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Fixed points for mappings defined on generalized gauge
spaces

MITROFAN M. CHOBAN

ABSTRACT. In this article, the distinct classes of continuous pseudo-gauge structures and pseudometrics
(perfect, quasi-perfect, sequentially complete) are defined and studied in depth. The conditions under which
the set of fixed points of a given mapping of a space with concrete pseudo-gauge structure is non-empty are
determined. Some examples are proposed.

1. INTRODUCTION

By a space we understand a completely regular topological Hausdorff space. We use
the terminology from [14, 16, 20].

Let < be a pre-order on a set £, i.e. <is a binary relation on £ such that < z for each
z € E and relations z < yand y < zimply < z. If a < band b £ a, then we puta < b.
The pre-order < is an order if relations z < y and y < x imply x = y. Aset L C E is called
upper (lower) semi-bounded if there exists b € E such that x < b (b > z) forall z € L.

A supremum (infimum) of a non-empty subset L C E is an element ¢ = VL (a = AL)
satisfying the following conditions:

-r=<a(a=2x)foreachz € L;

-ifbe Fandz < b(b<x)foreachz € L, thena < b (b < a).

If a, b € E are the supremums (infimums) of the set L C E, then simultaneous we have
a =% band b < a. A maximal (minimal) element need not be a supremum (infimum). The
pre-ordered space E is reticulated if any non-empty upper (lower) semi-bounded subset L
has a unique supremum VL (infimum AL). In this case from ¢ < b and b =< « it follows
a=>b.

The results of the present article were communicated to the ”5th Minisymposium on
Fixed Point: Theory and Applications”, organized in the framework of “10th International
Conference on Applied Mathematics” June 1-7, 2014, Baia Mare and Turist Suior Resort,
Romania [11].

2. SPACES WITH PSEUDO-GAUGE STRUCTURES

A Banach metric scale is a non singleton partially ordered Banach space E such that:

-z <yimpliesz + 2z <y+ z;

- E is a reticulate lattice;

- for any non-empty lower semi-bounded chain L of E and b = AL there exists a se-
quence A = {x,, € L : n € N} such that lim,, ooz, = b;

S0 <z < y, then o] < [ly].

Fix a Banach metric scale E.

Received: 29.09.2014; In revised form: 12.03.2015; Accepted: 15.03.2015
2010 Mathematics Subject Classification. 54H25, 54E15, 54H13, 12]17, 54E40.
Key words and phrases. Fixed point, pseudo-gauge structure, Banach metric scale, pseudometric .

313



314 Mitrofan M. Choban

If L is a non-empty lower semi-bounded chain of £, b = AL and A = {z, € L : n € N}
is a sequence such that lim, .., = b, then b = AA.

A function p : X x X — E is called an E-pseudometric or simply pseudometric on a
space X if:

(P1) p(z,2) =0, p(z,y) = p(y,z) and p(z, 2) < p(x,y) + p(y, z) forall z,y, z € X.

If p(x,y) = 0if and only if x = y, then p is called an E-metric on the space X. General
concepts of metric scales and of pseudometrics were examined by distinct authors (by
instance, see [1, 18, 20]).

Let p be a pseudometric on a space X.

The pseudometric p is non-negative: p(z,z) < p(z,y) + p(y, ) = p(x,y) + p(x,y) and
0=p(z,z) < p(z,y) < p(z,y) + p(,y).

Ife > 0and z € X, then the set B(x, p,e) = {y € X : |[p(z,y)| < €} is called the e-ball
of the space X with center x and radius ¢ or, simply, the e-ball about z. The pseudometric
p generate on X the topology T'(p) with the open base {B(z, p,¢) : x € X,e > 0}.

If € X, then we put p(z, H) = A{p(z,y) : y € H}. If r is a positive number, then
plz, H) <r,if B(z,p,r) N H # 0.

A pseudometric p is called a continuous pseudometric on a space X if:

(P2) the set B(z, p,¢) isopenin X forallz € X and ¢ > 0.

Proposition 2.1. Let E be a Banach metric scale and p be an E-pseudometric on a space X. Then
the function d,(z,y) = ||p(x, v)| is a real-valued pseudometric on the space X with the following
properties:

1. The pseudometric p is continuous if and only if the pseudometric d,, is continuous.

2. The pseudometric p is a metric if and only if the pseudometric d,, is a metric.

3. The metric p is complete if and only if the metric d, is complete.

Proof. Let ¢ > 0. The assertions of the Proposition follow from the equality {z € X :
lp(z,y)ll <e}={z € X :dy(z,y) <<} N

Remark 2.1. Let £ be a Banach metric scale and p be an E-pseudometric on a space X.
Then the function d,(z,y) = ||p(x,y)]| is a real-valued pseudometric on the space X with
the following properties:

1. The pseudometric p is continuous if and only if the pseudometric d,, is continuous.

2. The pseudometric p is a metric if and only if the pseudometric d,, is a metric.

3. The metric p is complete if and only if the metric d, is complete.

A pseudo-gauge E-structure, or simple a pseudo-gauge structure on a space X is a non-
empty family G = {d, : X x X — E : a € A} of continuous pseudometrics.

The pseudo-gauge E-structure G = {d, : @ € A} generate on X the topology T(G) =
V{T(d) : a € A}

If T'(G) is the topology of the space X, then G is called a gauge E-structure or a gauge
structure (see [20] for E = R).

