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Fixed points for mappings defined on generalized gauge
spaces

MITROFAN M. CHOBAN

ABSTRACT. In this article, the distinct classes of continuous pseudo-gauge structures and pseudometrics
(perfect, quasi-perfect, sequentially complete) are defined and studied in depth. The conditions under which
the set of fixed points of a given mapping of a space with concrete pseudo-gauge structure is non-empty are
determined. Some examples are proposed.

1. INTRODUCTION

By a space we understand a completely regular topological Hausdorff space. We use
the terminology from [14, 16, 20].

Let � be a pre-order on a set E, i.e. � is a binary relation on E such that x � x for each
x ∈ E and relations x � y and y � z imply x � z. If a � b and b 6� a, then we put a ≺ b.
The pre-order� is an order if relations x � y and y � x imply x = y. A set L ⊂ E is called
upper (lower) semi-bounded if there exists b ∈ E such that x � b (b � x) for all x ∈ L.

A supremum (infimum) of a non-empty subset L ⊂ E is an element a = ∨L (a = ∧L)
satisfying the following conditions:

- x � a (a � x) for each x ∈ L;
- if b ∈ E and x � b (b � x) for each x ∈ L, then a ≺ b (b ≺ a).
If a, b ∈ E are the supremums (infimums) of the set L ⊂ E, then simultaneous we have

a � b and b � a. A maximal (minimal) element need not be a supremum (infimum). The
pre-ordered space E is reticulated if any non-empty upper (lower) semi-bounded subset L
has a unique supremum ∨L (infimum ∧L). In this case from a � b and b � a it follows
a = b.

The results of the present article were communicated to the ”5th Minisymposium on
Fixed Point: Theory and Applications”, organized in the framework of ”10th International
Conference on Applied Mathematics” June 1-7, 2014, Baia Mare and Turist Suior Resort,
Romania [11].

2. SPACES WITH PSEUDO-GAUGE STRUCTURES

A Banach metric scale is a non singleton partially ordered Banach space E such that:
- x < y implies x+ z < y + z;
- E is a reticulate lattice;
- for any non-empty lower semi-bounded chain L of E and b = ∧L there exists a se-

quence A = {xn ∈ L : n ∈ N} such that limn→∞xn = b;
- if 0 ≤ x ≤ y, then ‖x‖ ≤ ‖y‖.
Fix a Banach metric scale E.
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If L is a non-empty lower semi-bounded chain of E, b = ∧L and A = {xn ∈ L : n ∈ N}
is a sequence such that limn→∞xn = b, then b = ∧A.

A function ρ : X × X −→ E is called an E-pseudometric or simply pseudometric on a
space X if:

(P1) ρ(x, x) = 0, ρ(x, y) = ρ(y, x) and ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for all x, y, z ∈ X .
If ρ(x, y) = 0 if and only if x = y, then ρ is called an E-metric on the space X . General

concepts of metric scales and of pseudometrics were examined by distinct authors (by
instance, see [1, 18, 20]).

Let ρ be a pseudometric on a space X .
The pseudometric ρ is non-negative: ρ(x, x) ≤ ρ(x, y) + ρ(y, x) = ρ(x, y) + ρ(x, y) and

0 = ρ(x, x) ≤ ρ(x, y) ≤ ρ(x, y) + ρ(x, y).
If ε > 0 and x ∈ X , then the set B(x, ρ, ε) = {y ∈ X : ‖ρ(x, y)‖ < ε} is called the ε-ball

of the space X with center x and radius ε or, simply, the ε-ball about x. The pseudometric
ρ generate on X the topology T (ρ) with the open base {B(x, ρ, ε) : x ∈ X, ε > 0}.

If x ∈ X , then we put ρ(x,H) = ∧{ρ(x, y) : y ∈ H}. If r is a positive number, then
ρ(x,H) ≤ r, if B(x, ρ, r) ∩H 6= ∅.

A pseudometric ρ is called a continuous pseudometric on a space X if:
(P2) the set B(x, ρ, ε) is open in X for all x ∈ X and ε > 0.

Proposition 2.1. Let E be a Banach metric scale and ρ be an E-pseudometric on a space X . Then
the function dρ(x, y) = ‖ρ(x, y)‖ is a real-valued pseudometric on the space X with the following
properties:

1. The pseudometric ρ is continuous if and only if the pseudometric dρ is continuous.
2. The pseudometric ρ is a metric if and only if the pseudometric dρ is a metric.
3. The metric ρ is complete if and only if the metric dρ is complete.

Proof. Let ε > 0. The assertions of the Proposition follow from the equality {x ∈ X :
‖ρ(x, y)‖ < ε} = {x ∈ X : dρ(x, y) < ε}. �

Remark 2.1. Let E be a Banach metric scale and ρ be an E-pseudometric on a space X .
Then the function dρ(x, y) = ‖ρ(x, y)‖ is a real-valued pseudometric on the space X with
the following properties:

1. The pseudometric ρ is continuous if and only if the pseudometric dρ is continuous.
2. The pseudometric ρ is a metric if and only if the pseudometric dρ is a metric.
3. The metric ρ is complete if and only if the metric dρ is complete.

A pseudo-gauge E-structure, or simple a pseudo-gauge structure on a space X is a non-
empty family G = {dα : X ×X −→ E : α ∈ A} of continuous pseudometrics.

The pseudo-gauge E-structure G = {dα : α ∈ A} generate on X the topology T (G) =
∨{T (dα) : α ∈ A}.

If T (G) is the topology of the space X , then G is called a gauge E-structure or a gauge
structure (see [20] for E = R).

