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The metric dimension of strong product graphs

JUAN A. RODRÍGUEZ-VELÁZQUEZ1 , DOROTA KUZIAK1 , ISMAEL G. YERO2 and JOSÉ M.
SIGARRETA3

ABSTRACT. For an ordered subset S = {s1, s2, . . . sk} of vertices in a connected graph G, the metric repre-
sentation of a vertex u with respect to the set S is the k-vector r(u|S) = (dG(v, s1), dG(v, s2), . . . , dG(v, sk)),
where dG(x, y) represents the distance between the vertices x and y. The set S is a metric generator for G if
every two different vertices of G have distinct metric representations with respect to S. A minimum metric gen-
erator is called a metric basis for G and its cardinality, dim(G), the metric dimension of G. It is well known that
the problem of finding the metric dimension of a graph is NP-Hard. In this paper we obtain closed formulae
and tight bounds for the metric dimension of strong product graphs.

1. INTRODUCTION

A generator of a metric space is a set S of points in the space with the property that
every point of the space is uniquely determined by its distances from the elements of S.
Given a simple and connected graph G = (V,E), we consider the metric dG : V × V → N,
where dG(x, y) is the length of a shortest path between x and y. (V, dG) is clearly a metric
space. A vertex v ∈ V is said to distinguish two vertices x and y if dG(v, x) 6= dG(v, y). A
set S ⊂ V is said to be a metric generator for G if any pair of vertices of G is distinguished
by some element of S. A metric generator of minimum cardinality is called a metric basis,
and its cardinality the metric dimension of G, denoted by dim(G).

If S = {s1, s2, . . . sk} and u is a vertex of G, then the metric representation of u with
respect to S is the k-vector r(u|S) = (dG(v, s1), dG(v, s2), . . . , dG(v, sk)). Hence, the set
S is a metric generator for G if every two different vertices of G have distinct metric
representations with respect to S.

The concept of metric dimension was introduced by Slater in [16], where the metric
generators were called locating sets, and studied independently by Harary and Melter [5],
where the metric generators were called resolving sets. Applications of this invariant to the
navigation of robots in networks are discussed in [9], and applications to chemistry in [7,
8]. This invariant was studied further in a number of other papers, including for example
[2, 3, 4, 14, 17, 18]. Several variations of metric generators have been appearing in the
literature, like those about resolving dominating sets [1], local metric sets [14], resolving
partitions [4, 17], and strong metric generators [11, 15].

It was shown in [9] that the problem of computing dim(G) is NP-complete. This sug-
gests finding the metric dimension for special classes of graphs, or obtaining good bounds
on this invariant. Metric basis have been studied, for instance, for digraphs [13], Carte-
sian product graphs [2, 17], corona product graphs [11, 18], distance-hereditary graphs
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[12], and Hamming graphs [10]. In this paper we study the problem of finding exact val-
ues or sharp bounds for the metric dimension of strong product graphs, and express these
in terms of invariants of the factor graphs.

The strong product of two graphs G = (V1, E1) and H = (V2, E2) is the graph G�H =
(V,E), such that V = V1 × V2 and two vertices (a, b), (c, d) ∈ V are adjacent in G � H if
and only if (a = c and bd ∈ E2) or (b = d and ac ∈ E1) or (ac ∈ E1 and bd ∈ E2).

One of our tools will be a well-known result, which states the relationship between the
vertex distances in G�H and the vertex distances in the factor graphs.

Remark 1.1. [6] Let G and H be two connected graphs. Then
dG�H((a, b), (c, d)) = max{dG(a, c), dH(b, d)}.

2. RESULTS

We begin with a general upper bound for the metric dimension of strong product
graphs.

Theorem 2.1. Let G and H be two connected graphs of order n1 ≥ 2 and n2, respectively. Then
dim(G�H) ≤ n1 · dim(H) + n2 · dim(G)− dim(G) · dim(H).