Fix a space X and a pseudo-gauge E-structure G = {d,, : « € A} on the space X.

We put Z(z,G) = {y € X : do(z,y) = 0 for each « € A} for any z € X. A sequence
{z,, : n € N} is called G-Cauchy if for each a € A and each ¢ > 0 there exists m € N such
that do (v, 2x) < e forall n, k > m.

We say that the pseudo-gauge E-structure G:

- is sequentially quasi-complete if any G-Cauchy sequence has an accumulation point
in X;

- is sequentially complete if any G-Cauchy sequence has an accumulation point in X
and the set Z(z, G) is compact for each point z € X.
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On a compact space any pseudo-gauge E-structure is complete. If z € X is an accu-
mulation point of a G-Cauchy sequence {xz,, : n € N}, then lim,,_,ocdq(x, z,) = 0 for each
a€ A

There exist a space X/G and a gauge E-structure G = {d, : a € A} and a surjection
7 : X — X/G such that d(z,y) = du(7g(z), mg(y)) forall 2,y € X and a € A.

On (X/G,G) we consider the topology T(G). The pseudometrics d,, are continuous if
and only if the mapping mg is continuous.

The pseudo-gauge E-structure G is sequentially quasi-complete if and only if the gauge
E-structure G is sequentially complete.

The pseudo-gauge E-structure G is called a quasi-perfect pseudo-gauge E-structure on
a space X if it satisfies the following conditions:

(P3) the set Z(x, G) is countably compact for each point z € X;

(P4)Ifz € X, the set U is openin X and Z(z,G) C U, then there exist e > 0 and a finite
subset B C A such that N{B(z, dg,¢) : § € B}.

The pseudo-gauge E-structure G is called a perfect pseudo-gauge E-structure on a
space X if it is quasi-perfect satisfy the following condition:

(P5) the set Z(x, G) is compact for each point z € X.

A mapping g : X — Y of space X into a space Y is called closed if the set g(H) is
closed in Y for each closed subset H of the space X. The mapping ¢ is a perfect mapping
if it is continuous, closed and the fibers g~ '(y), y € Y, are compact. The mapping g is a
quasi-perfect mapping if it is continuous, closed and the fibers g~ (y), y € Y, are countably
compact.

The pseudo-gauge E-structure G is quasi-perfect if and only if the mapping ng : X —
X /G is quasi-perfect. The pseudo-gauge E-structure G is perfect if and only if the mapping
T, : X — X/§ is perfect.

The pseudo-gauge E-structure G is a gauge E-structure if and only if it is quasi-perfect
and for any two distinct points x,y € X there exists a € A such that d, (x,y) # 0 (i.e. the
mapping 7g is one-to-one and, therefore, is a homeomorphism).

On a compact space any pseudo-gauge structure is perfect and sequentially complete.

LetG={d,: Y xY — R: a € A} be a pseudo-gauge structure on a countably compact
space X and the quotient space X/G is metrizable. Then the pseudo-gauge structure G is
quasi-perfect and is sequentially quasi-complete. Moreover, if the space X is not compact,
then the pseudo-gauge structure G is not perfect and is not sequentially complete.

Example 2.1. Let Y be an infinite compact space and G ={d, : Y xY - R:a € A} bea
family of continuous pseudometrics on Y and for any two distinct points z,y € Y there
exists a € A such that d,(z,y) # 0. Then (Y, G) is a compact sequentially complete gauge
space. Let X be the set Y with the discrete topology. Then G is a pseudo-gauge structure
on X, X/G =Y, the mapping g is one-to-one and non-perfect. In particular, G is not a
quasi-perfect pseudo-gauge structure on X.

Moreover:

- if in Y there exists an infinite convergent sequence, then the pseudo-gauge structure
G is not sequentially complete on X;

-if Y is a space without infinite convergent sequences, then the pseudo-gauge structure
g is sequentially complete on X.

Example 2.2. Let Y be an infinite compact space and G* = {p, : Y xY - R: o € A} be
a family of continuous pseudometrics on Y and for any two distinct points x,y € Y there
exists & € A such that p,(z,y) # 0. Then (Y, G*) is a compact gauge space. The gauge
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structure G* is sequentially complete. Fix an infinite space Z. We put X = Y x Z. Let
7y : X — Y be the projection my (y, z) = y for any (y,2) € Y x Z = X. The mapping =
is open. If the space Y is first-countable and the space Z is countably compact, then the
mapping 7y is quasi-perfect. If the space Z is compact, then the mapping 7y is perfect.
Forany o € Aand all u = (y1,21) € X, v = (y2,22) € X we put do(u,v) = pa(y1,y2).
Then G ={d, : X x X — R : a € A} is a quasi-gauge structure on X with the following
properties:

(1) the quasi-gauge structure G is sequentially quasi-complete if and only if the space
Z is countably compact;

(2) the quasi-gauge structure G is quasi-perfect if and only if the space Z is countably
compact and the mapping = is closed;

(3) the quasi-gauge structure G is perfect if and only if the space Z is compact;

(4) g = Ty .

Consider some particular cases:

Case 1. Let Z be the subspace of rational numbers of the unity segment Y = [0, 1],
p(u,v) = |u —v| for all u,v € Y, G* = {p}. Thus the gauge space (Y,G*) is a metric
compact space. We put z,, = (27" - 21/2,27"). Then {z,, : n € N} is a non-convergent
Cauchy sequence of the pseudo-gauge space (X, G).