Fix a space X and a pseudo-gauge E-structure G = {dα : α ∈ A} on the space X .
We put Z(x,G) = {y ∈ X : dα(x, y) = 0 for each α ∈ A} for any x ∈ X . A sequence

{xn : n ∈ N} is called G-Cauchy if for each α ∈ A and each ε > 0 there exists m ∈ N such
that dα(xn, xk) < ε for all n, k ≥ m.

We say that the pseudo-gauge E-structure G:
- is sequentially quasi-complete if any G-Cauchy sequence has an accumulation point

in X ;
- is sequentially complete if any G-Cauchy sequence has an accumulation point in X

and the set Z(x,G) is compact for each point x ∈ X .
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On a compact space any pseudo-gauge E-structure is complete. If x ∈ X is an accu-
mulation point of a G-Cauchy sequence {xn : n ∈ N}, then limn→∞dα(x, xn) = 0 for each
α ∈ A.

There exist a space X/G and a gauge E-structure Ḡ = {d̄α : α ∈ A} and a surjection
πG : X −→ X/G such that d(x, y) = d̄α(πG(x), πG(y)) for all x, y ∈ X and α ∈ A.

On (X/G, Ḡ) we consider the topology T (Ḡ). The pseudometrics dα are continuous if
and only if the mapping πG is continuous.

The pseudo-gaugeE-structure G is sequentially quasi-complete if and only if the gauge
E-structure Ḡ is sequentially complete.

The pseudo-gauge E-structure G is called a quasi-perfect pseudo-gauge E-structure on
a space X if it satisfies the following conditions:

(P3) the set Z(x,G) is countably compact for each point x ∈ X ;
(P4) If x ∈ X , the set U is open in X and Z(x,G) ⊆ U , then there exist ε > 0 and a finite

subset B ⊆ A such that ∩{B(x, dβ , ε) : β ∈ B}.
The pseudo-gauge E-structure G is called a perfect pseudo-gauge E-structure on a

space X if it is quasi-perfect satisfy the following condition:
(P5) the set Z(x,G) is compact for each point x ∈ X .
A mapping g : X −→ Y of space X into a space Y is called closed if the set g(H) is

closed in Y for each closed subset H of the space X . The mapping g is a perfect mapping
if it is continuous, closed and the fibers g−1(y), y ∈ Y , are compact. The mapping g is a
quasi-perfect mapping if it is continuous, closed and the fibers g−1(y), y ∈ Y , are countably
compact.

The pseudo-gauge E-structure G is quasi-perfect if and only if the mapping πG : X −→
X/G is quasi-perfect. The pseudo-gaugeE-structure G is perfect if and only if the mapping
πρ : X −→ X/G is perfect.

The pseudo-gauge E-structure G is a gauge E-structure if and only if it is quasi-perfect
and for any two distinct points x, y ∈ X there exists α ∈ A such that dα(x, y) 6= 0 (i.e. the
mapping πG is one-to-one and, therefore, is a homeomorphism).

On a compact space any pseudo-gauge structure is perfect and sequentially complete.
Let G = {dα : Y ×Y → R : α ∈ A} be a pseudo-gauge structure on a countably compact

space X and the quotient space X/G is metrizable. Then the pseudo-gauge structure G is
quasi-perfect and is sequentially quasi-complete. Moreover, if the spaceX is not compact,
then the pseudo-gauge structure G is not perfect and is not sequentially complete.

Example 2.1. Let Y be an infinite compact space and G = {dα : Y × Y → R : α ∈ A} be a
family of continuous pseudometrics on Y and for any two distinct points x, y ∈ Y there
exists α ∈ A such that dα(x, y) 6= 0. Then (Y,G) is a compact sequentially complete gauge
space. Let X be the set Y with the discrete topology. Then G is a pseudo-gauge structure
on X , X/G = Y , the mapping πG is one-to-one and non-perfect. In particular, G is not a
quasi-perfect pseudo-gauge structure on X .

Moreover:
- if in Y there exists an infinite convergent sequence, then the pseudo-gauge structure

G is not sequentially complete on X ;
- if Y is a space without infinite convergent sequences, then the pseudo-gauge structure

G is sequentially complete on X .

Example 2.2. Let Y be an infinite compact space and G∗ = {ρα : Y × Y → R : α ∈ A} be
a family of continuous pseudometrics on Y and for any two distinct points x, y ∈ Y there
exists α ∈ A such that ρα(x, y) 6= 0. Then (Y,G∗) is a compact gauge space. The gauge
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structure G∗ is sequentially complete. Fix an infinite space Z. We put X = Y × Z. Let
πY : X −→ Y be the projection πY (y, z) = y for any (y, z) ∈ Y × Z = X . The mapping π
is open. If the space Y is first-countable and the space Z is countably compact, then the
mapping πY is quasi-perfect. If the space Z is compact, then the mapping πY is perfect.
For any α ∈ A and all u = (y1, z1) ∈ X , v = (y2, z2) ∈ X we put dα(u, v) = ρα(y1, y2).
Then G = {dα : X ×X → R : α ∈ A} is a quasi-gauge structure on X with the following
properties:

(1) the quasi-gauge structure G is sequentially quasi-complete if and only if the space
Z is countably compact;

(2) the quasi-gauge structure G is quasi-perfect if and only if the space Z is countably
compact and the mapping π is closed;

(3) the quasi-gauge structure G is perfect if and only if the space Z is compact;
(4) πG = πY .
Consider some particular cases:
Case 1. Let Z be the subspace of rational numbers of the unity segment Y = [0, 1],

ρ(u, v) = |u − v| for all u, v ∈ Y , G∗ = {ρ}. Thus the gauge space (Y,G∗) is a metric
compact space. We put xn = (2−n · 21/2, 2−n). Then {xn : n ∈ N} is a non-convergent
Cauchy sequence of the pseudo-gauge space (X,G).

