Fixed points for mappings defined on generalized gauge spaces

MITROFAN M. CHOBAN

ABSTRACT. In this article, the distinct classes of continuous pseudo-gauge structures and pseudometrics (perfect, quasi-perfect, sequentially complete) are defined and studied in depth. The conditions under which the set of fixed points of a given mapping of a space with concrete pseudo-gauge structure is non-empty are determined. Some examples are proposed.

1. INTRODUCTION

By a space we understand a completely regular topological Hausdorff space. We use the terminology from [14, 16, 20].

Let \leq be a pre-order on a set *E*, i.e. \leq is a binary relation on *E* such that $x \leq x$ for each $x \in E$ and relations $x \leq y$ and $y \leq z$ imply $x \leq z$. If $a \leq b$ and $b \not\leq a$, then we put $a \prec b$. The pre-order \leq is an order if relations $x \leq y$ and $y \leq x$ imply x = y. A set $L \subset E$ is called *upper (lower) semi-bounded* if there exists $b \in E$ such that $x \leq b$ ($b \succeq x$) for all $x \in L$.

A *supremum* (*infimum*) of a non-empty subset $L \subset E$ is an element $a = \forall L$ ($a = \land L$) satisfying the following conditions:

- $x \leq a$ ($a \leq x$) for each $x \in L$;

- if $b \in E$ and $x \preceq b$ ($b \preceq x$) for each $x \in L$, then $a \prec b$ ($b \prec a$).

If $a, b \in E$ are the supremums (infimums) of the set $L \subset E$, then simultaneous we have $a \preceq b$ and $b \preceq a$. A maximal (minimal) element need not be a supremum (infimum). The pre-ordered space *E* is *reticulated* if any non-empty upper (lower) semi-bounded subset *L* has a unique supremum $\forall L$ (infimum $\land L$). In this case from $a \preceq b$ and $b \preceq a$ it follows a = b.

The results of the present article were communicated to the "5th Minisymposium on Fixed Point: Theory and Applications", organized in the framework of "10th International Conference on Applied Mathematics" June 1-7, 2014, Baia Mare and Turist Suior Resort, Romania [11].

2. SPACES WITH PSEUDO-GAUGE STRUCTURES

A Banach metric scale is a non singleton partially ordered Banach space E such that:

- x < y implies x + z < y + z;

- *E* is a reticulate lattice;

- for any non-empty lower semi-bounded chain *L* of *E* and $b = \wedge L$ there exists a sequence $A = \{x_n \in L : n \in \mathbb{N}\}$ such that $\lim_{n \to \infty} x_n = b$;

- if $0 \le x \le y$, then $||x|| \le ||y||$.

Fix a Banach metric scale *E*.

Received: 29.09.2014; In revised form: 12.03.2015; Accepted: 15.03.2015

²⁰¹⁰ Mathematics Subject Classification. 54H25, 54E15, 54H13, 12J17, 54E40.

Key words and phrases. Fixed point, pseudo-gauge structure, Banach metric scale, pseudometric .

If *L* is a non-empty lower semi-bounded chain of *E*, $b = \wedge L$ and $A = \{x_n \in L : n \in \mathbb{N}\}$ is a sequence such that $\lim_{n\to\infty} x_n = b$, then $b = \wedge A$.

A function $\rho : X \times X \longrightarrow \mathbb{E}$ is called an *E-pseudometric* or simply *pseudometric* on a space X if:

(P1) $\rho(x, x) = 0$, $\rho(x, y) = \rho(y, x)$ and $\rho(x, z) \le \rho(x, y) + \rho(y, z)$ for all $x, y, z \in X$.

If $\rho(x, y) = 0$ if and only if x = y, then ρ is called an *E-metric* on the space *X*. General concepts of metric scales and of pseudometrics were examined by distinct authors (by instance, see [1, 18, 20]).

Let ρ be a pseudometric on a space *X*.

The pseudometric ρ is non-negative: $\rho(x, x) \leq \rho(x, y) + \rho(y, x) = \rho(x, y) + \rho(x, y)$ and $0 = \rho(x, x) \leq \rho(x, y) \leq \rho(x, y) + \rho(x, y)$.

If $\varepsilon > 0$ and $x \in X$, then the set $B(x, \rho, \varepsilon) = \{y \in X : \|\rho(x, y)\| < \varepsilon\}$ is called the ε -ball of the space X with center x and radius ε or, simply, the ε -ball about x. The pseudometric ρ generate on X the topology $T(\rho)$ with the open base $\{B(x, \rho, \varepsilon) : x \in X, \varepsilon > 0\}$.

If $x \in X$, then we put $\rho(x, H) = \wedge \{\rho(x, y) : y \in H\}$. If r is a positive number, then $\rho(x, H) \leq r$, if $B(x, \rho, r) \cap H \neq \emptyset$.

A pseudometric ρ is called a *continuous pseudometric* on a space X if:

(P2) the set $B(x, \rho, \varepsilon)$ is open in X for all $x \in X$ and $\varepsilon > 0$.

Proposition 2.1. Let *E* be a Banach metric scale and ρ be an *E*-pseudometric on a space *X*. Then the function $d_{\rho}(x, y) = \|\rho(x, y)\|$ is a real-valued pseudometric on the space *X* with the following properties:

1. The pseudometric ρ is continuous if and only if the pseudometric d_{ρ} is continuous.

- 2. The pseudometric ρ is a metric if and only if the pseudometric d_{ρ} is a metric.
- 3. The metric ρ is complete if and only if the metric d_{ρ} is complete.

Proof. Let $\varepsilon > 0$. The assertions of the Proposition follow from the equality $\{x \in X : \|\rho(x,y)\| < \varepsilon\} = \{x \in X : d_{\rho}(x,y) < \varepsilon\}.$

Remark 2.1. Let *E* be a Banach metric scale and ρ be an *E*-pseudometric on a space *X*. Then the function $d_{\rho}(x, y) = \|\rho(x, y)\|$ is a real-valued pseudometric on the space *X* with the following properties:

1. The pseudometric ρ is continuous if and only if the pseudometric d_{ρ} is continuous.

- 2. The pseudometric ρ is a metric if and only if the pseudometric d_{ρ} is a metric.
- 3. The metric ρ is complete if and only if the metric d_{ρ} is complete.

A pseudo-gauge *E*-structure, or simple a pseudo-gauge structure on a space *X* is a nonempty family $\mathcal{G} = \{d_{\alpha} : X \times X \longrightarrow E : \alpha \in A\}$ of continuous pseudometrics.

The pseudo-gauge *E*-structure $\mathcal{G} = \{d_{\alpha} : \alpha \in A\}$ generate on *X* the topology $T(\mathcal{G}) = \bigvee \{T(d_{\alpha}) : \alpha \in A\}.$

If $T(\mathcal{G})$ is the topology of the space *X*, then \mathcal{G} is called a *gauge E*-structure or a *gauge structure* (see [20] for $E = \mathbb{R}$).

Fix a space X and a pseudo-gauge *E*-structure $\mathcal{G} = \{d_{\alpha} : \alpha \in A\}$ on the space X.

We put $Z(x, \mathcal{G}) = \{y \in X : d_{\alpha}(x, y) = 0 \text{ for each } \alpha \in A\}$ for any $x \in X$. A sequence $\{x_n : n \in \mathbb{N}\}$ is called \mathcal{G} -Cauchy if for each $\alpha \in A$ and each $\varepsilon > 0$ there exists $m \in \mathbb{N}$ such that $d_{\alpha}(x_n, x_k) < \varepsilon$ for all $n, k \ge m$.

We say that the pseudo-gauge *E*-structure G:

- is sequentially quasi-complete if any *G*-Cauchy sequence has an accumulation point in *X*;

- is sequentially complete if any \mathcal{G} -Cauchy sequence has an accumulation point in X and the set $Z(x, \mathcal{G})$ is compact for each point $x \in X$.