Case 2. Let (2 be the first uncountable ordinal number and Y be the space of all ordinal
numbers v < () in the topology induced on Y by the natural linear order on Y. The space
Y is compact and not first-countable (in point Q2. The space Z =Y \ {Q} is first-countable
and countably compact. The set F = {(v,v) : v € Z}isclosedin X = Y x Z and
the set 7y (F) is not closed in Y. In this case the quasi-gauge structure G is sequentially
quasi-complete and not quasi-perfect.

Case 3. Let Z be the space from the Case 2, Y and G* be as in the Case 1. In this case
the quasi-gauge structure G is sequentially quasi-complete, quasi-perfect and not perfect.

Example 2.3. Let 7 be an uncountable cardinal number D = {0, 1} be a discrete space, B
= {b, : n € N} be an infinite convergent sequence of the space D7 to the pointb € D" \ L.
Let X = D7\ {b}. The space X is not countably compact and B be a discrete closed subset
of the space X. Fix a pseudo-gauge E-structure G = {d, : X x X — EF:a € A} ona
space X.

The space D7 is the Stone-Cech compactification 3X of the space X and the space
X/{d} is a compact metrizable space for each continuous E-pseudometric d on X. Thus
for each continuous E-pseudometric d on X there exists a continuous E-pseudometric
e(d) on X = D7 such that e(d)(z,y) = d(x,y) for all z,y € X. If the cardinality |[A| < 7,
then the set F'(4) = {z € X : e(d)(b, ) = 0} is of cardinality 7 and non-empty.

Therefore, the pseudo-gauge space (X, G) has the following properties:

(1) B = {by, : n € N} is a Cauchy sequence of the pseudo-gauge space (X, G);

(2) the pseudo-gauge space (X, G) is not quasi-complete;

(3) if |A| < 7, then the gauge space (X/G, G) is complete;

(4) if G is a gauge structure on X, then |A| > 7 and the gauge space (X, G) = (X/G,G)
is not quasi-complete.
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3. SOME GENERAL REDUCTION PRINCIPLES

Fix a Banach metric scale E and a pseudo-gauge structure G on a space X.

If f: X — Y is a set-valued mapping of a space X into a space Y, then f(z) is a
non-empty closed subset of Y for any x € X.

For any set-valued mapping f : X — X denote by Fiz(f) ={z € X : x € f(x)} the
set of fixed points of the mapping f, by Fixzg(f) ={z € X : d(z,y) = 0 for some y € f(x)}
is the set of G-fixed points of the mapping f and by Fiz,g(f) = {x € X : d(z, f(z)) = 0}
is the set of virtual G-fixed points of the mapping f. Obviously, Fiz(f) C Fizg(f) C
Fizyg(f). In general, the sets Fiz(f), Fixg(f), Fiz,g(f) are distinct. If E = R, then
Fizg(f) = Fizyg(f).

Example 3.4. Let E=R xR, X ={(0,0),(0,1),(1,0)} be a subspace of E, d((z, y), (u,v)) =
(lz — ul, |y — v]) for each pair of points (z,y), (u,v) € X is the E-metricon X, G = {d} is

a gauge structure on X. Consider the set-valued mapping f : X — X, where f(0,1) =
(1,0), f(0,1) = (0,0), and f(0,0) = {(0,1),(1,0)}. Then Fiz(f) = 0, Fizg(f) =
Firyg(f) = {(0.0)}.

Assume that n > 0, f(9)(z) =z foreach z € X, f) = fand f"+V(2) = f(f")(2)) for
eachz € X.

In the applications of pseudometric spaces (X,d), the complementary assumptions
compensate the situation d(z,y) = 0 for some distinct points =,y € X. We mention that
in some cases the study of problems on spaces with pseudometrics can be reduced to the
metric spaces.

Theorem 3.1. Let E be a Banach metric scale, G = {do : X x X — E : o € A} be a pseudo-
gauge E-structure on a space X and g : X — X be a mapping. Assume that for any two points
x,y € X for which g(x) # g(y) there exists @ = a(x,y) € A such that d,(x,y) # 0. Then there
exists a mapping f : X/G — X/G such that:

1. f(ng(z)) = mg(g(x)) for each x € X.

2. Ifb € X and mg(b) is a fixed point of the mapping f, then g(b) is a fixed point of the mapping
g.

3. Ifa,b € X, {g"(a) : n € N} is a Cauchy sequence and limy,_,odu (b, g"(a)) = 0 for any
a € A, then g(b) is a fixed point of the mapping g.

4. Assume that P are properties of mappings of pseudo-gauge E-structures and of E and for
any mapping of a E-gauge space with properties P the set of fixed points is non-empty. If the
pseudo-gauge E-structure G on the space X, mapping g and E has the properties P, then the set
of G-fixed points of the mapping g is non-empty.

Proof. If z,y € X and dn(x,y) = 0 for all & € A, then g(x) = g(y).

There exists a subset Y of X such that for each + € X there exists a unique point
y(x) € Y such that p(z,y(z)) = 0. Then 7,(Y) = X/G and ng|Y is a one-to-one mapping
of Y onto X/G.