Proof. Let V1 = {u1, u2, ..., un1
} and V2 = {v1, v2, ..., vn2

} be the set of vertices of G and H ,
respectively. Let S = (V1 × S2) ∪ (S1 × V2), where S1 and S2 are metric basis for G and
H , respectively. Let (ui, vj) and (uk, vl) be two different vertices of G � H . Let uα ∈ S1

such that ui, uk are distinguished by uα and let vβ ∈ S2 such that vj , vl are distinguished
by vβ . If i = k, then (ui, vj) and (uk, vl) are distinguished by (ui, vβ) ∈ (V1 × S2) ⊂ S.
Analogously, if j = l, then (ui, vj) and (uk, vl) are distinguished by (uα, vj) ∈ (S1 × V2) ⊂
S. If i 6= k and j 6= l, then we suppose that neither (ui, vβ) nor (uk, vβ) distinguishes the
pair (ui, vj), (uk, vl), i.e.,

(2.1) dG�H((ui, vj), (ui, vβ)) = dG�H((uk, vl), (ui, vβ))

and

(2.2) dG�H((ui, vj), (uk, vβ)) = dG�H((uk, vl), (uk, vβ)).

By (2.1) we have dH(vj , vβ) = max{dG(uk, ui), dH(vl, vβ)} and since dH(vj , vβ) 6= dH(vl, vβ),
we obtain that

(2.3) dH(vj , vβ) = dG(uk, ui).

Also, by (2.2) we have dH(vl, vβ) = max{dG(ui, uk), dH(vj , vβ)} and since dH(vj , vβ) 6=
dH(vl, vβ), we obtain that

(2.4) dH(vl, vβ) = dG(ui, uk).

From (2.3) and (2.4) we have that dH(vj , vβ) = dH(vl, vβ), which is a contradiction with
the statement that vj , vl are distinguished by vβ in H . �

SinceKn1�Kn2
∼= Kn1·n2 and for any complete graphKn, dim(Kn) = n−1, we deduce

dim(Kn1
�Kn2

) = n1 · n2 − 1

= n1(n2 − 1) + n2(n1 − 1)− (n1 − 1)(n2 − 1)

= n1 · dim(Kn2) + n2 · dim(Kn1)− dim(Kn1) · dim(Kn2).

Therefore, the above bound is tight. Examples of non-complete graphs, where the above
bound is attained, can be derived from Theorem 2.3.



The metric dimension of strong product graphs 263

Given two vertices x and y in a connected graphG = (V,E), the interval I[x, y] between
x and y is defined as the collection of all vertices which lie on some shortest x − y path.
Given a nonnegative integer k, we say that G is self k-resolved if for every two different
vertices x, y ∈ V , there existsw ∈ V such that (dG(y, w) ≥ k and x ∈ I[y, w]) or (dG(x,w) ≥
k and y ∈ I[x,w]). For instance, the path and the cycle graphs of order n (n ≥ 2) are self⌈
n
2

⌉
-resolved, the two-dimensional grid graphs Pn�Pm are self

(
dn2 e+ d

m
2 e
)
-resolved,

and the hypercube graphs Qk are self k-resolved.

Theorem 2.2. Let H be a self k-resolved graph of order n2 and let G be a graph of diameter
D(G) < k. Then dim(G�H) ≤ n2 · dim(G).

Proof. Let V1 = {u1, u2, ..., un1
} and V2 = {v1, v2, ..., vn2

} be the set of vertices of G and
H , respectively. Let S1 be a metric generator for G. We will show that S = S1 × V2 is a
metric generator for G � H . Let (ui, vj), (ur, vl) be two different vertices of G � H . We
differentiate the following two cases.

Case 1. j = l. Since i 6= r and S1 is a metric generator for G, there exists u ∈ S1 such
that dG(ui, u) 6= dG(ur, u). Hence,

dG�H((ui, vj), (u, vj)) = dG(ui, u) 6= dG(ur, u) = dG�H((ur, vj), (u, vj)).

Case 2. j 6= l. Since H is self k-resolved, there exists v ∈ V2 such that (dH(v, vl) ≥ k
and vj ∈ I[v, vl]) or (dH(v, vj) ≥ k and vl ∈ I[v, vj ]). Say dH(v, vl) ≥ k and vj ∈ I[v, vl]. In
such a case, for every u ∈ S we have

dG�H((ui, vj), (u, v)) = max{dG(ui, u), dH(vj , v)}
< dH(v, vl)

= max{dG(u, ur), dH(v, vl)}
= dG�H((ur, vl), (u, v)).