On a compact space any pseudo-gauge *E*-structure is complete. If $x \in X$ is an accumulation point of a *G*-Cauchy sequence $\{x_n : n \in \mathbb{N}\}$, then $\lim_{n \to \infty} d_{\alpha}(x, x_n) = 0$ for each $\alpha \in A$.

There exist a space X/\mathcal{G} and a gauge *E*-structure $\overline{\mathcal{G}} = \{\overline{d}_{\alpha} : \alpha \in A\}$ and a surjection $\pi_{\mathcal{G}} : X \longrightarrow X/\mathcal{G}$ such that $d(x, y) = \overline{d}_{\alpha}(\pi_{\mathcal{G}}(x), \pi_{\mathcal{G}}(y))$ for all $x, y \in X$ and $\alpha \in A$.

On $(X/\mathcal{G}, \overline{\mathcal{G}})$ we consider the topology $T(\overline{\mathcal{G}})$. The pseudometrics d_{α} are continuous if and only if the mapping $\pi_{\mathcal{G}}$ is continuous.

The pseudo-gauge *E*-structure \mathcal{G} is sequentially quasi-complete if and only if the gauge *E*-structure $\overline{\mathcal{G}}$ is sequentially complete.

The pseudo-gauge *E*-structure G is called a *quasi-perfect* pseudo-gauge *E*-structure on a space *X* if it satisfies the following conditions:

(P3) the set $Z(x, \mathcal{G})$ is countably compact for each point $x \in X$;

(P4) If $x \in X$, the set U is open in X and $Z(x, \mathcal{G}) \subseteq U$, then there exist $\varepsilon > 0$ and a finite subset $B \subseteq A$ such that $\cap \{B(x, d_{\beta}, \varepsilon) : \beta \in B\}$.

The pseudo-gauge *E*-structure G is called a *perfect* pseudo-gauge *E*-structure on a space *X* if it is quasi-perfect satisfy the following condition:

(P5) the set $Z(x, \mathcal{G})$ is compact for each point $x \in X$.

A mapping $g : X \longrightarrow Y$ of space X into a space Y is called closed if the set g(H) is closed in Y for each closed subset H of the space X. The mapping g is a *perfect mapping* if it is continuous, closed and the fibers $g^{-1}(y)$, $y \in Y$, are compact. The mapping g is a *quasi-perfect mapping* if it is continuous, closed and the fibers $g^{-1}(y)$, $y \in Y$, are countably compact.

The pseudo-gauge *E*-structure \mathcal{G} is *quasi-perfect* if and only if the mapping $\pi_{\mathcal{G}} : X \longrightarrow X/\mathcal{G}$ is quasi-perfect. The pseudo-gauge *E*-structure \mathcal{G} is *perfect* if and only if the mapping $\pi_{\rho} : X \longrightarrow X/\mathcal{G}$ is perfect.

The pseudo-gauge *E*-structure \mathcal{G} is a gauge *E*-structure if and only if it is *quasi-perfect* and for any two distinct points $x, y \in X$ there exists $\alpha \in A$ such that $d_{\alpha}(x, y) \neq 0$ (i.e. the mapping $\pi_{\mathcal{G}}$ is one-to-one and, therefore, is a homeomorphism).

On a compact space any pseudo-gauge structure is perfect and sequentially complete.

Let $\mathcal{G} = \{d_{\alpha} : Y \times Y \to \mathbb{R} : \alpha \in A\}$ be a pseudo-gauge structure on a countably compact space X and the quotient space X/\mathcal{G} is metrizable. Then the pseudo-gauge structure \mathcal{G} is quasi-perfect and is sequentially quasi-complete. Moreover, if the space X is not compact, then the pseudo-gauge structure \mathcal{G} is not perfect and is not sequentially complete.

Example 2.1. Let *Y* be an infinite compact space and $\mathcal{G} = \{d_{\alpha} : Y \times Y \to \mathbb{R} : \alpha \in A\}$ be a family of continuous pseudometrics on *Y* and for any two distinct points $x, y \in Y$ there exists $\alpha \in A$ such that $d_{\alpha}(x, y) \neq 0$. Then (Y, \mathcal{G}) is a compact sequentially complete gauge space. Let *X* be the set *Y* with the discrete topology. Then \mathcal{G} is a pseudo-gauge structure on *X*, $X/\mathcal{G} = Y$, the mapping $\pi_{\mathcal{G}}$ is one-to-one and non-perfect. In particular, \mathcal{G} is not a quasi-perfect pseudo-gauge structure on *X*.

Moreover:

- if in *Y* there exists an infinite convergent sequence, then the pseudo-gauge structure G is not sequentially complete on *X*;

- if *Y* is a space without infinite convergent sequences, then the pseudo-gauge structure \mathcal{G} is sequentially complete on *X*.

Example 2.2. Let *Y* be an infinite compact space and $\mathcal{G}^* = \{\rho_\alpha : Y \times Y \to \mathbb{R} : \alpha \in A\}$ be a family of continuous pseudometrics on *Y* and for any two distinct points $x, y \in Y$ there exists $\alpha \in A$ such that $\rho_\alpha(x, y) \neq 0$. Then (Y, \mathcal{G}^*) is a compact gauge space. The gauge

structure \mathcal{G}^* is sequentially complete. Fix an infinite space Z. We put $X = Y \times Z$. Let $\pi_Y : X \longrightarrow Y$ be the projection $\pi_Y(y, z) = y$ for any $(y, z) \in Y \times Z = X$. The mapping π is open. If the space Y is first-countable and the space Z is countably compact, then the mapping π_Y is quasi-perfect. If the space Z is compact, then the mapping π_Y is perfect. For any $\alpha \in A$ and all $u = (y_1, z_1) \in X$, $v = (y_2, z_2) \in X$ we put $d_\alpha(u, v) = \rho_\alpha(y_1, y_2)$. Then $\mathcal{G} = \{d_\alpha : X \times X \to \mathbb{R} : \alpha \in A\}$ is a quasi-gauge structure on X with the following properties:

(1) the quasi-gauge structure G is sequentially quasi-complete if and only if the space Z is countably compact;

(2) the quasi-gauge structure G is quasi-perfect if and only if the space Z is countably compact and the mapping π is closed;

(3) the quasi-gauge structure G is perfect if and only if the space Z is compact;

(4) $\pi_{\mathcal{G}} = \pi_{Y}$.

Consider some particular cases:

Case 1. Let Z be the subspace of rational numbers of the unity segment Y = [0, 1], $\rho(u, v) = |u - v|$ for all $u, v \in Y$, $\mathcal{G}^* = \{\rho\}$. Thus the gauge space (Y, \mathcal{G}^*) is a metric compact space. We put $x_n = (2^{-n} \cdot 2^{1/2}, 2^{-n})$. Then $\{x_n : n \in \mathbb{N}\}$ is a non-convergent Cauchy sequence of the pseudo-gauge space (X, \mathcal{G}) .

Case 2. Let Ω be the first uncountable ordinal number and Y be the space of all ordinal numbers $\nu \leq \Omega$ in the topology induced on Y by the natural linear order on Y. The space Y is compact and not first-countable (in point Ω . The space $Z = Y \setminus {\Omega}$ is first-countable and countably compact. The set $F = {(\nu, \nu) : \nu \in Z}$ is closed in $X = Y \times Z$ and the set $\pi_Y(F)$ is not closed in Y. In this case the quasi-gauge structure \mathcal{G} is sequentially quasi-complete and not quasi-perfect.

Case 3. Let *Z* be the space from the Case 2, *Y* and \mathcal{G}^* be as in the Case 1. In this case the quasi-gauge structure \mathcal{G} is sequentially quasi-complete, quasi-perfect and not perfect.