Foreach y € Y there exists a unique point 2(y) = y(g(y)) € Y such thatd,(g9(y), h(y)) =
0 for all & € A. Now, for each z € X we put f(ng(z)) = mg(h(y(z))). If z,2’ € X and
do(z,2’) = 0forall @ € A, then y(x) = y(2'), g(z) = g(2') and f(ngx)) = f(ng(x’)). Thus
the mapping f is correct defined and f(7g(x)) = mg(g(x)) for each z € X.

Assume that b € X and 7¢(b) is a fixed point of the mapping f, i.e. f(7,(b)) = m,(b).
Suppose that g(g(b)) # g(b). Then d, (b, g(b)) # 0 for some e € A and 7g(b) # wg(g9(b)) =
f(mg(b)) = mg(b), a contradiction. The assertion 2 is proved. The assertion 4 follows from
the assertion 2.

~
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Fixa € X. Letb € X and lim,,—00da (b, g"(a)) = 0 foreach o € A. Then lim,,—o0da(g(b),
g"(a)) = 0 and dq(b,g(b)) = 0 for each o« € A. Thus b is a G-fixed point of g and
g(g(b)) = g(b). The assertion 3 is proved. The proof is complete. O

Theorem 3.2. Let G be a pseudo-gauge E-structure on a space X and f : X — X be a mapping.
1. Assume x = y if d(f(x), f(y)) = 0 foreach d € G. Then Fizg(f) = Fiz(f). In particular,
from Fize(f) # 0 it follows Fiz(f) # 0.
2. Assume that f is a set-valued mapping and for any x € X with x ¢ f(x) there exists d € G
such that d(z, f(x)) > 0. Then Fix(f) = Fixg(f). In particular, from Fizg(f) # 0 it follows
3. Assume that n > 0 and for any x € X with fFV (z) # 0V (z) there exists d € G such
that d(f) (x)), "+ (x)) > 0. Then f™(b) € Fixz(f) for each b € Fixg(f). In particular,
from Fizg(f) # 0 it follows Fix(f) # 0.

Proof. Assertion 1 immediately follows from Theorem 3.1. Assertion 2 is obvious. We
mention, that for single-valued mappings Assertion 2 is the Assertion 3 for n = 0.

Let n > 0. Suppose that for any x € X with "+ (z) # f(")(z) there exists d € G such
that d(f" (z), f*+t(z)) > 0. Fix b € Fizg(f). Let ¢ = f™(b). Then ¢ € Fizg(f) and
d(b,c) = 0 for each d € G. Assume that f(c) # c. Then ¢ = () (z) # f"+1(2) = f(c) and
there exists d € G such that d(f(f™ (z)), Y (z)) > 0,i.e. d(c, f(c)) > 0, a contradiction.
Assertion 3 is proved. The proof is complete. O

Corollary 3.1. Assume that P are properties of mappings of pseudo-gauge E-structures and of
Banach m-scales E and for any mapping of a E-gauge space with properties P the set of fixed
points is non-empty. Let E be a Banach m-scale, G = {do, : X x X — E : a € A} bea
pseudo-gauge E-structure on a space X and g : X — X be a mapping with properties P. If for
each v € X the subspace Z(x, p) is a fixed point space, then Fiz(g) = {z € X : g(x) = x}isa
non-empty set.

Example 3.5. Let R be the space of reals with the distance p(z,y) = |z — y|. Fix a number
k € R\ {0,1}. Consider the mapping ¢ : R — R, where ¢(z) = kx for each z € X.
Let D = {—1, 1} be a discrete space. Let X = R x D and ¢(z, ¢) = (¢(x), —%) for each point
(z,i) € Rx D =X. On X consider the continuous pseudometric d((z,%), (y,5)) = p(z,y)
for all points (z,17), (y,7) € R x D= X. Then G = {d} is a perfect pseudo-gauge structure
on X, d(¢(x,i),v¥(y, 7)) = |k|-d((z, ), (y, j)) for all points (z,1), (y,j) € X, Fiz(¢) = 0 and
Fizg(¥) = {(0,-1), (0, 1)}.

Example 3.6. Let R be the space of reals with the distance p(x,y) = |z — y|. Fix a number
k € R\ {0,1}. Consider the mapping ¢ : R — R, where p(z) = kx for each z € X.
Let I = [0, 1] be the unite interval as a subspace of the space of reals R. Let X =R x I
and n be a natural number. We put ¥ (z,t) = (¢(z), maz{0,27't — 27"~1) for each point
(z,t) € RxI=X.On X consider the continuous pseudometric d((z, t), (y,t")) = p(z,y)
for all points (z,t), (y,t') € X. Then G = {d} is a perfect pseudo-gauge structure on X,
A, 1), 0y, ) = k] - d((x, ), (y.t")) for all points (,1), (4, ) € X, Fiz(1) = {(0,0)}
and Fizg(y) = {(0,t) : t(0,1) € I}. By construction, if 1™ (z,t) # ™+ (z,t), then
d(yp™ (z,t), ™D (x,t)) > 0. Hence ¢ (Fizg(¥)) = Fiz(v)).