Case 2. Let Ω be the first uncountable ordinal number and Y be the space of all ordinal
numbers ν ≤ Ω in the topology induced on Y by the natural linear order on Y . The space
Y is compact and not first-countable (in point Ω. The space Z = Y \ {Ω} is first-countable
and countably compact. The set F = {(ν, ν) : ν ∈ Z} is closed in X = Y × Z and
the set πY (F ) is not closed in Y . In this case the quasi-gauge structure G is sequentially
quasi-complete and not quasi-perfect.

Case 3. Let Z be the space from the Case 2, Y and G∗ be as in the Case 1. In this case
the quasi-gauge structure G is sequentially quasi-complete, quasi-perfect and not perfect.

Example 2.3. Let τ be an uncountable cardinal number D = {0, 1} be a discrete space, B
= {bn : n ∈ N} be an infinite convergent sequence of the space Dτ to the point b ∈ Dτ \ L.
Let X = Dτ \ {b}. The space X is not countably compact and B be a discrete closed subset
of the space X . Fix a pseudo-gauge E-structure G = {dα : X × X −→ E : α ∈ A} on a
space X .

The space Dτ is the Stone-Čech compactification βX of the space X and the space
X/{d} is a compact metrizable space for each continuous E-pseudometric d on X . Thus
for each continuous E-pseudometric d on X there exists a continuous E-pseudometric
e(d) on βX = Dτ such that e(d)(x, y) = d(x, y) for all x, y ∈ X . If the cardinality |A| < τ ,
then the set F (A) = {x ∈ X : e(d)(b, x) = 0} is of cardinality τ and non-empty.

Therefore, the pseudo-gauge space (X,G) has the following properties:
(1) B = {bn : n ∈ N} is a Cauchy sequence of the pseudo-gauge space (X,G);
(2) the pseudo-gauge space (X,G) is not quasi-complete;
(3) if |A| < τ , then the gauge space (X/G, Ḡ) is complete;
(4) if G is a gauge structure on X , then |A| ≥ τ and the gauge space (X,G) = (X/G, Ḡ)

is not quasi-complete.
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3. SOME GENERAL REDUCTION PRINCIPLES

Fix a Banach metric scale E and a pseudo-gauge structure G on a space X .
If f : X −→ Y is a set-valued mapping of a space X into a space Y , then f(x) is a

non-empty closed subset of Y for any x ∈ X .
For any set-valued mapping f : X −→ X denote by Fix(f) = {x ∈ X : x ∈ f(x)} the

set of fixed points of the mapping f , by FixG(f) = {x ∈ X : d(x, y) = 0 for some y ∈ f(x)}
is the set of G-fixed points of the mapping f and by FixvG(f) = {x ∈ X : d(x, f(x)) = 0}
is the set of virtual G-fixed points of the mapping f . Obviously, Fix(f) ⊆ FixG(f) ⊆
FixvG(f). In general, the sets Fix(f), FixG(f), FixvG(f) are distinct. If E = R, then
FixG(f) = FixvG(f).

Example 3.4. LetE = R×R, X = {(0, 0), (0, 1), (1, 0)} be a subspace ofE, d((x, y), (u, v)) =
(|x − u|, |y − v|) for each pair of points (x, y), (u, v) ∈ X is the E-metric on X , G = {d} is
a gauge structure on X . Consider the set-valued mapping f : X −→ X , where f(0, 1) =
(1, 0), f(0, 1) = (0, 0), and f(0, 0) = {(0, 1), (1, 0)}. Then Fix(f) = ∅, FixG(f) = ∅,
FixvG(f) = {(0, 0)}.

Assume that n ≥ 0, f (0)(x) = x for each x ∈ X , f (1) = f and f (n+1)(x) = f(f (n)(x)) for
each x ∈ X .

In the applications of pseudometric spaces (X, d), the complementary assumptions
compensate the situation d(x, y) = 0 for some distinct points x, y ∈ X . We mention that
in some cases the study of problems on spaces with pseudometrics can be reduced to the
metric spaces.

Theorem 3.1. Let E be a Banach metric scale, G = {dα : X ×X −→ E : α ∈ A} be a pseudo-
gauge E-structure on a space X and g : X −→ X be a mapping. Assume that for any two points
x, y ∈ X for which g(x) 6= g(y) there exists α = a(x, y) ∈ A such that dα(x, y) 6= 0. Then there
exists a mapping f : X/G −→ X/G such that:

1. f(πG(x)) = πG(g(x)) for each x ∈ X .
2. If b ∈ X and πG(b) is a fixed point of the mapping f , then g(b) is a fixed point of the mapping

g.
3. If a, b ∈ X , {gn(a) : n ∈ N} is a Cauchy sequence and limn→∞dα(b, gn(a)) = 0 for any

α ∈ A, then g(b) is a fixed point of the mapping g.
4. Assume that P are properties of mappings of pseudo-gauge E-structures and of E and for

any mapping of a E-gauge space with properties P the set of fixed points is non-empty. If the
pseudo-gauge E-structure G on the space X , mapping g and E has the properties P , then the set
of G-fixed points of the mapping g is non-empty.

Proof. If x, y ∈ X and dα(x, y) = 0 for all α ∈ A, then g(x) = g(y).
There exists a subset Y of X such that for each x ∈ X there exists a unique point

y(x) ∈ Y such that ρ(x, y(x)) = 0. Then πρ(Y ) = X/G and πG |Y is a one-to-one mapping
of Y onto X/G.