Example 2.3. Let τ be an uncountable cardinal number $D = \{0, 1\}$ be a discrete space, $B = \{b_n : n \in \mathbb{N}\}$ be an infinite convergent sequence of the space D^{τ} to the point $b \in D^{\tau} \setminus L$. Let $X = D^{\tau} \setminus \{b\}$. The space X is not countably compact and B be a discrete closed subset of the space X. Fix a pseudo-gauge E-structure $\mathcal{G} = \{d_{\alpha} : X \times X \longrightarrow E : \alpha \in A\}$ on a space X.

The space D^{τ} is the Stone-Čech compactification βX of the space X and the space $X/\{d\}$ is a compact metrizable space for each continuous E-pseudometric d on X. Thus for each continuous E-pseudometric d on X there exists a continuous E-pseudometric e(d) on $\beta X = D^{\tau}$ such that e(d)(x, y) = d(x, y) for all $x, y \in X$. If the cardinality $|A| < \tau$, then the set $F(A) = \{x \in X : e(d)(b, x) = 0\}$ is of cardinality τ and non-empty.

Therefore, the pseudo-gauge space (X, \mathcal{G}) has the following properties:

(1) $B = \{b_n : n \in \mathbb{N}\}$ is a Cauchy sequence of the pseudo-gauge space (X, \mathcal{G}) ;

(2) the pseudo-gauge space (X, \mathcal{G}) is not quasi-complete;

(3) if $|A| < \tau$, then the gauge space $(X/\mathcal{G}, \overline{\mathcal{G}})$ is complete;

(4) if \mathcal{G} is a gauge structure on X, then $|A| \ge \tau$ and the gauge space $(X, \mathcal{G}) = (X/\mathcal{G}, \overline{\mathcal{G}})$ is not quasi-complete.

3. Some general reduction principles

Fix a Banach metric scale *E* and a pseudo-gauge structure \mathcal{G} on a space *X*.

If $f : X \longrightarrow Y$ is a set-valued mapping of a space X into a space Y, then f(x) is a non-empty closed subset of Y for any $x \in X$.

For any set-valued mapping $f : X \longrightarrow X$ denote by $Fix(f) = \{x \in X : x \in f(x)\}$ the set of fixed points of the mapping f, by $Fix_{\mathcal{G}}(f) = \{x \in X : d(x, y) = 0 \text{ for some } y \in f(x)\}$ is the set of \mathcal{G} -fixed points of the mapping f and by $Fix_{v\mathcal{G}}(f) = \{x \in X : d(x, f(x)) = 0\}$ is the set of virtual \mathcal{G} -fixed points of the mapping f. Obviously, $Fix(f) \subseteq Fix_{\mathcal{G}}(f) \subseteq Fix_{\mathcal{G}}(f)$. In general, the sets Fix(f), $Fix_{\mathcal{G}}(f)$, $Fix_{v\mathcal{G}}(f)$ are distinct. If $E = \mathbb{R}$, then $Fix_{\mathcal{G}}(f) = Fix_{v\mathcal{G}}(f)$.

Example 3.4. Let $E = \mathbb{R} \times \mathbb{R}$, $X = \{(0,0), (0,1), (1,0)\}$ be a subspace of E, d((x,y), (u,v)) = (|x-u|, |y-v|) for each pair of points $(x,y), (u,v) \in X$ is the *E*-metric on X, $\mathbb{G} = \{d\}$ is a gauge structure on X. Consider the set-valued mapping $f : X \longrightarrow X$, where f(0,1) = (1,0), f(0,1) = (0,0), and $f(0,0) = \{(0,1), (1,0)\}$. Then $Fix(f) = \emptyset$, $Fix_G(f) = \emptyset$, $Fix_G(f) = \{(0,0)\}$.

Assume that $n \ge 0$, $f^{(0)}(x) = x$ for each $x \in X$, $f^{(1)} = f$ and $f^{(n+1)}(x) = f(f^{(n)}(x))$ for each $x \in X$.

In the applications of pseudometric spaces (X, d), the complementary assumptions compensate the situation d(x, y) = 0 for some distinct points $x, y \in X$. We mention that in some cases the study of problems on spaces with pseudometrics can be reduced to the metric spaces.

Theorem 3.1. Let *E* be a Banach metric scale, $\mathcal{G} = \{d_{\alpha} : X \times X \longrightarrow E : \alpha \in A\}$ be a pseudogauge *E*-structure on a space *X* and $g : X \longrightarrow X$ be a mapping. Assume that for any two points $x, y \in X$ for which $g(x) \neq g(y)$ there exists $\alpha = a(x, y) \in A$ such that $d_{\alpha}(x, y) \neq 0$. Then there exists a mapping $f : X/\mathcal{G} \longrightarrow X/\mathcal{G}$ such that:

1. $f(\pi_{\mathcal{G}}(x)) = \pi_{\mathcal{G}}(g(x))$ for each $x \in X$.

2. If $b \in X$ and $\pi_{\mathcal{G}}(b)$ is a fixed point of the mapping f, then g(b) is a fixed point of the mapping g.

3. If $a, b \in X$, $\{g^n(a) : n \in \mathbb{N}\}$ is a Cauchy sequence and $\lim_{n\to\infty} d_\alpha(b, g^n(a)) = 0$ for any $\alpha \in A$, then g(b) is a fixed point of the mapping g.

4. Assume that \mathcal{P} are properties of mappings of pseudo-gauge E-structures and of E and for any mapping of a E-gauge space with properties \mathcal{P} the set of fixed points is non-empty. If the pseudo-gauge E-structure \mathcal{G} on the space X, mapping g and E has the properties \mathcal{P} , then the set of \mathcal{G} -fixed points of the mapping g is non-empty.

Proof. If $x, y \in X$ and $d_{\alpha}(x, y) = 0$ for all $\alpha \in A$, then g(x) = g(y).

There exists a subset *Y* of *X* such that for each $x \in X$ there exists a unique point $y(x) \in Y$ such that $\rho(x, y(x)) = 0$. Then $\pi_{\rho}(Y) = X/\mathcal{G}$ and $\pi_{\mathcal{G}}|Y$ is a one-to-one mapping of *Y* onto X/\mathcal{G} .

For each $y \in Y$ there exists a unique point $h(y) = y(g(y)) \in Y$ such that $d_{\alpha}(g(y), h(y)) = 0$ for all $\alpha \in A$. Now, for each $x \in X$ we put $f(\pi_{\mathcal{G}}(x)) = \pi_{\mathcal{G}}(h(y(x)))$. If $x, x' \in X$ and $d_{\alpha}(x, x') = 0$ for all $\alpha \in A$, then y(x) = y(x'), g(x) = g(x') and $f(\pi_{\mathcal{G}}x) = f(\pi_{\mathcal{G}}(x'))$. Thus the mapping f is correct defined and $f(\pi_{\mathcal{G}}(x)) = \pi_{\mathcal{G}}(g(x))$ for each $x \in X$.

Assume that $b \in X$ and $\pi_{\mathcal{G}}(b)$ is a fixed point of the mapping f, i.e. $f(\pi_{\rho}(b)) = \pi_{\rho}(b)$. Suppose that $g(g(b)) \neq g(b)$. Then $d_{\alpha}(b, g(b)) \neq 0$ for some $\alpha \in A$ and $\pi_{\mathcal{G}}(b) \neq \pi_{\mathcal{G}}(g(b)) = f(\pi_{\mathcal{G}}(b)) = \pi_{\mathcal{G}}(b)$, a contradiction. The assertion 2 is proved. The assertion 4 follows from the assertion 2. Fix $a \in X$. Let $b \in X$ and $\lim_{n\to\infty} d_{\alpha}(b, g^n(a)) = 0$ for each $\alpha \in A$. Then $\lim_{n\to\infty} d_{\alpha}(g(b), g^n(a)) = 0$ and $d_{\alpha}(b, g(b)) = 0$ for each $\alpha \in A$. Thus b is a \mathcal{G} -fixed point of g and g(g(b)) = g(b). The assertion 3 is proved. The proof is complete. \Box

Theorem 3.2. Let \mathcal{G} be a pseudo-gauge E-structure on a space X and $f : X \longrightarrow X$ be a mapping. 1. Assume x = y if d(f(x), f(y)) = 0 for each $d \in \mathcal{G}$. Then $Fix_G(f) = Fix(f)$. In particular, from $Fix_G(f) \neq \emptyset$ it follows $Fix(f) \neq \emptyset$.