Example 3.7. Let R be the space of reals with the distance p(z,y) = |z — y|. Fix a number
k € R\ {0,1}. Consider the mapping ¢ : R — R, where p(z) = kx for each z €
X. Let I = [0,1] be the unite interval as a subspace of the space of reals R. Let X =
R x I and n be a natural number. We put ¢ (z,t) = (p(x), maz{0,27 1 — 27"~1) for each
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point (z,t) € R x I = X. On X consider the continuous pseudometric d((z,t), (y,t')) =
p(x,y) for all points (z,t), (y,t') € X. Then G = {d} is a perfect pseudo-gauge structure
on X, d(¢(xz,t),¥(y,t")) = |k| - d((z,¢), (y,t")) for all points (z,t), (y,t') € X, Fiz(¢) =
{(0,0)} and Fizg(y)) = {(0,t) : t € T}. By construction, if ™) (x,t) # "+ (2, ), then
d(y™ (2,t)," D (x,1)) > 0. Hence " (Fizg(v)) = Fix(1)).

Example 3.8. Let R be the space of reals with the distance p(x, y) = |t—y|. Fixanumber k €
R\ {0,1}. Consider the mapping ¢ : R — R, where ¢(z) = kx foreach z € X. Let X =
R x L. We put ¢(z,t) = (p(z), maz{0, 2~ 1t) for each point (x,t) € R xI= X. On X consider
the continuous pseudometric d((z, t), (y,t')) = p(z, y) for all points (z,t), (y,t') € X. Then
G = {d} is a perfect pseudo-gauge structure on X, d(¢(z,t), ¥ (y,t")) = |k| - d((z,t), (y,t))
for all points (z,t), (y,t') € X, Fiz(y) = {(0,0)} and Fizg(y) = {(0,t) : t € I}. By
construction, ¢" (Fizg(vy)) # Fiz(y) for eachn € N.

Example 3.9. Let R be the space of reals with the distance p(z,y) = | — y|. Fix a number
k € R\ {0,1}. Consider the mapping ¢ : R — R, where ¢(z) = kx for each z € X. Let
X =R x R. We put ¢(x,t) = (¢(x), maz{0,271t — 27"~1) for each point (z,t) € R x R
= X. On X consider the continuous pseudometric d((x,t), (y,t')) = p(x,y) for all points
(z,t),(y,t') € X. Then G = {d} is a pseudo-gauge structure on X, d(¢(z,t),9¥(y,t’))
= |k| - d((z,t), (y,t")) for all points (x,t), (y,t') € X, Fiz(¢) = {(0,0)} and Fizg(¢) =
{(0,t) : t € R}. By construction, ¥"(Fizg(y)) # Fiz(v) for each n € N. Moreover,
for each (z,t) € Fizg(¢) there exists n such that ¢(z,t) € Fiz(y). We mention that the
pseudo-gauge structure G = {d} is not perfect.

4. SOME APPLICATIONS OF THE REDUCTION PRINCIPLES

Consider a Banach metric scale E and a pseudo-gauge structure G on a space X.

The results of above sections may be applied to the spaces with pseudo-gauge struc-
tures. For that are important the conditions which guarantee non-empties of the set
Fizg(f). A mapping g : X — Y is called an upper semicontinuous mapping, if for any
open subset V of Y the set g°' (V) = {z € X : g(x) C V}is openin X.

Lemma 4.1. Let G be a sequentially quasi-complete pseudo-gauge structure on a space X and
g : X — X be an upper semicontinuous compact-valued mapping. Then:

1. The set Fix(g) is closed in X.

2. The set Fixg(g) is closed in X.

3. Ifx € Fizxg(g), then Z(x,G) C Fixg(g).

Proof. Assume that x ¢ g(z). There exist two open subsets V and W of X such that
zeV,glz)y CWand VNW = 0. Theset U =V Ng°'(W)isopenin X,z € U
and U N g(U) = . Assertion 1 is proved for arbitrary upper semicontinuous set-valued
mappings. Assume that zo ¢ Fizg(g). Then for each z € g(z¢) there exist r(x) > 0
and d, € G such that ||dy(zo, )| > 3r(z). Since g(z¢) is a compact space and g(zg) C
U{B(z,dy,r(z)) : * € g(zo)}, then there exists a non-empty finite subset L of g(zo)
such that g(x¢) C U{B(z,d,,r(z)) : © € L}. Let W = U{B(x,d;,r(x)) : « € L}, V; =
N{B(zo,dy,7(z)) : 2 € L}and V =ViNg® (W). The set V isopenin X, g € Z(x9,G) CV
and V N Fizg(g) = 0. Assertions 2 and 3 are proved. g

A sequence {z,, : n € N} is a Picard sequence of the set-valued mapping g : X — X
if 41 € g(xy,) for each n € N. If {x,, : n € N} is a Cauchy sequence of the space (X, §G),
then we say that {z,, : n € N} is a G-Picard sequence of the mapping g.
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Lemma 4.2. Let G be a sequentially quasi-complete pseudo-gauge structure on a space X, g :
X — X be an upper semicontinuous set-valued mapping and {x,, : n € N} be a Picard sequence
of the mapping g. Then:

1Ifz € X and limp_ood(z,x,) = 0 for each d € G, then x € Z(z,G) C Fizxg(g) and
{zy, : n € N} is a G-Picard sequence of the mapping g.

2. If {z,, : n € N} is a G-Picard sequence of the mapping g and x is an accumulation point of
the sequence {x,, : n € N}, then lim,_,ood(x,x,) = 0 foreach d € G and x € Fixg(g).