For each y ∈ Y there exists a unique point h(y) = y(g(y)) ∈ Y such that dα(g(y), h(y)) =
0 for all α ∈ A. Now, for each x ∈ X we put f(πG(x)) = πG(h(y(x))). If x, x′ ∈ X and
dα(x, x′) = 0 for all α ∈ A, then y(x) = y(x′), g(x) = g(x′) and f(πGx)) = f(πG(x′)). Thus
the mapping f is correct defined and f(πG(x)) = πG(g(x)) for each x ∈ X .

Assume that b ∈ X and πG(b) is a fixed point of the mapping f , i.e. f(πρ(b)) = πρ(b).
Suppose that g(g(b)) 6= g(b). Then dα(b, g(b)) 6= 0 for some α ∈ A and πG(b) 6= πG(g(b)) =
f(πG(b)) = πG(b), a contradiction. The assertion 2 is proved. The assertion 4 follows from
the assertion 2.
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Fix a ∈ X . Let b ∈ X and limn→∞dα(b, gn(a)) = 0 for eachα ∈ A. Then limn→∞dα(g(b),
gn(a)) = 0 and dα(b, g(b)) = 0 for each α ∈ A. Thus b is a G-fixed point of g and
g(g(b)) = g(b). The assertion 3 is proved. The proof is complete. �

Theorem 3.2. Let G be a pseudo-gaugeE-structure on a spaceX and f : X −→ X be a mapping.
1. Assume x = y if d(f(x), f(y)) = 0 for each d ∈ G. Then FixG(f) = Fix(f). In particular,

from FixG(f) 6= ∅ it follows Fix(f) 6= ∅.
2. Assume that f is a set-valued mapping and for any x ∈ X with x 6∈ f(x) there exists d ∈ G

such that d(x, f(x)) > 0. Then Fix(f) = FixG(f). In particular, from FixG(f) 6= ∅ it follows
Fix(f) 6= ∅.

3. Assume that n ≥ 0 and for any x ∈ X with f (n+1)(x) 6= f (n)(x) there exists d ∈ G such
that d(f (n)(x)), f (n+1)(x)) > 0. Then f (n)(b) ∈ Fix(f) for each b ∈ FixG(f). In particular,
from FixG(f) 6= ∅ it follows Fix(f) 6= ∅.

Proof. Assertion 1 immediately follows from Theorem 3.1. Assertion 2 is obvious. We
mention, that for single-valued mappings Assertion 2 is the Assertion 3 for n = 0.

Let n ≥ 0. Suppose that for any x ∈ X with f (n+1)(x) 6= f (n)(x) there exists d ∈ G such
that d(f (n)(x), f (n+1)(x)) > 0. Fix b ∈ FixG(f). Let c = f (n)(b). Then c ∈ FixG(f) and
d(b, c) = 0 for each d ∈ G. Assume that f(c) 6= c. Then c = f (n)(x) 6= f (n+1)(x) = f(c) and
there exists d ∈ G such that d(f(f (n)(x)), f (n+1)(x)) > 0, i.e. d(c, f(c)) > 0, a contradiction.
Assertion 3 is proved. The proof is complete. �

Corollary 3.1. Assume that P are properties of mappings of pseudo-gauge E-structures and of
Banach m-scales E and for any mapping of a E-gauge space with properties P the set of fixed
points is non-empty. Let E be a Banach m-scale, G = {dα : X × X −→ E : α ∈ A} be a
pseudo-gauge E-structure on a space X and g : X −→ X be a mapping with properties P . If for
each x ∈ X the subspace Z(x, ρ) is a fixed point space, then Fix(g) = {x ∈ X : g(x) = x} is a
non-empty set.

Example 3.5. Let R be the space of reals with the distance ρ(x, y) = |x − y|. Fix a number
k ∈ R \ {0, 1}. Consider the mapping ϕ : R −→ R, where ϕ(x) = kx for each x ∈ X .
Let D = {−1, 1} be a discrete space. Let X = R × D and ψ(x, i) = (ϕ(x),−i) for each point
(x, i) ∈ R × D = X . On X consider the continuous pseudometric d((x, i), (y, j)) = ρ(x, y)
for all points (x, i), (y, j) ∈ R× D = X . Then G = {d} is a perfect pseudo-gauge structure
onX , d(ψ(x, i), ψ(y, j)) = |k| ·d((x, i), (y, j)) for all points (x, i), (y, j) ∈ X , Fix(ψ) = ∅ and
FixG(ψ) = {(0,−1), (0, 1)}.

Example 3.6. Let R be the space of reals with the distance ρ(x, y) = |x− y|. Fix a number
k ∈ R \ {0, 1}. Consider the mapping ϕ : R −→ R, where ϕ(x) = kx for each x ∈ X .
Let I = [0, 1] be the unite interval as a subspace of the space of reals R. Let X = R × I
and n be a natural number. We put ψ(x, t) = (ϕ(x),max{0, 2−1t − 2−n−1) for each point
(x, t) ∈ R × I = X . On X consider the continuous pseudometric d((x, t), (y, t′)) = ρ(x, y)
for all points (x, t), (y, t′) ∈ X . Then G = {d} is a perfect pseudo-gauge structure on X ,
d(ψ(x, t), ψ(y, t′)) = |k| · d((x, t), (y, t′)) for all points (x, t), (y, t′) ∈ X , Fix(ψ) = {(0, 0)}
and FixG(ψ) = {(0, t) : t(0, 1) ∈ I}. By construction, if ψ(n)(x, t) 6= ψ(n+1)(x, t), then
d(ψ(n)(x, t), ψ(n+1)(x, t)) > 0. Hence ψn(FixG(ψ)) = Fix(ψ).

