk} of vertices in a connected graph G, the metric repre-
sentation of a vertex u with respect to the set S is the k-vector r(u|S) = (dg (v, s1),da (v, s2), ..., da(v, sk)),
where dg (z,y) represents the distance between the vertices = and y. The set S is a metric generator for G if
every two different vertices of G have distinct metric representations with respect to S. A minimum metric gen-
erator is called a metric basis for G and its cardinality, dim(G), the metric dimension of G. It is well known that
the problem of finding the metric dimension of a graph is NP-Hard. In this paper we obtain closed formulae
and tight bounds for the metric dimension of strong product graphs.

1. INTRODUCTION

A generator of a metric space is a set S of points in the space with the property that
every point of the space is uniquely determined by its distances from the elements of S.
Given a simple and connected graph G = (V, E), we consider the metricdg : V x V = N,
where d¢(x,y) is the length of a shortest path between x and y. (V, d¢) is clearly a metric
space. A vertex v € V is said to distinguish two vertices = and y if dg (v, x) # da(v,y). A
set S C V is said to be a metric generator for G if any pair of vertices of G is distinguished
by some element of S. A metric generator of minimum cardinality is called a metric basis,
and its cardinality the metric dimension of G, denoted by dim(G).

If S = {s1,s2,...s,} and u is a vertex of G, then the metric representation of u with
respect to S is the k-vector r(ulS) = (dg(v,s1),da(v, s2),. .., da(v, si)). Hence, the set
S is a metric generator for G if every two different vertices of G have distinct metric
representations with respect to S.

The concept of metric dimension was introduced by Slater in [16], where the metric
generators were called locating sets, and studied independently by Harary and Melter [5],
where the metric generators were called resolving sets. Applications of this invariant to the
navigation of robots in networks are discussed in [9], and applications to chemistry in [7,
8]. This invariant was studied further in a number of other papers, including for example
[2, 3, 4, 14, 17, 18]. Several variations of metric generators have been appearing in the
literature, like those about resolving dominating sets [1], local metric sets [14], resolving
partitions [4, 17], and strong metric generators [11, 15].

It was shown in [9] that the problem of computing dim(G) is NP-complete. This sug-
gests finding the metric dimension for special classes of graphs, or obtaining good bounds
on this invariant. Metric basis have been studied, for instance, for digraphs [13], Carte-
sian product graphs [2, 17], corona product graphs [11, 18], distance-hereditary graphs
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[12], and Hamming graphs [10]. In this paper we study the problem of finding exact val-
ues or sharp bounds for the metric dimension of strong product graphs, and express these
in terms of invariants of the factor graphs.

The strong product of two graphs G = (V1, E1) and H = (V, E») is the graph GR H =
(V,E), such that V = V; x V; and two vertices (a,b), (¢,d) € V are adjacent in G X H if
and only if (¢« = cand bd € Es) or (b = d and ac € E;) or (ac € E; and bd € E»).

One of our tools will be a well-known result, which states the relationship between the
vertex distances in G' X H and the vertex distances in the factor graphs.

Remark 1.1. [6] Let G and H be two connected graphs. Then
demu((a,b), (¢,d)) = max{dg(a,c),dm(b,d)}.

2. RESULTS

We begin with a general upper bound for the metric dimension of strong product
graphs.

Theorem 2.1. Let G and H be two connected graphs of order nq > 2 and ny, respectively. Then
dim(GR H) < ny -dim(H) + ng - dim(G) — dim(G) - dim(H).

Proof. Let Vi = {uq,ug, ..., un, } and Vo = {v1,va, ..., vp, } be the set of vertices of G and H,
respectively. Let S = (V4 x S2) U (S1 x V2), where S; and S5 are metric basis for G and
H, respectively. Let (u;,v;) and (ug,v;) be two different vertices of G X H. Let u, € Si
such that u;, u;, are distinguished by u, and let vg € S, such that v;,v; are distinguished
by vg. If i = k, then (u;,v;) and (ux,v;) are distinguished by (u;,v3) € (Vi x S3) C S.
Analogously, if j = [, then (u;, v;) and (u, v;) are distinguished by (uq,v;) € (S1 X V2) C
S. If i # k and j # [, then we suppose that neither (u;,v3) nor (ug,vg) distinguishes the
pair (u;,vj), (ug, v1), i.e.,

(2.1) dGﬁH((uiv Uj)? (uia 1}5)) = dGlgH((uka 'Ul)’ (uiv UB))
and
(2.2) dawm ((ui,vj), (uk, vg)) = dasm ((wrk, vr), (uk, vg)).-

