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Fixed point theorems for Zamfirescu mappings in metric
spaces endowed with a graph

FLORIN BOJOR and MAGNOLIA TILCA

ABSTRACT. Let (X, d) be a metric space endowed with a graph G such that the set V (G) of vertices of
G coincides with X . We define the notion of G-Zamfirescu maps and obtain a fixed point theorem for such
mappings. This extends and subsumes many recent results which were obtained for mappings on metric spaces
endowed with a graph and for cyclic operators.

1. INTRODUCTION

We remind the reader few basic notions concerning graphs, the connectivity of graphs,
G-contraction and Picard operator. Let (X, d) be a metric space and let G be a graph
with no parallel edges. The set V (G) denotes the vertices (or nodes) of the graph G and
E(G) denotes the set of its edges. In Jachymski’s results ([13]), the graph G is a directed
graph for which the set V (G) coincides with X and the set E(G) contains all loops, i.e.
E(G) ⊇ ∆, where ∆ is the diagonal of the Cartesian product X × X. Because G has no
parallel edges, G can be identify with the pair (V (G), E(G)).

According to the basic definition ([14], Def.8.2.1.), a path of length N between two ver-
tices x, y of a directed graph G is a sequence (xi)

N
i=0 of N + 1 vertices such that x0 = x,

xN = y and (xn−1, xn) ∈ E (G) for i = 1, ..., N . It is known that a graph G is connected
if there is a path between any two vertices. If the undirected graph G̃, obtained from G
by ignoring the direction of edges, is connected, then the graph G is said to be weakly
connected.

One of the statement of an important theorem of Jachymski ([13], Th.3.2.) uses the
equivalence class [x]G of the relation R defined on V (G) by rule:

yRz if there is a path in G from y to z.
If G is such that E(G) is symmetric and x is a vertex in G, then V (Gx) = [x]G ([13]), where
the subgraph Gx consisting of all edges and vertices which are contained in some path
beginning at x is called the component of G containing x. In this case, Gx is connected.

Recently, some results have appeared giving sufficient conditions for f to be a PO if
(X, d) is endowed with a graph (following Petruşel and Rus [18], we say f is a Picard
operator PO if f has a unique fixed point x∗ and lim

n→∞
fnx = x∗ for all x ∈ X and it is

a weakly Picard operator WPO if the sequence (fnx)n∈N converges, for all x ∈ X and the
limit, which may depend on x, is a fixed point of T ). The first result in this direction was
given by J. Jachymski [13]. He also presented a new proof for the Kelisky-Rivlin theorem
on iterates of the Bernstein operators on the space C [0, 1]. The idea concerning of the
Bernstein operators comes from I. A. Rus [24]. See also [23].
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Definition 1.1 ([13], Def. 2.1). We say that a mapping f : X → X is a Banach G-
contraction or simply a G-contraction if f preserves edges of G, i.e.,

(1.1) ∀x, y ∈ X ((x, y) ∈ E (G)⇒ (f (x) , f (y)) ∈ E (G))

and f decreases weights of edges of G in the following way:

(1.2) ∃α ∈ (0, 1) ,∀x, y ∈ X ((x, y) ∈ E (G)⇒ d (f (x) , f (y)) 6 αd (x, y)) .

Theorem 1.1 ([13], Th 3.2). Let (X, d) be complete, and let the triple (X, d,G) have the following
property:

(P:) for any (xn)n∈N in X , if xn → x and (xn, xn+1) ∈ E (G) for n ∈ N then there is a
subsequence (xkn)n∈N with (xkn , x) ∈ E (G) for n ∈ N.

Let f : X → X be a Banach G-contraction, and Xf = {x ∈ X |(x, fx) ∈ E (G)}. Then the
following statements hold:

1. cardFix f = card {[x]G̃ |x ∈ Xf }.
2. Fix f 6= ∅ iff Xf 6= ∅.
3. f has a unique fixed point if there exists x0 ∈ Xf such that Xf ⊆ [x0]G̃.
4. For any x ∈ Xf , f

∣∣
[x]G̃

is a PO.
5. If Xf 6= ∅ and G is weakly connected, then f is a PO.
6. If X ′ := ∪{[x]G̃ |x ∈ Xf } then f |X′ is a WPO.
7. If f ⊆ E (G), then f is a WPO.