2. Assume that f is a set-valued mapping and for any $x \in X$ with $x \notin f(x)$ there exists $d \in \mathcal{G}$ such that d(x, f(x)) > 0. Then $Fix(f) = Fix_{\mathcal{G}}(f)$. In particular, from $Fix_{\mathcal{G}}(f) \neq \emptyset$ it follows $Fix(f) \neq \emptyset$.

3. Assume that $n \ge 0$ and for any $x \in X$ with $f^{(n+1)}(x) \ne f^{(n)}(x)$ there exists $d \in \mathcal{G}$ such that $d(f^{(n)}(x)), f^{(n+1)}(x)) > 0$. Then $f^{(n)}(b) \in Fix(f)$ for each $b \in Fix_{\mathcal{G}}(f)$. In particular, from $Fix_{\mathcal{G}}(f) \ne \emptyset$ it follows $Fix(f) \ne \emptyset$.

Proof. Assertion 1 immediately follows from Theorem 3.1. Assertion 2 is obvious. We mention, that for single-valued mappings Assertion 2 is the Assertion 3 for n = 0.

Let $n \ge 0$. Suppose that for any $x \in X$ with $f^{(n+1)}(x) \ne f^{(n)}(x)$ there exists $d \in \mathcal{G}$ such that $d(f^{(n)}(x), f^{(n+1)}(x)) > 0$. Fix $b \in Fix_{\mathcal{G}}(f)$. Let $c = f^{(n)}(b)$. Then $c \in Fix_{\mathcal{G}}(f)$ and d(b,c) = 0 for each $d \in \mathcal{G}$. Assume that $f(c) \ne c$. Then $c = f^{(n)}(x) \ne f^{(n+1)}(x) = f(c)$ and there exists $d \in \mathcal{G}$ such that $d(f(f^{(n)}(x)), f^{(n+1)}(x)) > 0$, i.e. d(c, f(c)) > 0, a contradiction. Assertion 3 is proved. The proof is complete.

Corollary 3.1. Assume that \mathcal{P} are properties of mappings of pseudo-gauge *E*-structures and of Banach *m*-scales *E* and for any mapping of a *E*-gauge space with properties \mathcal{P} the set of fixed points is non-empty. Let *E* be a Banach *m*-scale, $\mathcal{G} = \{d_{\alpha} : X \times X \longrightarrow E : \alpha \in A\}$ be a pseudo-gauge *E*-structure on a space *X* and $g : X \longrightarrow X$ be a mapping with properties \mathcal{P} . If for each $x \in X$ the subspace $Z(x, \rho)$ is a fixed point space, then $Fix(g) = \{x \in X : g(x) = x\}$ is a non-empty set.

Example 3.5. Let \mathbb{R} be the space of reals with the distance $\rho(x, y) = |x - y|$. Fix a number $k \in \mathbb{R} \setminus \{0, 1\}$. Consider the mapping $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$, where $\varphi(x) = kx$ for each $x \in X$. Let $\mathbb{D} = \{-1, 1\}$ be a discrete space. Let $X = \mathbb{R} \times \mathbb{D}$ and $\psi(x, i) = (\varphi(x), -i)$ for each point $(x, i) \in \mathbb{R} \times \mathbb{D} = X$. On X consider the continuous pseudometric $d((x, i), (y, j)) = \rho(x, y)$ for all points $(x, i), (y, j) \in \mathbb{R} \times \mathbb{D} = X$. Then $\mathbb{G} = \{d\}$ is a perfect pseudo-gauge structure on X, $d(\psi(x, i), \psi(y, j)) = |k| \cdot d((x, i), (y, j))$ for all points $(x, i), (y, j) \in \mathbb{X}$, $Fix(\psi) = \emptyset$ and $Fix_{\mathcal{G}}(\psi) = \{(0, -1), (0, 1)\}$.

Example 3.6. Let \mathbb{R} be the space of reals with the distance $\rho(x, y) = |x - y|$. Fix a number $k \in \mathbb{R} \setminus \{0, 1\}$. Consider the mapping $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$, where $\varphi(x) = kx$ for each $x \in X$. Let $\mathbb{I} = [0, 1]$ be the unite interval as a subspace of the space of reals \mathbb{R} . Let $X = \mathbb{R} \times \mathbb{I}$ and n be a natural number. We put $\psi(x, t) = (\varphi(x), max\{0, 2^{-1}t - 2^{-n-1})$ for each point $(x, t) \in \mathbb{R} \times \mathbb{I} = X$. On X consider the continuous pseudometric $d((x, t), (y, t')) = \rho(x, y)$ for all points $(x, t), (y, t') \in X$. Then $\mathbb{G} = \{d\}$ is a perfect pseudo-gauge structure on X, $d(\psi(x, t), \psi(y, t')) = |k| \cdot d((x, t), (y, t'))$ for all points $(x, t), (y, t') \in X$. Fix $(\psi) = \{(0, 0)\}$ and $Fix_{\mathcal{G}}(\psi) = \{(0, t) : t(0, 1) \in \mathbb{I}\}$. By construction, if $\psi^{(n)}(x, t) \neq \psi^{(n+1)}(x, t)$, then $d(\psi^{(n)}(x, t), \psi^{(n+1)}(x, t)) > 0$. Hence $\psi^n(Fix_{\mathcal{G}}(\psi)) = Fix(\psi)$.

Example 3.7. Let \mathbb{R} be the space of reals with the distance $\rho(x, y) = |x - y|$. Fix a number $k \in \mathbb{R} \setminus \{0, 1\}$. Consider the mapping $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$, where $\varphi(x) = kx$ for each $x \in X$. Let $\mathbb{I} = [0, 1]$ be the unite interval as a subspace of the space of reals \mathbb{R} . Let $X = \mathbb{R} \times \mathbb{I}$ and *n* be a natural number. We put $\psi(x, t) = (\varphi(x), \max\{0, 2^{-1}t - 2^{-n-1})$ for each

point $(x,t) \in \mathbb{R} \times \mathbb{I} = X$. On X consider the continuous pseudometric $d((x,t), (y,t')) = \rho(x,y)$ for all points $(x,t), (y,t') \in X$. Then $\mathbb{G} = \{d\}$ is a perfect pseudo-gauge structure on X, $d(\psi(x,t), \psi(y,t')) = |k| \cdot d((x,t), (y,t'))$ for all points $(x,t), (y,t') \in X$, $Fix(\psi) = \{(0,0)\}$ and $Fix_{\mathcal{G}}(\psi) = \{(0,t) : t \in \mathbb{I}\}$. By construction, if $\psi^{(n)}(x,t) \neq \psi^{(n+1)}(x,t)$, then $d(\psi^{(n)}(x,t), \psi^{(n+1)}(x,t)) > 0$. Hence $\psi^n(Fix_{\mathcal{G}}(\psi)) = Fix(\psi)$.

Example 3.8. Let \mathbb{R} be the space of reals with the distance $\rho(x, y) = |x-y|$. Fix a number $k \in \mathbb{R} \setminus \{0, 1\}$. Consider the mapping $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$, where $\varphi(x) = kx$ for each $x \in X$. Let $X = \mathbb{R} \times \mathbb{I}$. We put $\psi(x, t) = (\varphi(x), max\{0, 2^{-1}t)$ for each point $(x, t) \in \mathbb{R} \times \mathbb{I} = X$. On X consider the continuous pseudometric $d((x, t), (y, t')) = \rho(x, y)$ for all points $(x, t), (y, t') \in X$. Then $\mathbb{G} = \{d\}$ is a perfect pseudo-gauge structure on X, $d(\psi(x, t), \psi(y, t')) = |k| \cdot d((x, t), (y, t'))$ for all points $(x, t), (y, t') \in X$. Fix $(\psi) = \{(0, 0)\}$ and $Fix_{\mathcal{G}}(\psi) = \{(0, t) : t \in \mathbb{I}\}$. By construction, $\psi^n(Fix_{\mathcal{G}}(\psi)) \neq Fix(\psi)$ for each $n \in \mathbb{N}$.

