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Common fixed points for an uncountable family of weakly
contractive operators

PARIN CHAIPUNYA and POOM KUMAM

ABSTRACT. In this paper, we consider some behavior concerning common fixed points of an uncountable
family of operators. We apply here the concept of circular metric spaces, and the operators are assumed to
satisfy different rates of weak contractivity. We show under certain assumptions that weakly contractive family
have some strong relationships to its common selector in terms of their fixed points.

1. INTRODUCTION

Suppose that {Ft}t is a family of (set-valued) operators. The common fixed point prob-
lem of {Ft}t is to determine whether the intersectional property x ∈

⋂
t Ft(x) holds for at

least one x.
It was studied by Frigon [8] the contractive family F on a gauge space (for basic defi-

nitions and properties, consult [4]) such that: if some ft0 ∈ F has a fixed point, then every
ft ∈ F has a fixed point. This result is then improved by Espı́nola and Kirk [5], ensuring
the common fixed point of a contractive family. For more results in this direction, see e.g.
[7, 6] and references therein.

Very recently, we introduced the concept of a circular metric space [2, 3] and consider
some nonlinear problems that involve the non-nullity of an uncountable intersection of
certain sets, including the common fixed point problems for a contractive family.

Similar to gauge spaces, a circular metric space is an optional choice that allows one to
assign different measurements to different objects so that only delicate bonds were formed
between them. This benefit has made the concept a lot more accessible to users in both
practical and theoretical ways.

In this paper, we consider an uncountable (continuum, to be precise) family {Ft}t>0 of
operators, and then invoke the weak contractivity with respect to the circular metricsW
and the modifiers of class Φ, whereby the operators are associated to different members in
W and modifiers in Φ. Our main theorem guarantees under particular assumptions that
{Ft}t>0 has a unique common selector f , and that Fix(f) =

⋂
t>0 Fix(Ft). Moreover, we

have the coexisting behavior between common fixed points of {Ft}t>0 and some special
point x0 whose orbit is proved to be convergent to one of the common fixed points of
{Ft}t>0.

2. CIRCULAR METRIC SPACES

This section is objected to recollect the basic notions and properties of circular metric
spaces. Note that some notations will be varied and simplified for the convenience of this
paper. No difference were made in terms of general meanings and usages.
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Definition 2.1 ([3, 2]). Let X be a nonempty set. A familyW of functions wt : X ×X →
[0,∞], indexed on t > 0, is said to be a circular metric on X if the following properties are
satisfied:

(C1) (∀x, y ∈ X) wt(x, y) = 0 for all t > 0 ⇐⇒ x = y.
(C2) (∀x, y ∈ X , ∀t > 0) wt(x, y) = wt(y, x).
(C3) (∀x, y, z ∈ X , ∀t > 0) There is 0 < s < t such that wt(x, y) ≤ ws(x, z) + wt−s(z, y).

The pair (X,W) is then called a circular metric space.

Typical examples of this space may be found in [2, 3].
Let (X,W) be a circular metric space, x ∈ X , and r > 0. We define the open ball around

x of radius r by

B(x; r) :=

{
z ∈ X, sup

t>0
wt(x, z) < r

}
.

We shall always make use of the Hausdorff topology τW which is generated from these
balls.

Definition 2.2 ([2, 3]). Let (X,W) be a circular metric space, E ⊂ X , and t > 0. We shall
use the following terminology and notations:

(i) The t-diameter of E is defined by diamt(E) := supx,y∈E wt(x, y).
(ii) E is said to be t-bounded if diamt(E) <∞.

(iii) E is said to be t-proximinal if for each x ∈ X , the infimum infy∈E wt(x, y) is at-
tained for some ȳ ∈ E.

(iv) The associated Pompeiu-Hausdorff circular metric on C(X) (see [1] for more de-
tails), the family of all nonempty closed subsets of X , is then defined to be the
familyW := {Wt}t>0 by

Wt(E,F ) := max

{
inf
e∈E

sup
f∈F

wt(e, f), inf
f∈F

sup
e∈E

wt(e, f)

}
, ∀E,F ∈ C(X).