Proof. Letb € X and lim,,—,0d(b,z,,) = 0 for each d € G. Then {x,, : n € N} is a Cauchy
sequence of the space (X,G) and a G-Picard sequence of the mapping ¢g. The sequence
{z,, : n € N} has an accumulation point xy and b € Z(z,G). By virtue of Lemma 4.1, we
can assume that b = z is an accumulation point of the sequence {z,, : n € N}. Since the
mapping g is upper semicontinuous and {z, : n € N} C g({z, : n € N}), the sequence
{z,, : n € N} has an accumulation point ¢ € g(b). Then d(b,c) = 0 for alld € G and
b € Firg(g). Assertion 1 is proved. Assertion 2 follows from Assertion 1. O

A set-valued mapping g : X — X is called G-contractive if there exists a family of
non-negative numbers {ky : d € G} and for all z,y € X and 2/ € g(z) there exists
Yy =clg,z,y,2") € g(y) for which d(z,y’) < kq - d(z,y) and 0 < kg < 1 foreach d € G.

Lemma 4.3. Let G be a pseudo-gauge structure on a space X and g : X — X be a G-contractive
mapping. If x1 € X is an arbitrary fixed point, xo € g(x1) and xp42 = c(g, Tn, Tnt1, Tnt1) €
g(Tpnt1) foreachn € N, then T(g, 1, x2) = {z,, : n € N} is a G-Picard sequence of the mapping
g generated by x1 and x4 € g(z1).

Proof. Assume that the points 1 € X and x5 € g(z1) are fixed and @, 1+2 = (g, Tn, Tnt1,
Tnt1) € g(Tn41) foreach n € N. Let by = d(x1, 22). Then d(xn+1, Trnym) < (k] : (1 —kq)) -

bq. The proof is complete. O

Theorem 4.3. Let G be a sequentially complete perfect pseudo-gauge structure on a space X and
g : X — X be a G-contractive upper semicontinuous set-valued mapping. Then for each points
x1 € X and xo € g(x1) the Picard orbit T(g,z1,22) = {z, : n € N} is a G-Picard sequence
of the pseudo-gauge space (X, G) with accumulation points in X. Moreover, if z € X is an
accumulation point of the sequence T'(g, x1, x2), then z € Fizg(g) and limy,_,d(z,x,) = 0 for
eachd € G}.

Proof. Follows from Lemmas 4.2 and 4.3. O

Theorem 4.4. Let G be a sequentially quasi-complete pseudo-gauge structure on a space X and
g : X — X be a G-contractive mapping. Then:

1. For each point x € X the Picard orbit T(g,z) = {x, : n € N}, where x; = z and
Tny1 = g(xy,) for each n € N, is a Cauchy sequence of the pseudo-gauge space (X, G) with
accumulation points in X. Moreover, if z € X is an accumulation point of the sequence T (g, x),
then z € Fixzg(g) and limy,_od(z,x,) = 0 foreach d € G.

2. Ifz,y € Fizg(g), then d(x,y) = 0 for each d € G and Fizg(g) ={z € X : d(x,z) =0 for
each d € G}.

3. Fizg(g) is a non-empty closed countably compact subspace of the space X .

Proof. Assertion 1 follows from Theorem 4.3.

Ifz,y € Fizg(g), thend(z,g(x)) = 0,d(y,9(y)) = 0, d(z,y) < d(z, g(x))+d(g(x), g(y))+
d(g(y),y) = d(g(x),9(y)) < kq-d(z,y), i.e. d(x,y) =0foreachd € G}. Ifd € G}, z € X
and d(z, z) > 0, then d(z, g(2)) = d(g(x), g(2)) < d(x, z). Thus z # g(z), d(g9(z),z) > 0 and
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z & Fixg(g). If d(z,z) = 0, then d(x, g(z)) = 0 too. Hence Fizg(g) ={z € X : d(x,2) =0
foreach d € G}. Assertion 2 is proved.

If {x,, € Fizg(g) : n € N}, then, by virtue of Assertion 2, we have d(z, z.,) = 0 for all
n € Nand each d € G. Hence, {z,, : n € N} is a Cauchy sequence and has an accumulation
point in X. Since the pseudometrics d € G are continuous, the set Fizg(g) is closed in X.
Assertion 3 is proved O

Some special cases of Theorem 4.4 were examined in [3, 12, 13, 17, 20]. We mention,
that Assertions 2 and 3 of Theorem 4.4 are not true for set-valued mappings.

Example 4.10. Let G be a sequential complete gauge structure on a space X with an infi-
nite closed subset F'. Consider the set-valued mapping g : X — X, where g(x) = F for
each x € X. The mapping g is upper semicontinuous (and lower semicontinuous too).
The mapping g is compact-valued if and only if the set F' is compact. If z,y € X and
x' € g(x), then we put ¢(g,z,y,2’) = 2’. Then g is a G-contractive mapping with kq = 0
for any d € G. We have Fiz(g) = Fizg = F.

Assume now that G is a pseudo-gauge structure on a space X. Let & = U{Z(z,G) : = €
F}. Obviously, F' C ®. For some G we have F' # ®. We have Fiz(g) = F and Fizg = ®.

A space X is called a fixed point space if for each continuous mapping we have g(y) =y
for some y € X (see [12, 13, 16]).

Any convex compact subset of a topological liner space is a fixed point space [8, 9, 16,
20].