Example 3.9. Let \mathbb{R} be the space of reals with the distance $\rho(x, y) = |x - y|$. Fix a number $k \in \mathbb{R} \setminus \{0, 1\}$. Consider the mapping $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$, where $\varphi(x) = kx$ for each $x \in X$. Let $X = \mathbb{R} \times \mathbb{R}$. We put $\psi(x, t) = (\varphi(x), max\{0, 2^{-1}t - 2^{-n-1})$ for each point $(x, t) \in \mathbb{R} \times \mathbb{R} = X$. On X consider the continuous pseudometric $d((x, t), (y, t')) = \rho(x, y)$ for all points $(x, t), (y, t') \in X$. Then $\mathbb{G} = \{d\}$ is a pseudo-gauge structure on X, $d(\psi(x, t), \psi(y, t')) = |k| \cdot d((x, t), (y, t'))$ for all points $(x, t), (y, t') \in X$, $Fix(\psi) = \{(0, 0)\}$ and $Fix_{\mathcal{G}}(\psi) = \{(0, t) : t \in \mathbb{R}\}$. By construction, $\psi^n(Fix_{\mathcal{G}}(\psi)) \neq Fix(\psi)$ for each $n \in \mathbb{N}$. Moreover, for each $(x, t) \in Fix_{\mathcal{G}}(\psi)$ there exists n such that $\psi(x, t) \in Fix(\psi)$. We mention that the pseudo-gauge structure $\mathbb{G} = \{d\}$ is not perfect.

4. Some applications of the reduction principles

Consider a Banach metric scale *E* and a pseudo-gauge structure \mathcal{G} on a space *X*.

The results of above sections may be applied to the spaces with pseudo-gauge structures. For that are important the conditions which guarantee non-empties of the set $Fix_{\mathcal{G}}(f)$. A mapping $g: X \longrightarrow Y$ is called an *upper semicontinuous* mapping, if for any open subset V of Y the set $g^{\ominus 1}(V) = \{x \in X : g(x) \subseteq V\}$ is open in X.

Lemma 4.1. Let \mathbb{G} be a sequentially quasi-complete pseudo-gauge structure on a space X and $g: X \longrightarrow X$ be an upper semicontinuous compact-valued mapping. Then:

- 1. The set Fix(g) is closed in X.
- 2. The set $Fix_{\mathcal{G}}(g)$ is closed in X.
- 3. If $x \in Fix_{\mathcal{G}}(g)$, then $Z(x, \mathcal{G}) \subseteq Fix_{\mathcal{G}}(g)$.

Proof. Assume that $x \notin g(x)$. There exist two open subsets V and W of X such that $x \in V, g(x) \subseteq W$ and $V \cap W = \emptyset$. The set $U = V \cap g^{\ominus 1}(W)$ is open in $X, x \in U$ and $U \cap g(U) = \emptyset$. Assertion 1 is proved for arbitrary upper semicontinuous set-valued mappings. Assume that $x_0 \notin Fix_{\mathcal{G}}(g)$. Then for each $x \in g(x_0)$ there exist r(x) > 0 and $d_x \in \mathcal{G}$ such that $||d_x(x_0, x)|| \ge 3r(x)$. Since $g(x_0)$ is a compact space and $g(x_0) \subseteq \cup \{B(x, d_x, r(x)) : x \in g(x_0)\}$, then there exists a non-empty finite subset L of $g(x_0)$ such that $g(x_0) \subseteq \cup \{B(x, d_x, r(x)) : x \in L\}$. Let $W = \cup \{B(x, d_x, r(x)) : x \in L\}$, $V_1 = \cap \{B(x_0, d_x, r(x)) : x \in L\}$ and $V = V_1 \cap g^{\ominus 1}(W)$. The set V is open in $X, x_0 \in Z(x_0, \mathcal{G}) \subseteq V$ and $V \cap Fix_{\mathcal{G}}(g) = \emptyset$. Assertions 2 and 3 are proved.

A sequence $\{x_n : n \in \mathbb{N}\}$ is a Picard sequence of the set-valued mapping $g : X \longrightarrow X$ if $x_{n+1} \in g(x_n)$ for each $n \in \mathbb{N}$. If $\{x_n : n \in \mathbb{N}\}$ is a Cauchy sequence of the space (X, \mathcal{G}) , then we say that $\{x_n : n \in \mathbb{N}\}$ is a \mathcal{G} -Picard sequence of the mapping g. **Lemma 4.2.** Let \mathcal{G} be a sequentially quasi-complete pseudo-gauge structure on a space $X, g : X \longrightarrow X$ be an upper semicontinuous set-valued mapping and $\{x_n : n \in \mathbb{N}\}$ be a Picard sequence of the mapping g. Then:

1.If $x \in X$ and $\lim_{n\to\infty} d(x, x_n) = 0$ for each $d \in \mathcal{G}$, then $x \in Z(x, \mathcal{G}) \subseteq Fix_{\mathcal{G}}(g)$ and $\{x_n : n \in \mathbb{N}\}$ is a \mathcal{G} -Picard sequence of the mapping g.

2. If $\{x_n : n \in \mathbb{N}\}$ is a \mathcal{G} -Picard sequence of the mapping g and x is an accumulation point of the sequence $\{x_n : n \in \mathbb{N}\}$, then $\lim_{n\to\infty} d(x, x_n) = 0$ for each $d \in \mathcal{G}$ and $x \in Fix_{\mathcal{G}}(g)$.

Proof. Let $b \in X$ and $\lim_{n\to\infty} d(b, x_n) = 0$ for each $d \in \mathcal{G}$. Then $\{x_n : n \in \mathbb{N}\}$ is a Cauchy sequence of the space (X, \mathcal{G}) and a \mathcal{G} -Picard sequence of the mapping g. The sequence $\{x_n : n \in \mathbb{N}\}$ has an accumulation point x_0 and $b \in Z(x_0, \mathcal{G})$. By virtue of Lemma 4.1, we can assume that $b = x_0$ is an accumulation point of the sequence $\{x_n : n \in \mathbb{N}\}$. Since the mapping g is upper semicontinuous and $\{x_n : n \in \mathbb{N}\} \subseteq g(\{x_n : n \in \mathbb{N}\})$, the sequence $\{x_n : n \in \mathbb{N}\}$ has an accumulation point $c \in g(b)$. Then d(b, c) = 0 for all $d \in \mathcal{G}$ and $b \in Fix_{\mathcal{G}}(g)$. Assertion 1 is proved. Assertion 2 follows from Assertion 1.

A set-valued mapping $g : X \longrightarrow X$ is called *G*-contractive if there exists a family of non-negative numbers $\{k_d : d \in \mathbb{G}\}$ and for all $x, y \in X$ and $x' \in g(x)$ there exists $y' = c(g, x, y, x') \in g(y)$ for which $d(x', y') \leq k_d \cdot d(x, y)$ and $0 \leq k_d < 1$ for each $d \in \mathbb{G}$.

Lemma 4.3. Let \mathcal{G} be a pseudo-gauge structure on a space X and $g: X \longrightarrow X$ be a \mathbb{G} -contractive mapping. If $x_1 \in X$ is an arbitrary fixed point, $x_2 \in g(x_1)$ and $x_{n+2} = c(g, x_n, x_{n+1}, x_{n+1}) \in g(x_{n+1})$ for each $n \in \mathbb{N}$, then $T(g, x_1, x_2) = \{x_n : n \in \mathbb{N}\}$ is a \mathcal{G} -Picard sequence of the mapping g generated by x_1 and $x_2 \in g(x_1)$.