Therefore, S is a metric generator for G�H . �

Now we derive some consequences of the above result.

Corollary 2.1. Let n1 ≥ 2 be an integer.
• For any integer n2 ≥ 4 such that n1 − 1 <

⌊
n2

2

⌋
, dim(Pn1

� Cn2
) ≤ n2.

• Let k ≥ 2 be an integer. For any self k-resolved graph H of order n2, dim(Kn1
�H) ≤

(n1 − 1)n2.

Given a vertex v of a graph G = (V,E), we denote by NG(v) the open neighborhood of
v, i.e., the set of neighbors of v, and by NG[v] the closed neighborhood of v, i.e., NG[v] =
NG(v) ∪ {v}. Two vertices u and v are false twins if NG(u) = NG(v), while they are true
twins if NG[u] = NG[v]. Note that if two vertices u and v of a graph G = (V,E) are (true
or false) twins, then dG(x, u) = dG(x, v), for every x ∈ V − {u, v}. We define the true
twin equivalence relation R on V (G) as follows: xRy ↔ NG[x] = NG[y]. If the true twin
equivalence classes are U1, U2, ..., Ut, then every metric generator of G must contain at
least |Ui| − 1 vertices from Ui, for each i ∈ {1, ..., t}. Therefore, since U1, U2, ..., Ut form a
partition of V (G), it follows dim(G) ≥

∑t
i=1(|Ui| − 1) = n− t, where n is the order of G.

Theorem 2.3. Let G and H be two nontrivial connected graphs of order n1 and n2, having t1
and t2 true twin equivalent classes, respectively. Then dim(G�H) ≥ n1n2 − t1t2. Moreover, if
dim(G) = n1 − t1 and dim(H) = n2 − t2, then dim(G�H) = n1n2 − t1t2.
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Proof. Let U1, U2, ..., Ut1 and U ′1, U
′
2, ..., U

′
t2 be the true twin equivalence classes of G and

H , respectively. Since each Ui (and U ′j) induces a clique and its vertices have identical
closed neighborhoods, for every a, c ∈ Ui and b, d ∈ U ′j ,

NG�H [(a, b)] = {(x, y) : x ∈ NG[a], y ∈ NH [b]}
= {(x, y) : x ∈ NG[c], y ∈ NH [d]}
= NG�H [(c, d)].

Hence, V (G)×V (H) is partitioned as V (G)×V (H) =
⋃t2
j=1

(⋃t1
i=1 Ui × U ′j

)
, whereUi×U ′j

induces a clique inG�H and its vertices have identical closed neighborhoods. Therefore,
the metric dimension of G�H is at least

∑t2
j=1

(∑t1
i=1(|Ui||Uj | − 1)

)
= n1n2 − t1t2.

Finally, if dim(G) = n1− t1 and dim(H) = n2− t2, then the above bound and Theorem
2.1 lead to dim(G�H) = n1n2 − t1t2. �

As an example of non-complete graph G of order n having t true twin equivalence

classes, where dim(G) = n− t, we takeG = K1+(

l⋃
i=1

Kri), ri ≥ 2, l ≥ 2. In this caseG has

t = l+1 true twin equivalence classes, n = 1+
∑l
i=1 ri and dim(G) =

∑l
i=1(ri−1) = n−t.

Corollary 2.2. Let H be a graph of order n2. Let G be a nontrivial connected graph of order n1,
having t1 true twin equivalence classes. Then dim(G�H) ≥ n2(n1 − t1).

Theorem 2.2 and Corollary 2.2 lead to the following result.

Theorem 2.4. Let H be a self k-resolved graph of order n2 and let G be a nontrivial connected
graph of order n1, having t1 true twin equivalence classes and diameter D(G) < k. If dim(G) =
n1 − t1, then dim(G�H) = n2(n1 − t1).

Lemma 2.1. A nontrivial connected graph is self 2-resolved if and only if it does not have true
twin vertices.