By (2.1) we have dg (v;, vg) = max{dq (uk, u;), da (v, vg) } and since d (v}, vg) # dp (v, vg),
we obtain that
(2.3) dg(vj,vp) = da(ur, u;)-

Also, by (2.2) we have dg(v;,vg) = max{dg(u;,ur),dn(v;,vs)} and since dg(vj,vg) #
dp (v, vg), we obtain that

(2.4) dH(’Ul,Ug) = dg(ui,uk).
From (2.3) and (2.4) we have that dy (vj,vs) = du (v, vg), which is a contradiction with
the statement that v;, v; are distinguished by v in H. O

Since K,,, XK,,, = K,,.», and for any complete graph K,,, dim(K,) = n—1, we deduce
dim(K,, XK,,) =n1-ng—1
=ny(ne —1) +na(ny — 1) — (ng — 1)(ne — 1)
=ny - dim(K,,) + ng - dim(K,,) — dim(K,,) - dim(K,,).

Therefore, the above bound is tight. Examples of non-complete graphs, where the above
bound is attained, can be derived from Theorem 2.3.
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Given two vertices x and y in a connected graph G = (V, E), the interval I[z, y] between
2 and y is defined as the collection of all vertices which lie on some shortest « — y path.
Given a nonnegative integer k, we say that G is self k-resolved if for every two different
vertices z,y € V, there exists w € V such that (dg(y, w) > kand z € Iy, w]) or (dg(z,w) >
k and y € I[z,w]). For instance, the path and the cycle graphs of order n (n > 2) are self
[2]-resolved, the two-dimensional grid graphs P,00P,, are self ([%]+ [%2'])-resolved,
and the hypercube graphs (), are self k-resolved.

Theorem 2.2. Let H be a self k-resolved graph of order ny and let G be a graph of diameter
D(G) < k. Then dim(G X H) < ny - dim(G).

Proof. Let Vi = {uq, ug,...,un, } and Vo = {v1, v, ..., v, } be the set of vertices of G and
H, respectively. Let S; be a metric generator for G. We will show that S = 51 x Vaisa
metric generator for G X H. Let (u;,v;), (u,, v;) be two different vertices of G X H. We
differentiate the following two cases.

Case 1. j = I. Since i # r and S; is a metric generator for G, there exists u € S; such
that dg (ui, v) # dg(ur, u). Hence,

dG&H((uiv Uj)a (U,, U])) = dG(uia u) 7é dG(uT7 U) = dG@H((uT7 Uj)7 (U, vj))
Case 2. j # . Since H is self k-resolved, there exists v € V5 such that (dgy(v,v;) > k
and v; € I[v,v]) or (dg(v,v;) > kand v; € I[v,v;]). Say dg(v,v;) > kand v; € I[v,v]. In
such a case, for every u € S we have

demp ((wi,v5), (v, v)) = max{dg(u;, u), du (vj,v)}
< dg(v,v)
= max{dg(u,u,),dmg(v,v;)}
= daru ((ur, v1), (u,v)).

Therefore, S is a metric generator for G X H. O

Now we derive some consequences of the above result.

Corollary 2.1. Let ny > 2 be an integer.

e For any integer ngy > 4 such that ny — 1 < |22, dim(P,, ¥ Cy,) < no.
o Let k > 2 be an integer. For any self k-resolved graph H of order ngy, dim(K,, X H) <
(n1 — ].)712

Given a vertex v of a graph G = (V, E), we denote by N¢(v) the open neighborhood of
v, L.e., the set of neighbors of v, and by Ng[v] the closed neighborhood of v, i.e., Ng[v] =
Ng(v) U {v}. Two vertices u and v are false twins if Ng(u) = Ng(v), while they are true
twins if Ng[u] = Ng[v]. Note that if two vertices v and v of a graph G = (V, E) are (true
or false) twins, then dg(z,u) = dg(z,v), for every x € V — {u,v}. We define the true
twin equivalence relation R on V(G) as follows: 2Ry <+ Ng|[z] = Ngly]. If the true twin
equivalence classes are Uy, Us, ..., U;, then every metric generator of G must contain at
least |U;| — 1 vertices from U, for each i € {1, ...,t}. Therefore, since Uy, Us, ..., U; form a
partition of V(G), it follows dim(G) > Z§=1(|Ui‘ — 1) = n —t, where n is the order of G.