In 2011, Nicolae, O’Regan and Petruşel [16] extended the notion of multi-valued con-
traction on a metric space with a graph in considering the fixed point theorem shown
below.

Theorem 1.2 ([16]). Let F : X → CB(X) be a multi-valued map with nonempty closed values.
Assume that

(1) there exists λ ∈ (0, 1) such that D (F (x), F (y)) ≤ λd(x, y) for all
(x, y) ∈ E(G),
where D(A,B) = max{supx∈Ainfy∈Bd(x, y), supy∈Binfx∈Ad(x, y)},
∀A,B ∈ CB(X), is Pompeiu-Hausdorff metric;

(2) for each (x, y) ∈ E(G), each u ∈ F (x) and v ∈ F (y) satisfying
d(u, v) ≤ a · d(x, y) for some a ∈ (0, 1), (u, v) ∈ E(G) holds;

(3) X has the Property P.
If there exists x0, x1 ∈ X such that x1 ∈ [x0]

1
G ∩ F (x0), then F has a fixed point.

An existence theorem of a fixed point for set valued mappings (not necessarily unique)
in metric spaces endowed with a graph was given by Beg, Butt and Radojević.

Theorem 1.3 ([1], Th 3.1). Let (X, d) be a complete metric space and suppose that the triple
(X, d,G) has the Property P. Let F : X → CB(X) be a G-contraction and

XF := {x ∈ X : (x, u) ∈ E(G) for some u ∈ F (x)} .
Then the following statements hold:

(1) For any x ∈ XF , F |[x]G̃ has a fixed point.
(2) If XF 6= ∅ and G is weakly connected, then F has a fixed point in X .
(3) If X ′ := ∪{[x]G̃ : x ∈ XF } then F |X′ has a fixed point.
(4) If F ⊆ E(G) then F has a fixed point.
(5) FixF 6= ∅ if and only if XF 6= ∅.

We recall that:
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Definition 1.2 ([27]). Let (X, d) be a metric space. T : X → X is called a Zamfirescu
operator if there exist the real numbers α, β and γ satisfying 0 ≤ α < 1, 0 ≤ β < 1

2 and
0 ≤ γ < 1

2 , such that, for each x, y ∈ X , at least one of the following is true:
(z1) d (Tx, Ty) 6 α · d (x, y);
(z2) d (Tx, Ty) 6 β [d (x, Tx) + d (y, Ty)];
(z3) d (Tx, Ty) 6 γ [d (x, Ty) + d (y, Tx)].

Zamfirescu [27] proved that if X is complete, then every Zamfirescu mapping has a
unique fixed point. The aim of this paper is to study the existence of fixed points for Zam-
firescu mappings in metric spaces endowed with a graph G by introducing the concept
of G-Zamfirescu mappings. Several theorems concerning the existence and uniqueness
of the fixed point for contractive mappings in metric spaces endowed with a graph have
been considered recently in [1, 7, 8, 10, 13, 16].

2. MAIN RESULTS

Throughout this section we assume that (X, d) is a metric space, and G is a graph such
that V (G) = X , E (G) ⊇ ∆ and the graph G has no parallel edges. The set of all fixed
points of a mapping T is denoted by FixT .

Following the idea of Jachymski [13], we will define a new mapping, G-Zamfirescu
mapping:

Definition 2.3. Let (X, d) be a metric space. The mapping T : X → X is said to be a
G-Zamfirescu mapping if:

1. ∀x, y ∈ X ((x, y) ∈ E (G)⇒ (Tx, Ty) ∈ E (G)).
2. there exist the real numbers a, b and c satisfying 0 ≤ a < 1, 0 ≤ b < 1

2 and
0 ≤ c < 1

2 , such that, for each (x, y) ∈ E (G), at least one of the following is true:
(z1) d (Tx, Ty) 6 a · d (x, y);
(z2) d (Tx, Ty) 6 b [d (x, Tx) + d (y, Ty)];
(z3) d (Tx, Ty) 6 c [d (x, Ty) + d (y, Tx)].