Proof. Necessity. Let G be a 2-resolved graph. Let x and y be two adjacent vertices in G.
Without loss of generality, we take w ∈ V (G) such that 2 ≤ k = dG(x,w) and y ∈ I[x,w].
So, there exists a shortest path x, y, u2, ..., uk−1, w from x to w and, as a consequence,
u2 ∈ NG[y] and u2 6∈ NG[x]. Therefore, G does not have true twin vertices.

Sufficiency. If for every u, v ∈ V (G), NG[u] 6= NG[v], then for each pair of adjacent
vertices x and y, there exists w ∈ V (G)−{x, y} such that (dG(x,w) = 2 and y ∈ I[x,w]) or
(dG(y, w) = 2 and x ∈ I[y, w]). On the other hand, if dG(u, v) ≥ 2, then for w = u we have
dG(v, w) ≥ 2 and u ∈ I[v, w]. Therefore, G is self 2-resolved. �

By Lemma 2.1 we deduce the following consequence of Theorem 2.4.

Corollary 2.3. Let H be a connected graph of order n2 ≥ 3. If H does not have true twin vertices
and n1 ≥ 2, then dim(Kn1

�H) = n2(n1 − 1).

The following remark emphasizes some particular cases of the above result.

Remark 2.2. Let n1 ≥ 2 be an integer.
• For any tree T of order n2 ≥ 3, dim(Kn1

� T ) = n2(n1 − 1).
• For any n2 ≥ 4, dim(Kn1

� Cn2
) = n2(n1 − 1).

• For any hypercube Qr = K2� · · ·�K2︸ ︷︷ ︸
r

, r ≥ 2, dim(Kn1
�Qr) = 2r(n1 − 1).
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• For any integers m,n ≥ 2, dim(Kn1
� (Pn�Pm)) = n ·m · (n1 − 1).

Now we proceed to study the strong product of path graphs.

Theorem 2.5. For any integers n1 and n2 such that 2 ≤ n1 < n2,⌊
n1 + n2 − 2

n1 − 1

⌋
≤ dim(Pn1

� Pn2
) ≤

⌈
n1 + n2 − 2

n1 − 1

⌉
.

Proof. Let V1 = {u1, u2, ..., un1} and V2 = {v1, v2, ..., vn2} be the set of vertices of Pn1 and
Pn2

, respectively. With the above notation we suppose that two consecutive vertices of Vi
are adjacent, i ∈ {1, 2}.

Let α =
⌈
n2−1
n1−1

⌉
− 1. We define the set S of cardinality

⌈
n1+n2−2
n1−1

⌉
as follows:

S = {(u1, v1), (un1 , vn1), (u1, v2(n1−1)+1), (un1 , v3(n1−1)+1), ..., (u1, vα(n1−1)+1), (un1
, vn2

)}

if
⌈
n2−1
n1−1

⌉
is odd, and

S = {(u1, v1), (un1
, vn1

), (u1, v2(n1−1)+1), (un1
, v3(n1−1)+1), ..., (un1

, vα(n1−1)+1), (u1
, vn2

)}

if
⌈
n2−1
n1−1

⌉
is even.

We will show that S is a metric generator for Pn1 � Pn2 .
Let (ui, vj), (uk, vl) be two different vertices of Pn1

� Pn2
. We differentiate two cases.

Case 1. j = l. We suppose, without loss of generality, that i < k. If j ∈ {1, ..., n1} and
dPn1�Pn2

((ui, vj), (un1
, vn1

)) = dPn1�Pn2
((uk, vj), (un1

, vn1
)), then from max{n1 − i, n1 −

j} = max{n1 − k, n1 − j} we have n1 − j ≥ n1 − i > n1 − k. Hence, j < k and, as a
consequence,

dPn1
�Pn2

((ui, vj), (u1, v1)) = max{i− 1, j − 1}
< k − 1

= max{k − 1, j − 1}
= dPn1

�Pn2
((uk, vj), (u1, v1)).

Thus, if j ∈ {1, ..., n1}, then we deduce r((ui, vj)|S) 6= r((uk, vj)|S).
An analogous procedure can be used to show that for j ∈ {t(n1− 1)+1, ..., (t+1)(n1−

1)+1}, where t ∈ {1, .., α−1}, and for j ∈ {α(n1−1)+1, ..., n2}, it follows r((ui, vj)|S) 6=
r((uk, vj)|S).