Corollary 4.2. Let G be a sequentially quasi-complete pseudo-gauge structure on a space X and
g : X — X be a G-contractive mapping. If for each x € X the subspace Z(x, p) is a fixed point
space, then Fiz(g) = {x € X : g(x) = x} is a non-empty set.

Example 4.11. Let G; be a sequential complete gauge structure on a space Y and Z be a
compact fixed-point space. Consider the X =Y x Z. For each p € G; on X we consider the
continuous pseudometric d((z, z), (y,2)) = p(x,y) for all points (z, ), (y,2’) € X. Then
G ={d, : p € G1} is a perfect pseudo-gauge structure on X.

Assume that 0 < k < 1 and g : X — X is a mapping such that d(g(z, 2), g(y, 2')) < k -
d((z, z), (y, 2")) for all points (z, 2), (y, 2’) € X. Then there exists a unique point (zg, z9) €
X such that Fizg(g) = {(z,2) € X : d((=, 2), (%0, 20) = 0 foreach d € G} = {zo} x Z. Then
f+Z — Z,where f(z) = 2’ if and only if g(xo, z) = g(z0,2’), is a continuous mapping
of Z into Z. Since Z is a fixed-point space, there exists z; € Z such that z; € Fiz(f). Then
(z9,21) € Fiz(g) and Fixz(g) # 0.

Theorem 4.5. Let E be a Banach metric scale and ||x+y|| = ||z|| +||y|| provided 0 < z and 0 < y,
G be a sequentially quasi-complete pseudo-gauge structure on a space X, {pq: X — E : d € G}
be functions, 0 < @q(x) forallz € X and d € G, and g : X — X be a set-valued mapping with
a closed graph Gr(g) = U{{z} x g(z) : x € X} in X x X. Assume that for each x € X there
exists s(x) € g(x) such that d(z, s(x)) < pq(x) — pa(s(x)) foreach d € G. Then:

1. Fizg(g) is a non-empty set of the space X.

2. Ifxg € X and x,, 41 = s(xy,), then {x,, : n € N} is a Cauchy sequence of the space X and
there exist two accumulation points b, ¢ of {xy, : n € N} such that ¢ € g(b) and b € Fizg(g).

Proof. Note that the mapping g is called the Caristi operator on X (see [7]; [20], p. 75).

Fix o € X and z,4+1 = s(z,,) for each n € N. Denote by A(x¢) the set of all accumu-
lation points of the sequence {x,, : n € N} and L(zg) = {z € X : lim—od(z,z,) = 0}.
Obviously, A(zo) C L(zo).
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Fix d € G. Obviously, that 3{d(x;,z;+1 : 0 < i < n} < fi(zo) — fa(zns1 < f(xo)

for each n € N. Hence the series X{d(z;,z;+1 : 0 < i < oo} is convergent in E and
S{d(xs, 241 : 0 < i < oo} =V{E{d(z;,zi41 : 0 < i <n}:n €N} < fi(z). In particular,
the series X{{d(x;, z;+1)| : 0 < i < oo} is convergent in E and X{||d(z;, zi+1)|| : 0 < i <
oo} < ||f(zo)||- Hence {x,, : n € N} is a Cauchy sequence of the space (X,G). Let P =
{(n,znt1 : n € N} C X x X. By construction, P C Gr(g).

Since (X, G) is a sequentially complete pseudo-gauge space, there exists b € X such
that b is an accumulation point of the sequence {z,, : n € N}. Moreover, A(z¢) and L(z)
are non-empty compact subsets of the space X and b € A(z¢) C L(xo).

Claim 1. Let V be an open subset of X and A(zg) C V. Then the set {n : =, & V}is
finite.

Follows from the following fact: any infinite subsequence of the sequence {xz,, : n € N}
is a Cauchy sequence of the space (X, G) and has accumulation points in A(zo).

Claim 2. (A(zg) x A(zo)) Nelxxx P # 0.

Assume that (A(xg) x A(xo)) Nclxxx P = 0. Since the set A(z() is compact, then there
exists an open subset V of X such that A(xz¢) C V and (V x V)N P = (. By virtue of Claim
1, there exists k € N such that x,, € V for all n > k. Then (z,,z,+1) € (V x V)N P for all
n > k, a contradiction. Claim 2 is proved.

Without loss of generality, we can suppose that (b,c) € (A(zo) X A(zo)) Nclxxx P for
some ¢ € A(xg). Since the set Gr(g) is closed in X x X and P C Gr(g), we have ¢ € g(b).
By construction, lim,_,cod(b,z,) = 0 and lim,—d(c,z,) = 0 for each d € G. Hence
d(b,c) = 0foreachd € Gand b € Fizg(g). O

Theorem 4.5 is true for regular Banach metric scales: every increasing sequence which
is bounded from above is convergent (see [20], p. 80).

In similar way the generalized contractions of types of Ciri¢ - Reich - Rus ([20], p. 28),
Krasnoselelskii - Zabrejko ([20], p. 29), Zamfirescu ([20], p. 29), Rus - Kasahara - Hicks
- Rhoades ([20], p. 35), Niemytzky - Edelstein ([20], p. 38), Berinde - Choban [4, 5] are
extended for set-valued mappings of pseudo-gauge spaces.