Remark 2.1. If the mapping T satisfies the condition (z1), ∀ (x, y) ∈ E (G) then T is a Ba-
nach G−contraction (see [13], Definition 2.1) and if the mapping T satisfies the condition
(z2) , ∀ (x, y) ∈ E (G) then T is a G−Kannan mapping (see [8], Definition 4).

Remark 2.2. If T is a G-Zamfirescu mapping, then T is both a G−1-Zamfirescu mapping
and a G̃-Zamfirescu mapping.

Example 2.1. Any Zamfirescu mapping is aG0-Zamfirescu mapping, where the graphG0

is defined by
V (G0) = X and E (G0) = X ×X.

Example 2.2. Let X = {0, 1, 2, 3} be endowed with the Euclidean metric d (x, y) = |x− y|.
The mapping T : X → X , Tx = 0, for x ∈ {0, 1} and Tx = 1, for x ∈ {2, 3} is a
G-Zamfirescu mapping satisfying (z1) from Definition 2.3 with the constant a = 2

3 , where

V (G) = X and E (G) = {(0, 1) ; (0, 2) ; (2, 3) ; (0, 0) ; (1, 1)) ; (2, 2) ; (3, 3)},
but is not a Zamfirescu mapping because

• d (T1, T2) = 1 and d (1, 2) = 1 so (z1) from Definition 1.2 is false;
• d (T1, T2) = 1 and d (1, T1) + d (2, T2) = 2 so (z2) from Definition 1.2 is false;
• d (T1, T2) = 1 and d (1, T2) + d (2, T1) = 2 so (z3) from Definition 1.2 is false.
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We prove some lemmas first. The first one is derived from elementary calculus, so we
skip the proof of that.

Lemma 2.1. Let α ∈ [0, 1) and let {xn} converge to zero. Then the sequence {yn}, defined by

yn =

n∑
i=1

αn−ixi

converges to zero.

Lemma 2.2. Let (X, d) be a metric space endowed with a graph G and T : X → X be a G-
Zamfirescu mapping. If x, y ∈ X satisfy the condition (x, y) ∈ E

(
G̃
)

then we have

(2.3) d (Tx, Ty) 6 αd (x, y) + 2αd (x, Tx) ,

and

(2.4) d (Tx, Ty) 6 αd (x, y) + 2αd (x, Ty) ,

where α = max
{
a, b

1−b ,
c

1−c

}
.

Proof. Since T is a G-Zamfirescu mapping, by Remark 2.2, T is a G̃ Zamfirescu mapping.
But (x, y) ∈ E

(
G̃
)

so at least one of the conditions (z1), (z2), (z3) is satisfied.
If the pair (x, y) satisfies (z1) we get d (Tx, Ty) 6 ad (x, y) so both conditions (2.3) and

(2.4) are satisfied.
If the pair (x, y) satisfies (z2) then

d (Tx, Ty) 6 b [d (x, Tx) + d (y, Ty)]

6 b [d (x, Tx) + d (y, x) + d (x, Tx) + d (Tx, Ty)]

which implies that

d (Tx, Ty) 6
b

1− b
d (x, y) +

2b

1− b
d (x, Tx)

so the condition (2.3) is true. In the same manner we can prove that the condition (2.4) is
true.

If the pair (x, y) satisfies (z3) the proof is identical as above. �

Lemma 2.3. Let (X, d) be a metric space endowed with a graph G and T : X → X be a G-
Zamfirescu mapping. If x ∈ X satisfies the condition (x, Tx) ∈ E

(
G̃
)

then we have

(2.5) d
(
Tnx, Tn+1x

)
6 αnd (x, Tx)

for all n ∈ N∗, where α = max
{
a, b

1−b ,
c

1−c

}
.

Proof. Because T is aG-Zamfirescu mapping, using Remark 2.2, T is a G̃ Zamfirescu map-
ping.

Let (x, Tx) ∈ E
(
G̃
)

. An easy induction shows that
(
Tnx, Tn+1x

)
∈ E

(
G̃
)

for all
n ∈ N. Then for all n > 0, by (2.4), we get

d
(
Tn+1x, Tnx

)
6 αd

(
Tnx, Tn−1x

)
+ 2αd (Tnx, Tnx) = αd

(
Tnx, Tn−1x

)
which implies

d
(
Tnx, Tn+1x

)
6 αd

(
Tn−1x, Tnx

)
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where α = max
{
a, b

1−b ,
c

1−c

}
, so we get

d
(
Tnx, Tn+1x

)
6 αnd (x, Tx) , ∀n ∈ N∗.