Proof. Assume that the points $x_1 \in X$ and $x_2 \in g(x_1)$ are fixed and $x_{n+2} = c(g, x_n, x_{n+1}, x_{n+1}) \in g(x_{n+1})$ for each $n \in \mathbb{N}$. Let $b_d = d(x_1, x_2)$. Then $d(x_{n+1}, x_{n+m}) \leq (k_d^n : (1 - k_d)) \cdot b_d$. The proof is complete.

Theorem 4.3. Let \mathcal{G} be a sequentially complete perfect pseudo-gauge structure on a space X and $g: X \longrightarrow X$ be a \mathcal{G} -contractive upper semicontinuous set-valued mapping. Then for each points $x_1 \in X$ and $x_2 \in g(x_1)$ the Picard orbit $T(g, x_1, x_2) = \{x_n : n \in \mathbb{N}\}$ is a \mathcal{G} -Picard sequence of the pseudo-gauge space (X, \mathbb{G}) with accumulation points in X. Moreover, if $z \in X$ is an accumulation point of the sequence $T(g, x_1, x_2)$, then $z \in Fix_{\mathcal{G}}(g)$ and $\lim_{n\to\infty} d(z, x_n) = 0$ for each $d \in \mathcal{G}\}$.

Proof. Follows from Lemmas 4.2 and 4.3.

Theorem 4.4. Let G be a sequentially quasi-complete pseudo-gauge structure on a space X and $g: X \longrightarrow X$ be a G-contractive mapping. Then:

1. For each point $x \in X$ the Picard orbit $T(g,x) = \{x_n : n \in \mathbb{N}\}$, where $x_1 = x$ and $x_{n+1} = g(x_n)$ for each $n \in \mathbb{N}$, is a Cauchy sequence of the pseudo-gauge space (X, \mathcal{G}) with accumulation points in X. Moreover, if $z \in X$ is an accumulation point of the sequence T(g,x), then $z \in Fix_{\mathcal{G}}(g)$ and $\lim_{n\to\infty} d(z, x_n) = 0$ for each $d \in \mathcal{G}$.

2. If $x, y \in Fix_{\mathcal{G}}(g)$, then d(x, y) = 0 for each $d \in \mathcal{G}$ and $Fix_{\mathcal{G}}(g) = \{z \in X : d(x, z) = 0 \text{ for each } d \in \mathcal{G} \}$.

3. $Fix_{\mathcal{G}}(g)$ is a non-empty closed countably compact subspace of the space X.

Proof. Assertion 1 follows from Theorem 4.3.

If $x, y \in Fix_{\mathcal{G}}(g)$, then d(x, g(x)) = 0, d(y, g(y)) = 0, $d(x, y) \leq d(x, g(x)) + d(g(x), g(y)) + d(g(x), g(y)) \leq k_d \cdot d(x, y)$, i.e. d(x, y) = 0 for each $d \in \mathcal{G}$. If $d \in \mathcal{G}$, $z \in X$ and d(x, z) > 0, then d(x, g(z)) = d(g(x), g(z)) < d(x, z). Thus $z \neq g(z)$, d(g(z), z) > 0 and

 $z \notin Fix_{\mathcal{G}}(g)$. If d(x, z) = 0, then d(x, g(z)) = 0 too. Hence $Fix_{\mathcal{G}}(g) = \{z \in X : d(x, z) = 0 \text{ for each } d \in \mathcal{G}\}$. Assertion 2 is proved.

If $\{x_n \in Fix_{\mathcal{G}}(g) : n \in \mathbb{N}\}$, then, by virtue of Assertion 2, we have $d(x_n, x_m) = 0$ for all $n \in \mathbb{N}$ and each $d \in \mathcal{G}$. Hence, $\{x_n : n \in \mathbb{N}\}$ is a Cauchy sequence and has an accumulation point in *X*. Since the pseudometrics $d \in \mathcal{G}$ are continuous, the set $Fix_{\mathcal{G}}(g)$ is closed in *X*. Assertion 3 is proved

Some special cases of Theorem 4.4 were examined in [3, 12, 13, 17, 20]. We mention, that Assertions 2 and 3 of Theorem 4.4 are not true for set-valued mappings.

Example 4.10. Let \mathcal{G} be a sequential complete gauge structure on a space X with an infinite closed subset F. Consider the set-valued mapping $g : X \longrightarrow X$, where g(x) = F for each $x \in X$. The mapping g is upper semicontinuous (and lower semicontinuous too). The mapping g is compact-valued if and only if the set F is compact. If $x, y \in X$ and $x' \in g(x)$, then we put c(g, x, y, x') = x'. Then g is a \mathcal{G} -contractive mapping with $k_d = 0$ for any $d \in \mathcal{G}$. We have $Fix(g) = Fix_{\mathcal{G}} = F$.

Assume now that \mathcal{G} is a pseudo-gauge structure on a space X. Let $\Phi = \bigcup \{Z(x, \mathcal{G}) : x \in F\}$. Obviously, $F \subseteq \Phi$. For some \mathcal{G} we have $F \neq \Phi$. We have Fix(g) = F and $Fix_{\mathcal{G}} = \Phi$.

A space *X* is called a *fixed point space* if for each continuous mapping we have g(y) = y for some $y \in X$ (see [12, 13, 16]).

Any convex compact subset of a topological liner space is a fixed point space [8, 9, 16, 20].

Corollary 4.2. Let \mathcal{G} be a sequentially quasi-complete pseudo-gauge structure on a space X and $g: X \longrightarrow X$ be a \mathcal{G} -contractive mapping. If for each $x \in X$ the subspace $Z(x, \rho)$ is a fixed point space, then $Fix(g) = \{x \in X : g(x) = x\}$ is a non-empty set.

Example 4.11. Let \mathcal{G}_1 be a sequential complete gauge structure on a space *Y* and *Z* be a compact fixed-point space. Consider the $X = Y \times \mathbb{Z}$. For each $\rho \in \mathcal{G}_1$ on *X* we consider the continuous pseudometric $d((x, z), (y, z')) = \rho(x, y)$ for all points $(x, z), (y, z') \in X$. Then $\mathcal{G} = \{d_\rho : \rho \in \mathcal{G}_1\}$ is a perfect pseudo-gauge structure on *X*.

Assume that 0 < k < 1 and $g : X \longrightarrow X$ is a mapping such that $d(g(x, z), g(y, z')) \le k \cdot d((x, z), (y, z'))$ for all points $(x, z), (y, z') \in X$. Then there exists a unique point $(x_0, z_0) \in X$ such that $Fix_{\mathcal{G}}(g) = \{(x, z) \in X : d((x, z), (x_0, z_0) = 0 \text{ for each } d \in \mathcal{G}\} = \{x_0\} \times Z$. Then $f : Z \longrightarrow Z$, where f(z) = z' if and only if $g(x_0, z) = g(x_0, z')$, is a continuous mapping of Z into Z. Since Z is a fixed-point space, there exists $z_1 \in Z$ such that $z_1 \in Fix(f)$. Then $(x_0, z_1) \in Fix(g)$ and $Fix(g) \neq \emptyset$.

Theorem 4.5. Let *E* be a Banach metric scale and ||x+y|| = ||x|| + ||y|| provided $0 \le x$ and $0 \le y$, \mathcal{G} be a sequentially quasi-complete pseudo-gauge structure on a space X, $\{\varphi_d : X \longrightarrow E : d \in \mathcal{G}\}$ be functions, $0 \le \varphi_d(x)$ for all $x \in X$ and $d \in \mathcal{G}$, and $g : X \longrightarrow X$ be a set-valued mapping with a closed graph $Gr(g) = \bigcup \{x\} \times g(x) : x \in X\}$ in $X \times X$. Assume that for each $x \in X$ there exists $s(x) \in g(x)$ such that $d(x, s(x)) \le \varphi_d(x) - \varphi_d(s(x))$ for each $d \in \mathcal{G}$. Then:

1. $Fix_{\mathcal{G}}(g)$ is a non-empty set of the space X.