Theorem 2.3. Let G and H be two nontrivial connected graphs of order ny and ny, having t,
and to true twin equivalent classes, respectively. Then dim(G X H) > nyng — t1to. Moreover, if
dzm(G) =n1 — 1t and dzm(H) =no — to, then dzm(G X H) =ning — tits.
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Proof. Let Uy, Us,...,Uy, and Uy, Uy, ..., Uj, be the true twin equivalence classes of G and
H, respectively. Since each U; (and Uj) induces a clique and its vertices have identical
closed neighborhoods, for every a,c € U; and b,d € U 7/-,

Newpul(a,b)] = {(z,y) : = € Nglal,y € Nu[b]}
={(z,y) : = € Ng[c],y € Ngld]}
= Newmul(c, d)].

Hence, V(G) xV(H) is partitioned as V(G) x V(H) = Uﬁf“:l (U?:l U; x Uj’-), where U; x U]
induces a clique in GX H and its vertices have identical closed neighborhoods. Therefore,
the metric dimension of G X H is at least Z?":l <Z§;1(|Ui||Uj| - 1)) = ning — tits.

Finally, if dim(G) = ny — t1 and dim(H) = na — t2, then the above bound and Theorem
2.1 lead to dzm(G X H) =Nning — Ifltz. Il

As an example of non-complete graph G of order n having ¢ true twin equivalence
!

classes, where dim(G) = n—t, we take G = K1 + (U K,,),r; > 2,1 > 2. Inthis case G has
i=1
t = [+1 true twin equivalence classes, n = 1—|—Zli:1 r; and dim(G) = Zizl(ri —1)=n—t.

Corollary 2.2. Let H be a graph of order ny. Let G be a nontrivial connected graph of order ny,
having t1 true twin equivalence classes. Then dim(G X H) > na(ng — t1).

Theorem 2.2 and Corollary 2.2 lead to the following result.

Theorem 2.4. Let H be a self k-resolved graph of order ny and let G be a nontrivial connected
graph of order ny, having t, true twin equivalence classes and diameter D(G) < k. If dim(G) =
ny —ti, then dzm(G X H) = TLQ(TLl — tl).

Lemma 2.1. A nontrivial connected graph is self 2-resolved if and only if it does not have true
twin vertices.

Proof. Necessity. Let G be a 2-resolved graph. Let 2 and y be two adjacent vertices in G.
Without loss of generality, we take w € V(G) such that 2 < k = dg(z,w) and y € I[z, w].
So, there exists a shortest path z,y, us,...,ux—1,w from z to w and, as a consequence,
uz € Ngly] and us € Ng[z]. Therefore, G does not have true twin vertices.

Sufficiency. If for every u,v € V(G), Nglu] # Ng[v], then for each pair of adjacent
vertices = and y, there exists w € V(G) — {z, y} such that (dg(z,w) = 2and y € I[z,w]) or
(dg(y,w) =2 and = € I[y,w]). On the other hand, if dg(u,v) > 2, then for w = u we have
dg(v,w) > 2 and u € I[v,w]. Therefore, G is self 2-resolved. O

By Lemma 2.1 we deduce the following consequence of Theorem 2.4.

Corollary 2.3. Let H be a connected graph of order ny > 3. If H does not have true twin vertices
and ny > 2, then dim(K,, K H) = na(ny — 1).

The following remark emphasizes some particular cases of the above result.
Remark 2.2. Let n; > 2 be an integer.
e For any tree T of order ny > 3, dim(K,, KT) = na(ny — 1).

e For any ny > 4, dim(K,, X Cp,) = na(ny — 1).
e For any hypercube Q, = Ko --OKy, r > 2, dim(K,,, KQ,) =2"(n; — 1).
—_—

T
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e For any integers m,n > 2, dim(K,, X (P,0P,,)) =n-m- (n1 — 1).
Now we proceed to study the strong product of path graphs.

Theorem 2.5. For any integers ny and ny such that 2 < ny < ng,

ny+no —2
’/7,1—1

J < dim(P,, B P,,) < {

Proof. Let Vi = {u1,ug,...,un, } and Vo = {v1, vg, ..., vy, } be the set of vertices of P,, and
P,,, respectively. With the above notation we suppose that two consecutive vertices of V;
are adjacent, i € {1, 2}.