5. SPACES WITH FINITE PSEUDO-GAUGE STRUCTURES

Let F be a Banach metric scale and m be a natural number. Consider the Banach metric
scale E™ in which for all (z1, 2, ..., Zm), (Y1, Y2, .., Ym) € E™ we have ||(z1, 22, ..., Tm)]|| =
lz1 ||+ |z2ll+ ...+ |zm || and (z1, 22, ..., Tm) < (Y1, Y2, - Ym) if and only if x1 < y1, z2 < Yo,
%1 < Ym). The Banach metric scale E™ is regular if and only if E is a regular Banach
metric scale.

Let G = {d1,da, ..., d, } be a finite pseudo-gauge structure on a space X. Then d((z1, z2,

s Tm)s (Y15 Y25 0 Ym)) = (di(z1,91), d2(22,y2), s A (Tms ym) 18 @ continuous
E™-pseudometric on the space d.

Hence the results from [10] are true for spaces with finite pseudo-gauge structures.

The matrix contractions may be applied to the finite pseudo-gauge spaces. Denote by
M}, the family of all m x m matrices S = (s;;)7 with the properties:

-s;; € Rand 0 < s;5 forall ¢, j < m;

- limy_ 0o S* = 6,,, where 0, is the zero m x m matrix.

If S € M}, then it is said to be that the matrix S is convergent to zero ([20], Section
6.0.3).

By virtue of Theorem 6.0.1 from [20], for any non-negative scalar m x m matrix S the
following assertions are equivalent:
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(i) S is a convergent to zero matrix;

(ii) det(ep, — S) # 0 and (&, — S)~! has non-negative elements, where ¢, is the unit
m X m matrix;

(iii) det(em — S) #0and (e, — S) ' =gp + S+ 82 + ... + 5" +

The matrix approach and reduction principles permit to extend the distinct fixed point
theorems, proved for the R -metrics (see [20, 19]).

A mapping ¢ : X — X is a scalar S-contraction if there exists S € M, such that
dp(x), o(y)) € Sd(z,y) forall z,y € X.

Theorem 5.6. Let (X, G) be a sequentially complete pseudo-gauge space and ¢ : X — X be a
scalar S-contraction. Then:

1. There exists z* € X such that d(x*, p(z*)) = 0.

2. If {zy, : n € N} and limy,— ood(zy, p(x,)) = 0, then limy,_ood(xy, 2*) = 0.

3. If d(x,y) # 0 provided ¢(x) # ¢(y), then Fix(p) # 0.

4. Assume that v = y if d(¢(z), ¢(y)) = 0. Then Fixz(y) is a singleton set.

Proof. The proofs of the assertions 1 and 2 are similar as in the case £ = R (see [20],
Theorems 6.1.1 and 6.1.2). The assertion 3 follows from the assertion 1 and Theorem 3.1.
The assertion 4 follows from the assertion 1 and Theorem 3.2. a

6. PSEUDOMETRICS IN ORDERED BANACH ALGEBRAS

In the present section the notion of the scalar S-contraction is extended for matrices
with elements from a given ordered commutative Banach algebra (we use the notions
from [2, 6, 15] about normed rings and ordered algebras).

A Banach metric r-scale is a non singleton partially ordered Banach space E such that:

- F is a Banach metric scale;

- E is a commutative ring with unity 1 suchthat0 < 1, || 1 ||=1, || zy [|<|[z || - || ¥ |l
forall z,y from E, 2y > 0 provided x > 0 and y > 0, uv < uz provided v > 0 and v < z.

Fix a Banach metric r-scale £ and a natural number m.

Let M,,,(E) be the family of all m x m matrices S = (s;;)7 with the properties:

-si; € Eand 0 < ;5 forall i, 5 < m;

- || detS || + || detS? || +...+ || detS™ || +... < oo;

- there exists the sum |S| + |S?| + ... + [S™| + ..., where |A| = (|| a;; ||)7 for each matrix
A = (aij)m

If S € M,,(E), then limy,_,o,S* = 0,,, where ,, is the zero m x m matrix.

Let G = {d1,ds, ..., d, } be a finite pseudo-gauge structure on a space X. Then d((z1, z2,

Tm)s (Y1, Y2, s Ym)) = (d1(21,y1), d2(22,Y2), ..., A (Tm, Ym) is @ continuous E™-pseudometric
on the space d.

The matrix approach and reduction principles permit to extend the distinct fixed point
theorems, proved for the R™-metrics (see [20]).

A mapping ¢ : X — X is an SE-contraction if there exists S € M,,(F) such that
dp(a), o(y)) < Sd(z,y) forall z,y € X.

Theorem 6.7. Let (X, G) be a sequentially complete pseudo-gauge space and ¢ : X — X be an
S E-contraction. Then:
1.There exists z* € X such that d(z*, p(z*)) =
2. If {zy, : n € N} and limy,— cod(zy, p(2,)) = O then limy,—o0od(xy, 2*) = 0.
3. If d(z, y) # 0 provided ¢(x) # ¢(y), then Fiz(p) # 0.
4. Assume that v = y if d(¢(z), ¢(y)) = 0. Then Fixz(y) is a singleton set.
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Proof. Let e, be the unit matrix. Then (e, + S)™' =&, + S+ S? + ... + S™ + ... for any
S € M,,(E). The proofs of the assertions 1 and 2 are similar as in the case £ = R (see [20],
Theorems 6.1.1 and 6.1.2). The assertion 3 follows from the assertion 1 and Theorem 3.1.
The assertion 4 follows from the assertion 1 and Theorem 3.2. O
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