Proposition 2.1 ([2]). Suppose that (X,W) is a circular metric space, and E,F ⊂ X is t-
proximinal for every t > 0. Then for each e ∈ E, f ∈ F , and t > 0, there exists 0 < s < t such
that

wt(e, f) ≤Wt(E,F ) + diamt−s(F ).

Definition 2.3 ([2]). Let (X,W) be a circular metric space, and t > 0. We say that a sequence
(xn) ⊂ X is t-Cauchy if for each ε > 0, we have wt(xm, xn) < ε for sufficiently large m,n ∈ N.

3. MAIN THEOREM

In this section, we shall always assume that (X,W) is a circular metric space with the
following properties:

(A1) X is complete in the sense that: if (xn) ⊂ X is t-Cauchy for all t > 0, then there is
a unique point x ∈ X such that limn−→∞ wt(xn, x) = 0 for every t > 0.

(A2) W is a decreasing family of circular metrics, i.e. w(·)(x, y) is decreasing for fixed
x, y ∈ X .

(A3) wt is l.s.c. in X ×X for t sufficiently small.
(A4) s = t

2 holds for each t > 0 in (C3).
We also assume that Φ is the class of continuous functions φ : [0,∞)→ [0,∞) satisfying:

(Φ 1) φ−1(0) = {0} and φ(t) < t for t > 0.
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(Φ 2) both φ and id−φ are increasing with limt−→∞ φ(t) = ∞, where id denotes the
identity function on [0,∞).

Theorem 3.1. For each t > 0, let φt ∈ Φ, and let Ft : X ( X be an operator whose values are
nonempty, closed, s-bounded and s-proximinal for all s > 0. Assume that the following conditions
are satisfied:

(i) For each t > 0,

Wt(Ft(x), Ft(y)) ≤ w4t(x, y)− φt(w4t(x, y)),

whenever x, y ∈ X are points whose qualities Wt(Ft(x), Ft(y)) and w4t(x, y) are finite.
(ii) If 0 < s ≤ t, then Ft is an enlargement of Fs.

(iii) Given t, ε > 0, there is 0 < s < t such that

diams(Fs(x)) ≤ 1
2φs(ε), ∀x ∈ X.

(iv) there exists x0 ∈ X such that wt(x0, y) <∞ for every y ∈ Ft(x0) and every t > 0.

Then, we have the following:

(1) {Ft}t>0 has a unique common selection, say f .
(2) Fix(f) =

⋂
t>0 Fix(Ft) 6= ∅.

Proof. For x ∈ X , we may see that {Ft(x)}t>0 is a family of closed and bounded sets.
Assumptions (ii), (iii), and the fact that φs(t) −→ 0 (as t −→ 0, with s > 0 fixed) guarantee
that

⋂
t>0 Ft(x) is nonempty and is singleton. Therefore, the operator f : X → X such

that
⋂
t>0 Ft(x) = {f(x)} defines the unique common selection of the family {Ft}t>0.

Let x0 be a point regarding (iv), and let (xn) be the orbit of f around x0, i.e. xn = fn(x0)
for n ∈ N. Assume without loss of generality that xm 6= xn for all m,n ∈ N. In this case,
we write {

O(x0;n) := {x0, x1, . . . , xn},
O(x0) := {x0, x1, . . . }.

We shall now show that (xn) is t-bounded for all t > 0, that is, we show that

diamt(O(x0)) <∞, ∀t > 0.

Let t > 0. Set ε := w4t(x0, x1), we may find from (iii) the parameter 0 < s < 2t such
that

diams/2(Fs/2(x)) ≤ 1
2φs/2(ε), ∀x ∈ X.

Let n ∈ N and i, j ∈ {1, 2, . . . , n}. Observe that

w2s(xi, xj) ≤ ws(xi, xj)

≤ Ws/2(Fs/2(xi−1), Fs/2(xj−1)) + diams/2(Fs/2(xj−1))

≤ w2s(xi−1, xj−1)− φs/2(w2s(xi−1, xj−1)) + 1
2φs/2(ε)

= (id−φs/2)(w2s(xi−1, xj−1)) + 1
2φs/2(ε)

≤ (id−φs/2)(diam2s(O(x0;n))) + 1
2φs/2(diam4t(O(x0;n)))

≤ (id− 1
2φs/2)(diam2s(O(x0;n)))

< diam2s(O(x0;n))

≤ diams(O(x0;n)).