Example 3.7. Let R be the space of reals with the distance ρ(x, y) = |x− y|. Fix a number
k ∈ R \ {0, 1}. Consider the mapping ϕ : R −→ R, where ϕ(x) = kx for each x ∈
X . Let I = [0, 1] be the unite interval as a subspace of the space of reals R. Let X =
R × I and n be a natural number. We put ψ(x, t) = (ϕ(x),max{0, 2−1t − 2−n−1) for each
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point (x, t) ∈ R × I = X . On X consider the continuous pseudometric d((x, t), (y, t′)) =
ρ(x, y) for all points (x, t), (y, t′) ∈ X . Then G = {d} is a perfect pseudo-gauge structure
on X , d(ψ(x, t), ψ(y, t′)) = |k| · d((x, t), (y, t′)) for all points (x, t), (y, t′) ∈ X , Fix(ψ) =

{(0, 0)} and FixG(ψ) = {(0, t) : t ∈ I}. By construction, if ψ(n)(x, t) 6= ψ(n+1)(x, t), then
d(ψ(n)(x, t), ψ(n+1)(x, t)) > 0. Hence ψn(FixG(ψ)) = Fix(ψ).

Example 3.8. Let R be the space of reals with the distance ρ(x, y) = |x−y|. Fix a number k ∈
R \ {0, 1}. Consider the mapping ϕ : R −→ R, where ϕ(x) = kx for each x ∈ X . Let X =
R×I. We put ψ(x, t) = (ϕ(x),max{0, 2−1t) for each point (x, t) ∈ R×I =X . OnX consider
the continuous pseudometric d((x, t), (y, t′)) = ρ(x, y) for all points (x, t), (y, t′) ∈ X . Then
G = {d} is a perfect pseudo-gauge structure on X , d(ψ(x, t), ψ(y, t′)) = |k| · d((x, t), (y, t′))
for all points (x, t), (y, t′) ∈ X , Fix(ψ) = {(0, 0)} and FixG(ψ) = {(0, t) : t ∈ I}. By
construction, ψn(FixG(ψ)) 6= Fix(ψ) for each n ∈ N.

Example 3.9. Let R be the space of reals with the distance ρ(x, y) = |x − y|. Fix a number
k ∈ R \ {0, 1}. Consider the mapping ϕ : R −→ R, where ϕ(x) = kx for each x ∈ X . Let
X = R × R. We put ψ(x, t) = (ϕ(x),max{0, 2−1t − 2−n−1) for each point (x, t) ∈ R × R
= X . On X consider the continuous pseudometric d((x, t), (y, t′)) = ρ(x, y) for all points
(x, t), (y, t′) ∈ X . Then G = {d} is a pseudo-gauge structure on X , d(ψ(x, t), ψ(y, t′))
= |k| · d((x, t), (y, t′)) for all points (x, t), (y, t′) ∈ X , Fix(ψ) = {(0, 0)} and FixG(ψ) =
{(0, t) : t ∈ R}. By construction, ψn(FixG(ψ)) 6= Fix(ψ) for each n ∈ N. Moreover,
for each (x, t) ∈ FixG(ψ) there exists n such that ψ(x, t) ∈ Fix(ψ). We mention that the
pseudo-gauge structure G = {d} is not perfect.

4. SOME APPLICATIONS OF THE REDUCTION PRINCIPLES

Consider a Banach metric scale E and a pseudo-gauge structure G on a space X .
The results of above sections may be applied to the spaces with pseudo-gauge struc-

tures. For that are important the conditions which guarantee non-empties of the set
FixG(f). A mapping g : X −→ Y is called an upper semicontinuous mapping, if for any
open subset V of Y the set g	1(V ) = {x ∈ X : g(x) ⊆ V } is open in X .

Lemma 4.1. Let G be a sequentially quasi-complete pseudo-gauge structure on a space X and
g : X −→ X be an upper semicontinuous compact-valued mapping. Then:

1. The set Fix(g) is closed in X .
2. The set FixG(g) is closed in X .
3. If x ∈ FixG(g), then Z(x,G) ⊆ FixG(g).

Proof. Assume that x 6∈ g(x). There exist two open subsets V and W of X such that
x ∈ V , g(x) ⊆ W and V ∩ W = ∅. The set U = V ∩ g	1(W ) is open in X , x ∈ U
and U ∩ g(U) = ∅. Assertion 1 is proved for arbitrary upper semicontinuous set-valued
mappings. Assume that x0 6∈ FixG(g). Then for each x ∈ g(x0) there exist r(x) > 0
and dx ∈ G such that ‖dx(x0, x)‖ ≥ 3r(x). Since g(x0) is a compact space and g(x0) ⊆
∪{B(x, dx, r(x)) : x ∈ g(x0)}, then there exists a non-empty finite subset L of g(x0)
such that g(x0) ⊆ ∪{B(x, dx, r(x)) : x ∈ L}. Let W = ∪{B(x, dx, r(x)) : x ∈ L}, V1 =
∩{B(x0, dx, r(x)) : x ∈ L} and V = V1∩g	1(W ). The set V is open inX , x0 ∈ Z(x0,G) ⊆ V
and V ∩ FixG(g) = ∅. Assertions 2 and 3 are proved. �

A sequence {xn : n ∈ N} is a Picard sequence of the set-valued mapping g : X −→ X
if xn+1 ∈ g(xn) for each n ∈ N. If {xn : n ∈ N} is a Cauchy sequence of the space (X,G),
then we say that {xn : n ∈ N} is a G-Picard sequence of the mapping g.
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Lemma 4.2. Let G be a sequentially quasi-complete pseudo-gauge structure on a space X , g :
X −→ X be an upper semicontinuous set-valued mapping and {xn : n ∈ N} be a Picard sequence
of the mapping g. Then:

1.If x ∈ X and limn→∞d(x, xn) = 0 for each d ∈ G, then x ∈ Z(x,G) ⊆ FixG(g) and
{xn : n ∈ N} is a G-Picard sequence of the mapping g.