Leta = Mf:ﬂ — 1. We define the set S of cardinality [”lﬁiffﬂ as follows:

S = {(u17 Ul)a (unl?vn1)7 (u17 U2(n1—1)+1)a (un1 ) U3(n1—1)+1)7 ) (ulv 'Uoz(n1—1)+1)7 (un1 ) Unz)}

if [”2’1—‘ is odd, and

ni—1
S = {(ula Ul)a (unl ) v’nl)a (uh UQ(nlfl)%»l)a (u’nl ) ’U3(n171)+1)7 weey (unluva(n171)+1)7 (ul ) Unz)}

if Mf—:ﬂ is even.

We will show that S is a metric generator for P,, X P,,.

Let (u;, v;), (ug, v;) be two different vertices of P,,, X P,,. We differentiate two cases.

Case 1. j = I. We suppose, without loss of generality, that ¢ < k. If j € {1,...,n;} and
dp, &p,, (Wi, v;), (Uny,Uny)) = dp, wp,, ((Uk, V), (Un,, vn,)), then from max{n, —i,n; —
j} = max{ny — k,n; — j} wehaven; —j > ny —i¢ > ny — k. Hence, j < k and, as a

consequence,

dp, wp,, (wi,v;), (u1,v1)) = max{i — 1,j — 1}
<k-1
=max{k—1,j — 1}

= dPnIXPnz ((uk,vj), (u1,v1)).

Thus, if j € {1, ..., n1}, then we deduce r((u;, v;)]S) # r((uk,v;)|S).

An analogous procedure can be used to show that for j € {¢t(n1 —1)+1,..., (¢t +1)(n1 —
1)+1}, wheret € {1,..,a—1},and for j € {a(n1 —1)+1, ..., no}, it follows r((u;, v;)|S) #
r((uk, v5)]9).

Case 2. j # I. We suppose, without loss of generality, that j < [ and we differentiate
two subcases.

Subcase 2.1. | < ny. Since (u1,v1), (Un,,Vn,) € S, we only must consider the case when
dp,, @, (15, 03), (1, 01)) = dpy g, (s 00)s (ur, v1)) and dp, g, (505, (g s 0y ) =
dp, &p,, (U, V1), (Un,, vn, ). In such a situation, since j < [, we have k < i. Hence,

dp, ®p,, ((ui, v;), (U1, vp,)) = max{i — 1,no — j}
> max{k — 1,ny — I}

:dp XP, ((’U,k,,U[),(Uly'Ung))'

ny nog
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So, if (u1,vn,) € S, then r((u;,v;)|S) # r((ug,v)]|S). Moreover, if (u1,v,,) ¢ S, then
(u1,van,—1) € S. Hence, from

dp, &p,, ((wi,vy), (u1,v2n, 1)) = max{i — 1,2n; — 1 — j}
=2n1—1—3j
>2np —1—1
=max{k—1,2n; — 1 -1}
=dp, wp,, ((uk,v1), (u1,v2n,-1)),

we have r((u;, v)|S) # r((uk, v)|S).
Subcase 2.2. | > n;. Since j < [ and i, k < ny, we have that i, k <. So,

dp, &p,, ((uk,v1), (u1,v1)) = max{k — 1,1 = 1}
—-1
>max{i— 1,5 — 1}
=dp, wp,, (ui,v)), (u1,v1)).

Thus, in this case 7((u;, v;)|S) # r((ur,vi)]S) as well.

We conclude that S is a metric generator for P,,, X P,, and, as a consequence, the upper
bound follows.

We will show that dim(P,, X P,,) > {L’HJ by contradiction. Let ny — 1 =

ni—1
z(n1 — 1) +y, where ny —1 > y > 0. Now we suppose that there exists a metric gen-
erator for P,, X P,,, say 5, of cardinality =. Note that a vertex (u,, v;) € S’ distinguishes
two vertices (u1,v;), (ug, v;) if and only if [t —j| < r—1. Analogously, a vertex (u,,v;) € S’
distinguishes two vertices (un, 1, vj7), (un, , vj) if and only if |t —j'| < ny —r. Hence, a ver-
tex (u,,v;) € S’ distinguishes, at most, 2n, — 3 pairs of vertices of the form (u1, v;), (u2,v;)
or (Un,—1,9;), (Un,,v;7). Thus, if S” is a metric generator, then 2ny, — z < (2n; — 3)z and,
as a consequence, np — 1 < z(ny — 1) — 1, a contradiction. O

Conjecture 2.3. For any integers ny and ng such that 2 < n; < ng, dim(P,, ¥ P,,) =
’V’nlJr’anQ_‘

ni—1 :
Theorem 2.6. For any integer n > 2, dim(P, K P,)) = 3.