310 P. Chaipunya and P. Kumam

From the above arrays, we have the following three important inequalities for each i, j ∈
{1, 2, . . . , n}: 

ws(xi, xj) < diams(O(x0;n)),

w2s(xi, xj) < diam2s(O(x0;n)),

ws(xi, xj) ≤ (id− 1
2φs/2)(diam2s(O(x0;n))).

Subsequently, for some k ∈ {1, 2, . . . , n}, we have

diam2s(O(x0;n)) = w2s(x0, xk)

≤ ws(x0, x1) + ws(x0, x1)

≤ ws(x0, x1) + (id− 1
2φs/2)(diam2s(O(x0;n))).

So, we obtain
φs/2(diam2s(O(x0;n))) ≤ ws(x0, x1).

Moreover, we get

lim
n−→∞

φs/2(diam4t(O(x0;n))) ≤ lim
n−→∞

φs/2(diam2s(O(x0;n)))

= lim
n−→∞

φs/2(diam2s(O(x0;n)))

≤ ws(x0, x1)

< ∞.
By the property of the class Φ, the (real) sequence (diam4t(O(x0;n))) is bounded above.
Hence, it converges to diam4t(O(x0)) < ∞. This shows that (xn) has t-bounded orbit for
all t > 0.

Next, we show that (xn) is t-Cauchy for all t > 0. Let us assume to the contrary that
(xn) is not r-Cauchy at some r > 0. For n ∈ N, set Qn := {xn, xn+1, . . . }. We may see that
(diamt(Qn)) decreases to some δt ≥ 0. However, as (xn) is not r-Cauchy, we have δr > 0.
Choose accordingly to (iii) the parameter 0 < ` < r such that

diam`/2(F`/2(x)) ≤ 1
2φ(δr), ∀x ∈ X.

Suppose that n ∈ N and xp, xq ∈ Qn. We may see that

w`(f(xp, xq)) ≤ W`/2(F`/2(xp), F`/2(xq)) + diam`/2(F`/2(xq))

≤ (id− 1
2φ`/2)(diam`(Qn)).

We thus have
diam`(Qn+1) ≤ (id− 1

2φ`/2)(diam`(Qn)).

Taking n −→ ∞ and using the property of the class Φ, we get δ` = 0. However, we also
have 0 = δ` ≥ δr > 0, which is a contradiction. Therefore, (xn) is t-Cauchy for every t > 0.
By the completeness of X , there is a unique x̄ ∈ X such that limn−→∞ wt(xn, x̄) = 0 for
each t > 0.

We next prove that x̄ is a fixed point of f . Let us assume that x̄ 6= f(x̄), so that
wν(x̄, f(x̄)) > 0 for some ν > 0. AsW is a decreasing family, we may also assume that ν
is small enough so that wν is l.s.c. Note that

wν(x̄, f(x̄)) ≤ wν/2(x̄, f(xn)) + wν/2(f(xn), f(x̄))

≤ wν/2(x̄, f(xn)) + wν/4(Fν/4(xn), Fν/4(x̄)) + diamν/4(Fν/4(x̄)).

Passing n −→∞, we get

wν(x̄, f(x̄)) ≤ diamν/4(Fν/4(x̄)) <∞.
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Now, as of (iii), we can choose 0 < µ < ν satisfying the following inequality:

diamµ/2(Fµ/2(x)) ≤ 1
2φ(wν(x̄, f(x̄))), ∀x ∈ X.

With this, we may obtain

wν(f(xn), f(x̄)) ≤ wµ(f(xn), f(x̄))

≤ Wµ/2(Fµ/2(xn), Fµ/2(x̄)) + diamµ/2(Fµ/2(x̄))

≤ w2µ(xn, x̄)− φµ/2(w2µ(xn, x̄)) + 1
2φ(wν(x̄, f(x̄))).

Letting n −→ ∞ and using the properties of the class Φ and the semicontinuity of wν , we
have

wν(f(xn), f(x̄)) < wν(f(xn), f(x̄)),

which is a contradiction. Therefore, we conclude that x̄ ∈ Fix(f). The truth that Fix(f) =⋂
t>0 Fix(Ft) follows immediately, as

⋂
t>0 Ft(x) is always singleton. �

We shall explicitly give a particular example to help illustrating our main result. Some
lengthy routine calculations are however excluded, as it may ended up misled.