Case 2. j 6= l. We suppose, without loss of generality, that j < l and we differentiate
two subcases.

Subcase 2.1. l < n1. Since (u1, v1), (un1
, vn1

) ∈ S, we only must consider the case when
dPn1�Pn2

((ui, vj), (u1, v1)) = dPn1�Pn2
((uk, vl), (u1, v1)) and dPn1�Pn2

((ui, vj), (un1
, vn1

)) =

dPn1
�Pn2

((uk, vl), (un1 , vn1)). In such a situation, since j < l, we have k < i. Hence,

dPn1
�Pn2

((ui, vj), (u1, vn2
)) = max{i− 1, n2 − j}
> max{k − 1, n2 − l}
= dPn1

�Pn2
((uk, vl), (u1, vn2)).
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So, if (u1, vn2
) ∈ S, then r((ui, vj)|S) 6= r((uk, vl)|S). Moreover, if (u1, vn2

) 6∈ S, then
(u1, v2n1−1) ∈ S. Hence, from

dPn1
�Pn2

((ui, vj), (u1, v2n1−1)) = max{i− 1, 2n1 − 1− j}
= 2n1 − 1− j
> 2n1 − 1− l
= max{k − 1, 2n1 − 1− l}
= dPn1

�Pn2
((uk, vl), (u1, v2n1−1)),

we have r((ui, vj)|S) 6= r((uk, vl)|S).
Subcase 2.2. l ≥ n1. Since j < l and i, k ≤ n1, we have that i, k ≤ l. So,

dPn1
�Pn2

((uk, vl), (u1, v1)) = max{k − 1, l − 1}
= l − 1

> max{i− 1, j − 1}
= dPn1

�Pn2
((ui, vj), (u1, v1)).

Thus, in this case r((ui, vj)|S) 6= r((uk, vl)|S) as well.
We conclude that S is a metric generator for Pn1

�Pn2
and, as a consequence, the upper

bound follows.
We will show that dim(Pn1

� Pn2
) ≥

⌊
n1+n2−2
n1−1

⌋
by contradiction. Let n2 − 1 =

x(n1 − 1) + y, where n1 − 1 > y ≥ 0. Now we suppose that there exists a metric gen-
erator for Pn1

� Pn2
, say S′, of cardinality x. Note that a vertex (ur, vt) ∈ S′ distinguishes

two vertices (u1, vj), (u2, vj) if and only if |t−j| < r−1. Analogously, a vertex (ur, vt) ∈ S′
distinguishes two vertices (un1−1, vj′), (un1 , vj′) if and only if |t−j′| < n1−r. Hence, a ver-
tex (ur, vt) ∈ S′ distinguishes, at most, 2n1−3 pairs of vertices of the form (u1, vj), (u2, vj)
or (un1−1, vj′), (un1

, vj′). Thus, if S′ is a metric generator, then 2n2 − x ≤ (2n1 − 3)x and,
as a consequence, n2 − 1 ≤ x(n1 − 1)− 1, a contradiction. �

Conjecture 2.3. For any integers n1 and n2 such that 2 ≤ n1 < n2, dim(Pn1 � Pn2) =⌈
n1+n2−2
n1−1

⌉
.

Theorem 2.6. For any integer n ≥ 2, dim(Pn � Pn) = 3.

Proof. Let V = {v1, v2, ..., vn} be the set of vertices of Pn. Now, with the above nota-
tion, we suppose that two consecutive vertices of V are adjacent. We will show that S′ =
{(u1, v1), (un, v1), (un, vn)} is a metric generator for Pn�Pn. Let (ui, vj), (uk, vl) be two dif-
ferent vertices of Pn�Pn. We only must consider the case when dPn�Pn

((ui, vj), (u1, v1)) =
dPn�Pn

((uk, vl), (u1, v1)) and dPn�Pn
((ui, vj), (un, vn)) = dPn�Pn

((uk, vl), (un, vn)). In such
a case, if j < l, then k < i and, as a consequence,

dPn�Pn
((ui, vj), (un, v1)) = max{n− i, j − 1}

< max{n− k, l − 1}
= dPn�Pn

((uk, vl), (un, v1)).