Proof. Let V. = {v1,v2,...,v,} be the set of vertices of P,. Now, with the above nota-
tion, we suppose that two consecutive vertices of V' are adjacent. We will show that S’ =
{(u1,v1), (un,v1), (un, v,)} is a metric generator for P,XP,. Let (u;, v;), (ug, v;) be two dif-
ferent vertices of P,,XP,. We only must consider the case when dp_ wp, ((u;, v;), (u1,v1)) =
dp,mp, ((uk,v1), (u1,v1)) and dp, & p, (i, V), (Un,vn)) = dp,xp, (Uk, V1), (Un, vy)). Insuch
a case, if j < [, then k < i and, as a consequence,

dp,gp, ((ui,vj), (un,v1)) = max{n —i,j — 1}
< max{n —k,l —1}
=dp,rp, ((ur,v1), (Un,v1)).
Analogously, if j > [, then we have dp mp, ((ui,v;), (un,v1)) > dp,rp, ((Uk, V1), (Un, v1)).
We conclude that S’ is a metric generator for P, K P, and, as a consequence, dim(P, K
P,) < 3. In order to show that dim(P,, X P,,) > 3, we suppose that there exists a metric

generator for P, X P, of cardinality two. Since (0,0) is not a possible distance vector,
and the diameter of P, X P, is n — 1, there are n? — 1 possible distance vectors, but the
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order of P, X P, is n?, a contradiction. So, dim(P, ® P,) > 3 and, as a consequence,
dim(P, X P,) = 3. O

The following claim will be useful in the proof of Theorem 2.7.

Claim 2.4. Let C be a cycle graph. If x,y, v and v are vertices of C such that u # v, x # y, x,y
are adjacent and dc(u, x) = do (v, x), then do(u,y) # do(v,y).

n1—1> \‘TLQ

Theorem 2.7. For any integers ny and ngy such that ?J > 2,dim(P,,XC,,,) < ni.

Proof. Let Vi = {ug,u1, ..., un, -1} and Vo = {vg, vy, ..., vn,—1} be the set of vertices of P,,
and C,,, respectively. Here we suppose that vy and v,,_; are adjacent vertices in C,,
and, with the above notation, two consecutive vertices of V; are adjacent, i € {1,2}. Let S
be the set of vertices of P,,, K C,, of the form (u;,v;), where the subscript of the second
component is taken modulo n,. We will show that S is a metric generator for P,, X C,,,.
To begin with, we consider two different vertices (u;, v;) and (ug, v;) of P,,, K C,,.
First we consider the case i = k and we suppose, without loss of generality, that
j < 1. Now, if dp, wc,, ((ui,v)), (ui,vi)) = dp, wo,, (wi,vr), (ui,vi)), then de,, (v;,v;) =
de,, (v, v;). So, since v; # vy, for i = 0, Claim 2.4 leads to
dp, ®c,, (U0, v;), (u1,v1)) = max{1,dc,, (vj,v1)}
# max{l,dc,, (vi,v1)}

=dp, ®c,, ((uo,v1), (u1,v1)).
Analogously, for i # 0, Claim 2.4 leads to

dp, ®e,, ((ui,v5), (ui-1,vi-1)) = max{1,dc,, (vj,vi-1)}
# max{1,dc,, (vi,vi-1)}
= de&Cn2 ((ui,vr), (wiz1,vi-1))-
Hence, r((u;,v)]S) # r((ui, v)]S).
Now we consider the case i # k. We suppose, without loss of generality, that i < k. If
k< || thenni —1—i>|%|=D(Cy,). Thus,
dp, ®C,, (Ui, v5), (Uny—1,Vn,—1)) = max{dp,, (u;, Un,~1),dc,, (vj,Vn,-1)}
= max{n; — 1 —1, dc,, (Vj,Uny—1)}
>max{ni — 1 —k,dc,, (v1,0n, 1)}
= dPnl XCh, ((uka Ul)7 (u"Ll—l? U"Ll_l))'
Moreover, if k > |22 |, then
dp, ®c,, ((ui, v5), (o, v0)) = max{dp,, (ui, uo),dc,, (v;,v0)}
= max{i,dc,, (vj,v0)}
< max{k, dc,, (vi,v0)}
=dp, wc,, ((uk, 1), (w0, v0))-

Hence, r((u;, v;)|S) # r((uk, v1)|S). Therefore, the set S of cardinality n, is a metric gen-
erator for P,, X C,,. O
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