Example 3.1. Let X := [0, 1]. We define for each k ∈ N ∪ {0} and t > 0 the following:{
I0 :=

[
0, 12
]
∪ {1},

Ik :=
(
1− 1

2k
, 1− 1

2k+1

]
,


J t0 := {0} ∪

[
1

2(1+4t) ,
1

1+4t

]
,

J tk :=
[

1
2k+1(1+4t)

, 1
2k(1+4t)

)
.

Note that X =
⋃∞
k=0 Ik, and

[
0, 1

1+4t

]
=
⋃∞
k=0 J

t
k for every t > 0. Moreover, for each

x ∈ X , we write κ(x) to denote the unique index such that x ∈ Iκ(x).
On X , we may define the circular metricW := {wt}t>0 in the following (with t > 0):

wt(x, y) :=

{
1

1+t |x− y|, κ(x) = κ(y),

+∞, otherwise.

Clearly, the space (X,W) satisfies the conditions (A1) - (A4).
Again, for each t > 0, let φt be a homeomorphism from

[
0, 1

1+4t

]
onto

[
0, 1

2(1+4t)

]
such that φt(0) := 0, and φt maps the interval

[
1

2k+1(1+4t)
, 1
2k(1+4t)

]
onto another interval[∑∞

i=k+1
1

22i+2(1+4t) ,
∑∞
i=k

1
22i+2(1+4t)

]
naturally (i.e., by using only translation and scal-

ing), for all k ∈ N ∪ {0}. The graph Gr(φt) is simply the plane polygonal segment joining
the points

(
1

2k(1+4t)
,
∑∞
i=k

1
22i+2(1+4t)

)
, k ∈ N ∪ {0}, plus the origin (0, 0). It is worth

mentioning that on each interval
[

1
2k+1(1+4t)

, 1
2k(1+4t)

]
, the function φt restricted to this

interval is a linear function whose gradient is 1
2k+1 . Notice that both φt and id−φt are

increasing, φ−1t (0) = {0}, and φt(s) < s for all s ∈
[
0, 1

1+4t

]
. It is obvious that φt’s can be

extended unto [0,∞), and that the extensions are of the class Φ. We shall remain writing
φt’s for such extensions, without causing any ambiguity.

For a given t > 0, let Ft : X ( X be a map defined by

Ft(x) :=

[
0,

1

2max{1,1/t} ·
(

1−
(

1 + t

1 + 4t

)(
1− 1

2κ(x)+2

)
x

)]
, x ∈ X.

Then, Ft’s are closed, s-bounded, and s-proximinal for every s > 0. Moreover, it is more
or less trivial to see that the assumptions (ii) -(iv) are satisfied. Suppose that t > 0 is given,
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and x, y ∈ X are arbitrary points with Wt(Ft(x), Ft(y)) < ∞ and wt(x, y) < ∞. Without
losing generality, assume that x > y. Observe that
Wt(Ft(x), Ft(y))

=
1

2max{1,1/t}(1 + t)

∣∣∣∣(1−
(

1 + t

1 + 4t

)(
1− 1

2κ(x)+2

)
x

)
−

(
1−

(
1 + t

1 + 4t

)(
1− 1

2κ(x)+2

)
y

)∣∣∣∣
=

1

2max{1,1/t}(1 + 4t)

[
(x− y)− 1

2κ(x)+2
(x− y)

]
≤ w4t(x, y)− φt(w4t(x, y)).

The last inequality came mainly from the fact that if x, y ∈ Ik, then 1
1+4t (x − y) ∈ J tk.

Therefore, the assumption (i) holds. It thus follows that every prerequisites of our theorem
are satisfied.

We may see that the only common selection for {Ft}t>0 is the zero map f(x) := 0,
x ∈ X . Moreover, we have Fix(f) =

⋂
t>0 Fix(Ft) = {0}, complying with our theorem.

4. CONCLUSION

In a circular metric space, we deduce the conditions under which a unique common
selector of a weakly contractive family is guaranteed. We show some connection between
the fixed point set of the selector and of the weakly contractive family. Our main theorem
extends the results in [2].
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