2. If $x_0 \in X$ and $x_{n+1} = s(x_n)$, then $\{x_n : n \in \mathbb{N}\}$ is a Cauchy sequence of the space X and there exist two accumulation points b, c of $\{x_n : n \in \mathbb{N}\}$ such that $c \in g(b)$ and $b \in Fix_{\mathcal{G}}(g)$.

Proof. Note that the mapping *g* is called the Caristi operator on *X* (see [7]; [20], p. 75).

Fix $x_0 \in X$ and $x_{n+1} = s(x_n)$ for each $n \in \mathbb{N}$. Denote by $A(x_0)$ the set of all accumulation points of the sequence $\{x_n : n \in \mathbb{N}\}$ and $L(x_0) = \{x \in X : \lim_{n \to \infty} d(x, x_n) = 0\}$. Obviously, $A(x_0) \subseteq L(x_0)$.

Fix $d \in \mathcal{G}$. Obviously, that $\Sigma\{d(x_i, x_{i+1} : 0 \le i \le n\} \le f_d(x_0) - f_d(x_{n+1} \le f(x_0))$ for each $n \in \mathbb{N}$. Hence the series $\Sigma\{d(x_i, x_{i+1} : 0 \le i < \infty\}$ is convergent in E and $\Sigma\{d(x_i, x_{i+1} : 0 \le i < \infty\} = \vee\{\Sigma\{d(x_i, x_{i+1} : 0 \le i \le n\} : n \in \mathbb{N}\} \le f_d(x_0)$. In particular, the series $\Sigma\{\{d(x_i, x_{i+1}) \| : 0 \le i < \infty\}$ is convergent in E and $\Sigma\{\|d(x_i, x_{i+1})\| : 0 \le i < \infty\}$ is convergent in E and $\Sigma\{\|d(x_i, x_{i+1})\| : 0 \le i < \infty\}$ is $\mathbb{C}\{\|d(x_i, x_{i+1})\| : 0 \le i < \infty\} \le \|f(x_0)\|$. Hence $\{x_n : n \in \mathbb{N}\}$ is a Cauchy sequence of the space (X, \mathcal{G}) . Let $P = \{(x_n, x_{n+1} : n \in \mathbb{N}\} \subseteq X \times X$. By construction, $P \subseteq Gr(g)$.

Since (X, \mathcal{G}) is a sequentially complete pseudo-gauge space, there exists $b \in X$ such that b is an accumulation point of the sequence $\{x_n : n \in \mathbb{N}\}$. Moreover, $A(x_0)$ and $L(x_0)$ are non-empty compact subsets of the space X and $b \in A(x_0) \subseteq L(x_0)$.

Claim 1. Let *V* be an open subset of *X* and $A(x_0) \subseteq V$. Then the set $\{n : x_n \notin V\}$ is finite.

Follows from the following fact: any infinite subsequence of the sequence $\{x_n : n \in \mathbb{N}\}$ is a Cauchy sequence of the space (X, \mathcal{G}) and has accumulation points in $A(x_0)$.

Claim 2. $(A(x_0) \times A(x_0)) \cap cl_{X \times X} P \neq \emptyset$.

Assume that $(A(x_0) \times A(x_0)) \cap cl_{X \times X}P = \emptyset$. Since the set $A(x_0)$ is compact, then there exists an open subset V of X such that $A(x_0) \subseteq V$ and $(V \times V) \cap P = \emptyset$. By virtue of Claim 1, there exists $k \in \mathbb{N}$ such that $x_n \in V$ for all $n \ge k$. Then $(x_n, x_{n+1}) \in (V \times V) \cap P$ for all $n \ge k$, a contradiction. Claim 2 is proved.

Without loss of generality, we can suppose that $(b,c) \in (A(x_0) \times A(x_0)) \cap cl_{X \times X} P$ for some $c \in A(x_0)$. Since the set Gr(g) is closed in $X \times X$ and $P \subseteq Gr(g)$, we have $c \in g(b)$. By construction, $lim_{n\to\infty}d(b,x_n) = 0$ and $lim_{n\to\infty}d(c,x_n) = 0$ for each $d \in \mathcal{G}$. Hence d(b,c) = 0 for each $d \in \mathcal{G}$ and $b \in Fix_{\mathcal{G}}(g)$.

Theorem 4.5 is true for regular Banach metric scales: every increasing sequence which is bounded from above is convergent (see [20], p. 80).

In similar way the generalized contractions of types of Ćirić - Reich - Rus ([20], p. 28), Krasnoselelskii - Zabrejko ([20], p. 29), Zamfirescu ([20], p. 29), Rus - Kasahara - Hicks - Rhoades ([20], p. 35), Niemytzky - Edelstein ([20], p. 38), Berinde - Choban [4, 5] are extended for set-valued mappings of pseudo-gauge spaces.

5. SPACES WITH FINITE PSEUDO-GAUGE STRUCTURES

Let *E* be a Banach metric scale and *m* be a natural number. Consider the Banach metric scale E^m in which for all $(x_1, x_2, ..., x_m), (y_1, y_2, ..., y_m) \in E^m$ we have $||(x_1, x_2, ..., x_m)|| = ||x_1|| + ||x_2|| + ... + ||x_m||$ and $(x_1, x_2, ..., x_m) \leq (y_1, y_2, ..., y_m)$ if and only if $x_1 \leq y_1, x_2 \leq y_2, ..., x_1 \leq y_m$). The Banach metric scale E^m is regular if and only if *E* is a regular Banach metric scale.

Let $\mathcal{G} = \{d_1, d_2, ..., d_m\}$ be a finite pseudo-gauge structure on a space X. Then $d((x_1, x_2, ..., x_m), (y_1, y_2, ..., y_m)) = (d_1(x_1, y_1), d_2(x_2, y_2), ..., d_m(x_m, y_m))$ is a continuous E^m -pseudometric on the space d.

Hence the results from [10] are true for spaces with finite pseudo-gauge structures.

The matrix contractions may be applied to the finite pseudo-gauge spaces. Denote by M_m^* the family of all $m \times m$ matrices $S = (s_{ij})_m^m$ with the properties:

- $s_{ij} \in \mathbb{R}$ and $0 \leq s_{ij}$ for all $i, j \leq m$;

- $lim_{k\to\infty}S^k = \theta_m$, where θ_m is the zero $m \times m$ matrix.

If $S \in M_m^*$, then it is said to be that the matrix S is convergent to zero ([20], Section 6.0.3).

By virtue of Theorem 6.0.1 from [20], for any non-negative scalar $m \times m$ matrix *S* the following assertions are equivalent:

(i) *S* is a convergent to zero matrix;

(ii) $det(\varepsilon_m - S) \neq 0$ and $(\varepsilon_m - S)^{-1}$ has non-negative elements, where ε_m is the unit $m \times m$ matrix;

(iii) $det(\varepsilon_m - S) \neq 0$ and $(\varepsilon_m - S)^{-1} = \varepsilon_m + S + S^2 + \dots + S^n + \dots$

The matrix approach and reduction principles permit to extend the distinct fixed point theorems, proved for the \mathbb{R}^m -metrics (see [20, 19]).

A mapping $\varphi : X \longrightarrow X$ is a scalar *S*-contraction if there exists $S \in M_m^*$ such that $d(\varphi(x), \varphi(y)) \leq Sd(x, y)$ for all $x, y \in X$.

Theorem 5.6. Let (X, \mathcal{G}) be a sequentially complete pseudo-gauge space and $\varphi : X \longrightarrow X$ be a scalar *S*-contraction. Then:

1. There exists $x^* \in X$ such that $d(x^*, \varphi(x^*)) = 0$.

2. If $\{x_n : n \in \mathbb{N}\}$ and $\lim_{n \to \infty} d(x_n, \varphi(x_n)) = 0$, then $\lim_{n \to \infty} d(x_n, x^*) = 0$.