2. If {xn : n ∈ N} is a G-Picard sequence of the mapping g and x is an accumulation point of
the sequence {xn : n ∈ N}, then limn→∞d(x, xn) = 0 for each d ∈ G and x ∈ FixG(g).

Proof. Let b ∈ X and limn→∞d(b, xn) = 0 for each d ∈ G. Then {xn : n ∈ N} is a Cauchy
sequence of the space (X,G) and a G-Picard sequence of the mapping g. The sequence
{xn : n ∈ N} has an accumulation point x0 and b ∈ Z(x0,G). By virtue of Lemma 4.1, we
can assume that b = x0 is an accumulation point of the sequence {xn : n ∈ N}. Since the
mapping g is upper semicontinuous and {xn : n ∈ N} ⊆ g({xn : n ∈ N}), the sequence
{xn : n ∈ N} has an accumulation point c ∈ g(b). Then d(b, c) = 0 for all d ∈ G and
b ∈ FixG(g). Assertion 1 is proved. Assertion 2 follows from Assertion 1. �

A set-valued mapping g : X −→ X is called G-contractive if there exists a family of
non-negative numbers {kd : d ∈ G} and for all x, y ∈ X and x′ ∈ g(x) there exists
y′ = c(g, x, y, x′) ∈ g(y) for which d(x′, y′) ≤ kd · d(x, y) and 0 ≤ kd < 1 for each d ∈ G.

Lemma 4.3. Let G be a pseudo-gauge structure on a spaceX and g : X −→ X be a G-contractive
mapping. If x1 ∈ X is an arbitrary fixed point, x2 ∈ g(x1) and xn+2 = c(g, xn, xn+1, xn+1) ∈
g(xn+1) for each n ∈ N, then T (g, x1, x2) = {xn : n ∈ N} is a G-Picard sequence of the mapping
g generated by x1 and x2 ∈ g(x1).

Proof. Assume that the points x1 ∈ X and x2 ∈ g(x1) are fixed and xn+2 = c(g, xn, xn+1,
xn+1) ∈ g(xn+1) for each n ∈ N. Let bd = d(x1, x2). Then d(xn+1, xn+m) ≤ (knd : (1− kd)) ·
bd. The proof is complete. �

Theorem 4.3. Let G be a sequentially complete perfect pseudo-gauge structure on a space X and
g : X −→ X be a G-contractive upper semicontinuous set-valued mapping. Then for each points
x1 ∈ X and x2 ∈ g(x1) the Picard orbit T (g, x1, x2) = {xn : n ∈ N} is a G-Picard sequence
of the pseudo-gauge space (X,G) with accumulation points in X . Moreover, if z ∈ X is an
accumulation point of the sequence T (g, x1, x2), then z ∈ FixG(g) and limn→∞d(z, xn) = 0 for
each d ∈ G}.

Proof. Follows from Lemmas 4.2 and 4.3. �

Theorem 4.4. Let G be a sequentially quasi-complete pseudo-gauge structure on a space X and
g : X −→ X be a G-contractive mapping. Then:

1. For each point x ∈ X the Picard orbit T (g, x) = {xn : n ∈ N}, where x1 = x and
xn+1 = g(xn) for each n ∈ N, is a Cauchy sequence of the pseudo-gauge space (X,G) with
accumulation points in X . Moreover, if z ∈ X is an accumulation point of the sequence T (g, x),
then z ∈ FixG(g) and limn→∞d(z, xn) = 0 for each d ∈ G.

2. If x, y ∈ FixG(g), then d(x, y) = 0 for each d ∈ G and FixG(g) = {z ∈ X : d(x, z) = 0 for
each d ∈ G}.

3. FixG(g) is a non-empty closed countably compact subspace of the space X .

Proof. Assertion 1 follows from Theorem 4.3.
If x, y ∈ FixG(g), then d(x, g(x)) = 0, d(y, g(y)) = 0, d(x, y) ≤ d(x, g(x))+d(g(x), g(y))+

d(g(y), y) = d(g(x), g(y)) ≤ kd · d(x, y), i.e. d(x, y) = 0 for each d ∈ G}. If d ∈ G}, z ∈ X
and d(x, z) > 0, then d(x, g(z)) = d(g(x), g(z)) < d(x, z). Thus z 6= g(z), d(g(z), z) > 0 and
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z 6∈ FixG(g). If d(x, z) = 0, then d(x, g(z)) = 0 too. Hence FixG(g) = {z ∈ X : d(x, z) = 0
for each d ∈ G}. Assertion 2 is proved.

If {xn ∈ FixG(g) : n ∈ N}, then, by virtue of Assertion 2, we have d(xn, xm) = 0 for all
n ∈ N and each d ∈ G. Hence, {xn : n ∈ N} is a Cauchy sequence and has an accumulation
point in X . Since the pseudometrics d ∈ G are continuous, the set FixG(g) is closed in X .
Assertion 3 is proved �

Some special cases of Theorem 4.4 were examined in [3, 12, 13, 17, 20]. We mention,
that Assertions 2 and 3 of Theorem 4.4 are not true for set-valued mappings.

Example 4.10. Let G be a sequential complete gauge structure on a space X with an infi-
nite closed subset F . Consider the set-valued mapping g : X −→ X , where g(x) = F for
each x ∈ X . The mapping g is upper semicontinuous (and lower semicontinuous too).
The mapping g is compact-valued if and only if the set F is compact. If x, y ∈ X and
x′ ∈ g(x), then we put c(g, x, y, x′) = x′. Then g is a G-contractive mapping with kd = 0
for any d ∈ G. We have Fix(g) = FixG = F .