Analogously, if j > l, then we have dPn�Pn
((ui, vj), (un, v1)) > dPn�Pn

((uk, vl), (un, v1)).
We conclude that S′ is a metric generator for Pn � Pn and, as a consequence, dim(Pn �
Pn) ≤ 3. In order to show that dim(Pn � Pn) ≥ 3, we suppose that there exists a metric
generator for Pn � Pn of cardinality two. Since (0, 0) is not a possible distance vector,
and the diameter of Pn � Pn is n − 1, there are n2 − 1 possible distance vectors, but the
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order of Pn � Pn is n2, a contradiction. So, dim(Pn � Pn) ≥ 3 and, as a consequence,
dim(Pn � Pn) = 3. �

The following claim will be useful in the proof of Theorem 2.7.

Claim 2.4. Let C be a cycle graph. If x, y, u and v are vertices of C such that u 6= v, x 6= y, x, y
are adjacent and dC(u, x) = dC(v, x), then dC(u, y) 6= dC(v, y).

Theorem 2.7. For any integers n1 and n2 such that
n1 − 1

2
≥
⌊n2
2

⌋
≥ 2, dim(Pn1

�Cn2
) ≤ n1.

Proof. Let V1 = {u0, u1, ..., un1−1} and V2 = {v0, v1, ..., vn2−1} be the set of vertices of Pn1

and Cn2
, respectively. Here we suppose that v0 and vn2−1 are adjacent vertices in Cn2

and, with the above notation, two consecutive vertices of Vi are adjacent, i ∈ {1, 2}. Let S
be the set of vertices of Pn1

� Cn2
of the form (ui, vi), where the subscript of the second

component is taken modulo n2. We will show that S is a metric generator for Pn1 � Cn2 .
To begin with, we consider two different vertices (ui, vj) and (uk, vl) of Pn1 � Cn2 .

First we consider the case i = k and we suppose, without loss of generality, that
j < l. Now, if dPn1

�Cn2
((ui, vj), (ui, vi)) = dPn1

�Cn2
((ui, vl), (ui, vi)), then dCn2

(vj , vi) =

dCn2
(vl, vi). So, since vj 6= vl, for i = 0, Claim 2.4 leads to

dPn1
�Cn2

((u0, vj), (u1, v1)) = max{1, dCn2
(vj , v1)}

6= max{1, dCn2
(vl, v1)}

= dPn1�Cn2
((u0, vl), (u1, v1)).

Analogously, for i 6= 0, Claim 2.4 leads to

dPn1
�Cn2

((ui, vj), (ui−1, vi−1)) = max{1, dCn2
(vj , vi−1)}

6= max{1, dCn2
(vl, vi−1)}

= dPn1
�Cn2

((ui, vl), (ui−1, vi−1)).

Hence, r((ui, vj)|S) 6= r((ui, vl)|S).
Now we consider the case i 6= k. We suppose, without loss of generality, that i < k. If

k ≤
⌊
n2

2

⌋
, then n1 − 1− i >

⌊
n2

2

⌋
= D(Cn2

). Thus,

dPn1�Cn2
((ui, vj), (un1−1, vn1−1)) = max{dPn1

(ui, un1−1), dCn2
(vj , vn1−1)}

= max{n1 − 1− i, dCn2
(vj , vn1−1)}

> max{n1 − 1− k, dCn2
(vl, vn1−1)}

= dPn1
�Cn2

((uk, vl), (un1−1, vn1−1)).

Moreover, if k >
⌊
n2

2

⌋
, then

dPn1
�Cn2

((ui, vj), (u0, v0)) = max{dPn1
(ui, u0), dCn2

(vj , v0)}
= max{i, dCn2

(vj , v0)}
< max{k, dCn2

(vl, v0)}
= dPn1�Cn2

((uk, vl), (u0, v0)).

Hence, r((ui, vj)|S) 6= r((uk, vl)|S). Therefore, the set S of cardinality n1 is a metric gen-
erator for Pn1

� Cn2
. �
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