�

Lemma 2.4. Let (X, d) be a metric space endowed with a graph G and T : X → X be a G-
Zamfirescu operator. If there exist x, y ∈ X such that (x, y) ∈ E

(
G̃
)

then

d (Tnx, Tny) ≤ αnd (x, y) + 2α

n∑
i=1

αn−id
(
T i−1x, T ix

)
for all n ∈ N∗, where α = max

{
a, b

1−b ,
c

1−c

}
.

Proof. Since T is a G-Zamfirescu mapping, by Remark 2.2, T is a G̃ Zamfirescu mapping.
Let x, y ∈ X such that (x, y) ∈ E

(
G̃
)

. An easy induction shows that (Tnx, Tny) ∈ E
(
G̃
)

for all n ∈ N.
Then by Lemma 2.2 we have

(2.6) d (Tnx, Tny) 6 αd
(
Tn−1x, Tn−1y

)
+ 2αd

(
Tn−1x, Tnx

)
.

Using the relation (2.6) and elementary calculus we get

(2.7) d (Tnx, Tny) ≤ αnd (x, y) + 2α

n∑
i=1

αn−id
(
T i−1x, T ix

)
for all n ∈ N, where α = max

{
a, b

1−b ,
c

1−c

}
. �

The main result of this paper is given in the following theorem.

Theorem 2.4. Let (X, d) be a complete metric space endowed with a graph G, T : X → X be a
G-Zamfirescu operator. We suppose that:

(i.) G is weakly connected;
(ii.) XT =

{
x ∈ X

∣∣∣(x, Tx) ∈ E(G̃)
}
6= ∅;

(iii.) for any (xn)n∈N in X , if xn → x and (xn, xn+1) ∈ E(G̃) for n ∈ N then there is a
subsequence (xkn

)n∈N with (xkn
, x) ∈ E(G̃) for n ∈ N.

Then T is a PO.

Proof. By (ii.) the set XT 6= ∅. This means that there exists at least one x ∈ X such that
(x, Tx) ∈ E(G̃). Because a < 1, b, c < 1

2 then α = max
{
a, b

1−b ,
c

1−c

}
∈ [0, 1). From

Lemma 2.3 we have that the sequence {Tnx}n>0 is Cauchy. Since (X, d) is complete, the
sequence {Tnx}n>0 converges to x∗ ∈ X . By (iii.) there is a subsequence {T knx}n>0 such
that

(
T knx, x∗

)
∈ E(G̃), ∀n ∈ N. Using the definition of the G-Zamfirescu operator we

have that
(
T kn+1x, Tx∗

)
∈ E (G), for all n ∈ N. From Lemma 2.2 we obtain

(2.8) d
(
T kn+1x, Tx∗

)
6 αd

(
T knx, x∗

)
+ 2αd

(
T knx, T kn+1x

)
.

Letting n→∞ in the relation (2.8), we get

d (x∗, Tx∗) 6 0

which implies that d (x∗, Tx∗) = 0, so Tx∗ = x∗ and x∗ ∈ FixT .
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Let x ∈ XT and y ∈ X . Since G is a weakly connected graph, there exists a path (xi)
N
i=0

in X from x ∈ XT to y i.e. x0 = x, xN = y, and (xi−1, xi) ∈ E (G) for all i = 1, N . We have
proved that the sequence {Tnx}n∈N converges to x∗ ∈ FixT . But (x, x1) ∈ E (G), so from
Lemma 2.3 we get

d (Tnx, Tnx1) ≤ αnd (x, x1) + 2α

n∑
i=1

αn−id
(
T i−1x, T ix

)
for all n ∈ N∗, where α = max

{
a, b

1−b ,
c

1−c

}
< 1.