Assume now that G is a pseudo-gauge structure on a space X . Let Φ = ∪{Z(x,G) : x ∈
F}. Obviously, F ⊆ Φ. For some G we have F 6= Φ. We have Fix(g) = F and FixG = Φ.

A space X is called a fixed point space if for each continuous mapping we have g(y) = y
for some y ∈ X (see [12, 13, 16]).

Any convex compact subset of a topological liner space is a fixed point space [8, 9, 16,
20].

Corollary 4.2. Let G be a sequentially quasi-complete pseudo-gauge structure on a space X and
g : X −→ X be a G-contractive mapping. If for each x ∈ X the subspace Z(x, ρ) is a fixed point
space, then Fix(g) = {x ∈ X : g(x) = x} is a non-empty set.

Example 4.11. Let G1 be a sequential complete gauge structure on a space Y and Z be a
compact fixed-point space. Consider theX = Y ×Z. For each ρ ∈ G1 onX we consider the
continuous pseudometric d((x, z), (y, z′)) = ρ(x, y) for all points (x, z), (y, z′) ∈ X . Then
G = {dρ : ρ ∈ G1} is a perfect pseudo-gauge structure on X .

Assume that 0 < k < 1 and g : X −→ X is a mapping such that d(g(x, z), g(y, z′)) ≤ k ·
d((x, z), (y, z′)) for all points (x, z), (y, z′) ∈ X . Then there exists a unique point (x0, z0) ∈
X such that FixG(g) = {(x, z) ∈ X : d((x, z), (x0, z0) = 0 for each d ∈ G} = {x0} × Z. Then
f : Z −→ Z, where f(z) = z′ if and only if g(x0, z) = g(x0, z

′), is a continuous mapping
of Z into Z. Since Z is a fixed-point space, there exists z1 ∈ Z such that z1 ∈ Fix(f). Then
(x0, z1) ∈ Fix(g) and Fix(g) 6= ∅.

Theorem 4.5. LetE be a Banach metric scale and ‖x+y‖ = ‖x‖+‖y‖ provided 0 ≤ x and 0 ≤ y,
G be a sequentially quasi-complete pseudo-gauge structure on a spaceX , {ϕd : X −→ E : d ∈ G}
be functions, 0 ≤ ϕd(x) for all x ∈ X and d ∈ G, and g : X −→ X be a set-valued mapping with
a closed graph Gr(g) = ∪{{x} × g(x) : x ∈ X} in X × X . Assume that for each x ∈ X there
exists s(x) ∈ g(x) such that d(x, s(x)) ≤ ϕd(x)− ϕd(s(x)) for each d ∈ G. Then:

1. FixG(g) is a non-empty set of the space X .
2. If x0 ∈ X and xn+1 = s(xn), then {xn : n ∈ N} is a Cauchy sequence of the space X and

there exist two accumulation points b, c of {xn : n ∈ N} such that c ∈ g(b) and b ∈ FixG(g).

Proof. Note that the mapping g is called the Caristi operator on X (see [7]; [20], p. 75).
Fix x0 ∈ X and xn+1 = s(xn) for each n ∈ N. Denote by A(x0) the set of all accumu-

lation points of the sequence {xn : n ∈ N} and L(x0) = {x ∈ X : limn→∞d(x, xn) = 0}.
Obviously, A(x0) ⊆ L(x0).
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Fix d ∈ G. Obviously, that Σ{d(xi, xi+1 : 0 ≤ i ≤ n} ≤ fd(x0) − fd(xn+1 ≤ f(x0)
for each n ∈ N. Hence the series Σ{d(xi, xi+1 : 0 ≤ i < ∞} is convergent in E and
Σ{d(xi, xi+1 : 0 ≤ i < ∞} = ∨{Σ{d(xi, xi+1 : 0 ≤ i ≤ n} : n ∈ N} ≤ fd(x0). In particular,
the series Σ{{d(xi, xi+1)‖ : 0 ≤ i < ∞} is convergent in E and Σ{‖d(xi, xi+1)‖ : 0 ≤ i <
∞} ≤ ‖f(x0)‖. Hence {xn : n ∈ N} is a Cauchy sequence of the space (X,G). Let P =
{(xn, xn+1 : n ∈ N} ⊆ X ×X . By construction, P ⊆ Gr(g).

Since (X,G) is a sequentially complete pseudo-gauge space, there exists b ∈ X such
that b is an accumulation point of the sequence {xn : n ∈ N}. Moreover, A(x0) and L(x0)
are non-empty compact subsets of the space X and b ∈ A(x0) ⊆ L(x0).

Claim 1. Let V be an open subset of X and A(x0) ⊆ V . Then the set {n : xn 6∈ V } is
finite.

Follows from the following fact: any infinite subsequence of the sequence {xn : n ∈ N}
is a Cauchy sequence of the space (X,G) and has accumulation points in A(x0).

Claim 2. (A(x0)×A(x0)) ∩ clX×XP 6= ∅.
Assume that (A(x0)×A(x0)) ∩ clX×XP = ∅. Since the set A(x0) is compact, then there

exists an open subset V ofX such thatA(x0) ⊆ V and (V ×V )∩P = ∅. By virtue of Claim
1, there exists k ∈ N such that xn ∈ V for all n ≥ k. Then (xn, xn+1) ∈ (V × V ) ∩ P for all
n ≥ k, a contradiction. Claim 2 is proved.