3. If $d(x, y) \neq 0$ provided $\varphi(x) \neq \varphi(y)$, then $Fix(\varphi) \neq \emptyset$.

4. Assume that x = y if $d(\varphi(x), \varphi(y)) = 0$. Then $Fix(\varphi)$ is a singleton set.

Proof. The proofs of the assertions 1 and 2 are similar as in the case $E = \mathbb{R}$ (see [20], Theorems 6.1.1 and 6.1.2). The assertion 3 follows from the assertion 1 and Theorem 3.1. The assertion 4 follows from the assertion 1 and Theorem 3.2.

6. PSEUDOMETRICS IN ORDERED BANACH ALGEBRAS

In the present section the notion of the scalar *S*-contraction is extended for matrices with elements from a given ordered commutative Banach algebra (we use the notions from [2, 6, 15] about normed rings and ordered algebras).

A Banach metric *r*-scale is a non singleton partially ordered Banach space *E* such that:

- *E* is a Banach metric scale;

- *E* is a commutative ring with unity 1 such that 0 < 1, || 1 || = 1, $|| xy || \le || x || \cdot || y ||$ for all x, y from $E, xy \ge 0$ provided $x \ge 0$ and $y \ge 0$, $uv \le uz$ provided $u \ge 0$ and $v \le z$. Fix a Banach metric *r*-scale *E* and a natural number *m*.

Let $M_m(E)$ be the family of all $m \times m$ matrices $S = (s_{ij})_m^m$ with the properties:

- $s_{ij} \in E$ and $0 \leq s_{ij}$ for all $i, j \leq m$;

 $- \| detS \| + \| detS^2 \| + ... + \| detS^n \| + ... < \infty;$

- there exists the sum $|S| + |S^2| + ... + |S^n| + ...$, where $|A| = (||a_{ij}||)_m^m$ for each matrix $A = (a_{ij})_m^m$.

If $S \in M_m(E)$, then $\lim_{k\to\infty} S^k = \theta_m$, where θ_m is the zero $m \times m$ matrix.

Let $\mathcal{G} = \{d_1, d_2, ..., d_m\}$ be a finite pseudo-gauge structure on a space X. Then $d((x_1, x_2, ..., x_m), (y_1, y_2, ..., y_m)) = (d_1(x_1, y_1), d_2(x_2, y_2), ..., d_m(x_m, y_m))$ is a continuous E^m -pseudometric on the space d.

The matrix approach and reduction principles permit to extend the distinct fixed point theorems, proved for the \mathbb{R}^m -metrics (see [20]).

A mapping $\varphi : X \longrightarrow X$ is an *SE*-contraction if there exists $S \in M_m(E)$ such that $d(\varphi(x), \varphi(y)) \leq Sd(x, y)$ for all $x, y \in X$.

Theorem 6.7. Let (X, \mathcal{G}) be a sequentially complete pseudo-gauge space and $\varphi : X \longrightarrow X$ be an *SE*-contraction. Then:

1. There exists $x^* \in X$ such that $d(x^*, \varphi(x^*)) = 0$.

2. If $\{x_n : n \in \mathbb{N}\}$ and $\lim_{n \to \infty} d(x_n, \varphi(x_n)) = 0$, then $\lim_{n \to \infty} d(x_n, x^*) = 0$.

3. If $d(x, y) \neq 0$ provided $\varphi(x) \neq \varphi(y)$, then $Fix(\varphi) \neq \emptyset$.

4. Assume that x = y if $d(\varphi(x), \varphi(y)) = 0$. Then $Fix(\varphi)$ is a singleton set.

Proof. Let ε_m be the unit matrix. Then $(\varepsilon_m + S)^{-1} = \varepsilon_m + S + S^2 + ... + S^n + ...$ for any $S \in M_m(E)$. The proofs of the assertions 1 and 2 are similar as in the case $E = \mathbb{R}$ (see [20], Theorems 6.1.1 and 6.1.2). The assertion 3 follows from the assertion 1 and Theorem 3.1. The assertion 4 follows from the assertion 1 and Theorem 3.2.

Acknowledgements. The author is grateful to the Referee for the valuable suggestions and comments.

REFERENCES

- Antonovskii, M. Ja., Boltjanskii, V. G. and Sarymsakov., T. A., A survey of the theory of topological semifields, Uspehi Mat. Nauk 21 (1966), No. 4, 185–218 (in Russian) (English translation: Russian Math. Surveys 21 (1966), No. 4, 163-192)
- [2] Beckenstein, E., Narici, L. Suffel, C., Topological Algebras, North Holland Publ. Com., New York, 1977
- [3] Berinde, V., Generalized contractions in σ-complete vector lattices, Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 24 (1994), No. 2, 31–38
- [4] Berinde, V. and Choban, M., Remarks on some completeness conditions involved in several common fixed point theorems, Creat. Math. Inform., 19 (2010), No. 1, 1–10
- [5] Berinde, V. and Choban, M., Generalized distances and their associate metrics. Impact on fixed point theory, Creat. Math. Inform., 22 (2013), No. 1, 23–32
- [6] Birkhoff, G., Lattice Theory, Providence, 1967
- [7] Caristi, J., Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241–251
- [8] Cauty, R., Solution du probléme de point fixe de Schauder, Fund. Math., 170 (2001), 231-246
- [9] Cauty, R., Un théorème de point fixe pour les fonctions multivoques acycliques, In: V. Kadets and W. Zelazko (editors), *Functional Analysis and its Applications*, Proceed. of the Intern. Conf. dedicated to 110th Anniversary of Stefan Banach, May 28-31, 2002, Lviv, Ukraine, Elsevier, 2004, 71–80
- [10] Choban, M. M., Fixed points for mappings defined on pseudometric spaces, Creative Mathematics and Informatics, 22 (2013), No. 2, 173–184
- [11] Choban, M. M., Fixed points for mappings defined on generalized gauge spaces, 5th Minisymposium on Fixed Point: Theory and Applications, june 1-7, 2014, Baia Mare and Turist Suior Resort, Romania, Abstracts, Baia Mare, 2014, 8–9
- [12] Choban, M. M. and Calmutchi, L. I., Fixed points theorems in multi-metric spaces, Annals of the Academy of Romanian Scientists, Series on Mathematics and its Applications, 3 (2011) 46–68
- [13] Choban, M. M. and Calmutchi, L. I., Fixed points theorems in E-metric spaces, ROMAI Journal, 6 (2010), No. 2, 83–91
- [14] Engelking, R., General Topology, PWN. Warszawa, 1977
- [15] Gelfand, I. M. Raikov, D. A. and Šilov, G. E., Commutative Normed Rings, Gos. Izd-vo Fiziko-Matem. Lit., Moskva, 1960 (in Russian), (English translation: Chelsea, New York, 1964)
- [16] Granas, A., and Dugundji, J., Fixed point theory, Springer-Verlag, New York, 2003
- [17] Iseki, K., On a Banach theorem on contractive mappings, Proceed. Japan Academy, 41 (1965), 145–146
- [18] Nedev, S. I. and Choban, M. M., A general concept of metrizability for topological spaces, Annuare Univers. Sofia, Facult. Math., 65 (1973), 111–165
- [19] Rus, I. A., The theory of a metrical fixed point theorem: theoretical and applicative relevance, Fixed Point Theory, 9 (2008), 293–307
- [20] Rus, I. A., Petrusel, A. and Petrusel, G., Fixed point theory, Cluj University Press, Cluj-Napoca, 2008

TIRASPOL STATE UNIVERSITY DEPARTMENT OF ALGEBRA, GEOMETRY AND TOPOLOGY 5 GH. IABLOCIKIN STR., MD2069 CHIŞINĂU, REPUBLIC OF MOLDOVA *E-mail address*: mmchoban@gmail.com