Using Lemma 2.1 we obtain

lim
n→∞

n∑
i=1

αn−id
(
T i−1x, T ix

)
= 0

so lim
n→∞

d (Tnx, Tny) = 0, in conclusion the sequence {Tnx1} converges to x∗. Moreover

the sequences {Tnxi} converge to x∗ for all i = 1, N . In particular for i = N the sequence
{TnxN} ={Tny} converges to x∗. Thus

lim
n→∞

Tny = x∗

for all y ∈ X .
If there exists y∗ ∈ FixT then the sequences {Tny∗} converge to x∗ which implies

y∗ = x∗ so T is a PO. �

The following example shows that the condition ”G is weakly connected graph” is
necessary for the G-Zamfirescu mapping to be a PO.

Example 2.3. Let X := [0, 1] be endowed with the Euclidean metric dE . We define the
graph G by

E (G) = {(x, y) ∈ (0, 1]× (0, 1] |x > y } ∪ {(0, 0)} .
Set

Tx =
x

4
for x ∈ (0, 1] , and T0 =

1

4
.

It is obvious that (X, d) is a complete metric space, G is not weakly connected because
there is no path in G̃ from x0 = 0 to xN = 1 and T is a G-Zamfirescu mapping which
satisfies (z2) with b = 1

3 . Clearly, Tnx→ 0 for all x ∈ X , but T has no fixed points.

The next example underlines the importance of the nonempty property for the set XT ,
property which ensures that the G-Zamfirescu mapping T is a PO.

Example 2.4. Let X = {3, 4, 5, ...} = N\ {0, 1, 2} be endowed with the Euclidean metric
dE . We define the graph G by

V (G) = X and E (G) =
{(

2kn, 2k (n+ 1)
)

: k ∈ N, n ∈ N\ {0, 1, 2}
}
∪∆.

Then (X, d) is a complete metric space and G is a weakly connected graph since for all
m,n ∈ N with m < n we have that the sequence x0 = m,x1 = m + 1, ..., xn−m = n is a
path in G from m to n.

Set
Tx = 2x.

For all (x, y) ∈ E (G) we have

(Tx, Ty) = (2x, 2y) ∈ E (G)
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and the mapping T satisfies (z2) with β = 1
3 since for (x, y) ∈ E (G) there is k ∈ N and

n ∈ {3, 4, 5, ...} such that (x, y) =
(
2kn, 2k (n+ 1)

)
and

d (Tx, Ty) =
∣∣2k+1n− 2k+1 (n+ 1)

∣∣ = 2k+1 =
1

3
2k · 6 < 1

3
2k (2n+ 1)

=
1

3

(
2kn+ 2k (n+ 1)

)
=

1

3
(d (x, Tx) + d (y, Ty)) .

If we suppose that there exists x ∈ X such that (x, Tx) ∈ E(G̃), then there exist k, n ∈ N
with n ≥ 3 and x = 2kn, Tx = 2k (n+ 1) which implies that n = 1. So the assumption is
false, in conclusion XT = ∅.

The property (ii.) from Theorem 2.4 is satisfied because every convergent sequence is a
constant sequence. Clearly, (Tnx)n∈N is not convergent for all x ∈ X .

Corollary 2.1. Let (X, d) be a complete metric space endowed with a graph G, T : X → X be a
Banach G-contraction. We suppose that:

(i.) G is weakly connected;
(ii.) XT = {x ∈ X |(x, Tx) ∈ E (G)} 6= ∅;

(iii.) for any (xn)n∈N in X , if xn → x and (xn, xn+1) ∈ E (G) for n ∈ N then there is a
subsequence (xkn

)n∈N with (xkn
, x) ∈ E (G) for n ∈ N.

Then T is a PO.

Proof. If T is a Banach G−contraction with the constant α ∈ [0, 1) then the operator T
satisfies the condition (z1) from Definition 2.3 for all (x, y) ∈ E

(
G̃
)

. T is a G-Zamfirescu
operator and from Theorem 2.4 the mapping T is a PO.

�

Corollary 2.2. Let (X, d) be a complete metric space endowed with a graph G, T : X → X be a
G−Kannan mapping (see [8]). We suppose that:

(i.) G is weakly connected;
(ii.) XT = {x ∈ X |(x, Tx) ∈ E (G)} 6= ∅;

(iii.) for any (xn)n∈N in X , if xn → x and (xn, xn+1) ∈ E (G) for n ∈ N then there is a
subsequence (xkn)n∈N with (xkn , x) ∈ E (G) for n ∈ N.

Then T is a PO.

Proof. If T is a G−Kannan with the constant α then T is a G-Zamfirescu operator. From
Theorem 2.4 we have that the mapping T is a PO.

�

From Theorem 2.4, we obtain the following corollary concerning the fixed point of
Zamfirescu operator in partially ordered metric spaces.

Corollary 2.3. Let (X,6) be a partially ordered set and d be a metric on X such that (X, d) is
a complete metric space. Let T : X → X be an increasing operator such that the following three
assertions hold true:

(i.) There exist the real numbers a, b and c satisfying 0 ≤ a < 1, 0 ≤ b < 1
2 and 0 ≤ c < 1

2 ,
such that, for each x, y ∈ X with x 6 y, at least one of the following is true:
(z1) d (Tx, Ty) 6 ad (x, y);
(z2) d (Tx, Ty) 6 b [d (x, Tx) + d (y, Ty)];
(z3) d (Tx, Ty) 6 c [d (x, Ty) + d (y, Tx)].
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(ii.) For each x, y ∈ X , incomparable elements of (X,6), there exists z ∈ X such that x 6 z
and y 6 z;

(iii.) If an increasing sequence (xn) converges to x in X , then xn 6 x for all n ∈ N.

Then T is a PO.

Proof. Consider the graph G with V (G) = X , and

E (G) = {(x, y) ∈ X ×X |x 6 y } .

Because the mapping T is an increasing one and (i.) holds true we get that the mapping T
is aG−Zamfirescu mapping. By (ii.) G is a weakly connected graph and the condition (iii.)
implies the condition (ii.) from Theorem 2.4. The conclusion follows now from Theorem
2.4. �

The next result shows that the fixed point theorem for cyclic Zamfirescu operators,
proved in [19] by Petric and Zlatanov, is a consequence of Theorem 2.4.

Let p > 2 and {Ai}pi=1 be nonempty closed subsets of a complete metric space X . A
mapping T : ∪pi=1Ai → ∪pi=1Ai is called a cyclical operator if

(2.9) T (Ai) ⊆ Ai+1, for all i ∈ {1, 2, ..., p}

where Ap+1 := A1.

Theorem 2.5. Let A1, A2, ..., Ap, Ap+1 = A1 be nonempty closed subsets of a complete metric
space (X, d) and suppose that T : ∪pi=1Ai → ∪pi=1Ai is a cyclical operator, and there exist real
numbers a ∈ [0, 1) , b ∈

[
0, 12
)

and c ∈
[
0, 12
)

such that for each pair (x, y) ∈ Ai × Ai+1, for
i ∈ {1, 2, ..., p}, at least one of the following is true:

(z1) d (Tx, Ty) 6 ad (x, y);
(z2) d (Tx, Ty) 6 b [d (x, Tx) + d (y, Ty)];
(z3) d (Tx, Ty) 6 c [d (x, Ty) + d (y, Tx)].

Then T is a PO.

Proof. Let Y = ∪pi=1Ai then (Y, d) is a complete metric space.
Let the graph G be such that V (G) = Y , and

E (G) = {(x, y) ∈ Y × Y : ∃ i ∈ {1, 2, ..., n} such that x ∈ Ai and y ∈ Ai+1}

∪ {(x, x) : x ∈ Y } .

Because T is a cyclic operator we get

(Tx, Ty) ∈ E (G) , for all (x, y) ∈ E (G)

and from hypothesis, the operator T is a G-Zamfirescu mapping and G is a weakly con-
nected graph.

Now let (xn)n∈N be a sequence in X . If xn → x and (xn, xn+1) ∈ E (G) for n ∈ N, then
there is j ∈ {1, 2, ..., n} such that x ∈ Ai. However in view of (2.9), the sequence {xn}
has an infinite number of terms in each Ai, for all i ∈ {1, 2, ..., n}. The subsequence of the
sequence {xn} formed by the terms which are in Aj−1 satisfies the condition (ii.) from
Theorem 2.4. In conclusion the operator T is a PO.

�
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