Without loss of generality, we can suppose that (b, c) ∈ (A(x0) × A(x0)) ∩ clX×XP for
some c ∈ A(x0). Since the set Gr(g) is closed in X ×X and P ⊆ Gr(g), we have c ∈ g(b).
By construction, limn→∞d(b, xn) = 0 and limn→∞d(c, xn) = 0 for each d ∈ G. Hence
d(b, c) = 0 for each d ∈ G and b ∈ FixG(g). �

Theorem 4.5 is true for regular Banach metric scales: every increasing sequence which
is bounded from above is convergent (see [20], p. 80).

In similar way the generalized contractions of types of Ćirić - Reich - Rus ([20], p. 28),
Krasnoselelskii - Zabrejko ([20], p. 29), Zamfirescu ([20], p. 29), Rus - Kasahara - Hicks
- Rhoades ([20], p. 35), Niemytzky - Edelstein ([20], p. 38), Berinde - Choban [4, 5] are
extended for set-valued mappings of pseudo-gauge spaces.

5. SPACES WITH FINITE PSEUDO-GAUGE STRUCTURES

Let E be a Banach metric scale and m be a natural number. Consider the Banach metric
scale Em in which for all (x1, x2, ..., xm), (y1, y2, ..., ym) ∈ Em we have ‖(x1, x2, ..., xm)‖ =
‖x1‖+‖x2‖+ ...+‖xm‖ and (x1, x2, ..., xm) ≤ (y1, y2, ..., ym) if and only if x1 ≤ y1, x2 ≤ y2,
...,x1 ≤ ym). The Banach metric scale Em is regular if and only if E is a regular Banach
metric scale.

Let G = {d1, d2, ..., dm} be a finite pseudo-gauge structure on a space X . Then d((x1, x2,
..., xm), (y1, y2, ..., ym)) = (d1(x1, y1), d2(x2, y2), ..., dm(xm, ym) is a continuous
Em-pseudometric on the space d.

Hence the results from [10] are true for spaces with finite pseudo-gauge structures.
The matrix contractions may be applied to the finite pseudo-gauge spaces. Denote by

M∗m the family of all m×m matrices S = (sij)
m
m with the properties:

- sij ∈ R and 0 ≤ sij for all i, j ≤ m;
- limk→∞S

k = θm, where θm is the zero m×m matrix.
If S ∈ M∗m, then it is said to be that the matrix S is convergent to zero ([20], Section

6.0.3).
By virtue of Theorem 6.0.1 from [20], for any non-negative scalar m ×m matrix S the

following assertions are equivalent:
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(i) S is a convergent to zero matrix;
(ii) det(εm − S) 6= 0 and (εm − S)−1 has non-negative elements, where εm is the unit

m×m matrix;
(iii) det(εm − S) 6= 0 and (εm − S)−1 = εm + S + S2 + ...+ Sn + ....
The matrix approach and reduction principles permit to extend the distinct fixed point

theorems, proved for the Rm-metrics (see [20, 19]).
A mapping ϕ : X −→ X is a scalar S-contraction if there exists S ∈ M∗m such that

d(ϕ(x), ϕ(y)) ≤ Sd(x, y) for all x, y ∈ X .

Theorem 5.6. Let (X,G) be a sequentially complete pseudo-gauge space and ϕ : X −→ X be a
scalar S-contraction. Then:

1. There exists x∗ ∈ X such that d(x∗, ϕ(x∗)) = 0.
2. If {xn : n ∈ N} and limn→∞d(xn, ϕ(xn)) = 0, then limn→∞d(xn, x

∗) = 0.
3. If d(x, y) 6= 0 provided ϕ(x) 6= ϕ(y), then Fix(ϕ) 6= ∅.
4. Assume that x = y if d(ϕ(x), ϕ(y)) = 0. Then Fix(ϕ) is a singleton set.

Proof. The proofs of the assertions 1 and 2 are similar as in the case E = R (see [20],
Theorems 6.1.1 and 6.1.2). The assertion 3 follows from the assertion 1 and Theorem 3.1.
The assertion 4 follows from the assertion 1 and Theorem 3.2. �

6. PSEUDOMETRICS IN ORDERED BANACH ALGEBRAS

In the present section the notion of the scalar S-contraction is extended for matrices
with elements from a given ordered commutative Banach algebra (we use the notions
from [2, 6, 15] about normed rings and ordered algebras).

A Banach metric r-scale is a non singleton partially ordered Banach space E such that:
- E is a Banach metric scale;
- E is a commutative ring with unity 1 such that 0 < 1, ‖ 1 ‖= 1, ‖ xy ‖≤‖ x ‖ · ‖ y ‖

for all x, y from E, xy ≥ 0 provided x ≥ 0 and y ≥ 0, uv ≤ uz provided u ≥ 0 and v ≤ z.
Fix a Banach metric r-scale E and a natural number m.
Let Mm(E) be the family of all m×m matrices S = (sij)

m
m with the properties:

- sij ∈ E and 0 ≤ sij for all i, j ≤ m;
- ‖ detS ‖ + ‖ detS2 ‖ +...+ ‖ detSn ‖ +... <∞;
- there exists the sum |S|+ |S2|+ ...+ |Sn|+ ..., where |A| = (‖ aij ‖)mm for each matrix

A = (aij)
m
m.

If S ∈Mm(E), then limk→∞S
k = θm, where θm is the zero m×m matrix.

Let G = {d1, d2, ..., dm} be a finite pseudo-gauge structure on a space X . Then d((x1, x2,
..., xm), (y1, y2, ..., ym)) = (d1(x1, y1), d2(x2, y2), ..., dm(xm, ym) is a continuousEm-pseudometric
on the space d.

The matrix approach and reduction principles permit to extend the distinct fixed point
theorems, proved for the Rm-metrics (see [20]).

A mapping ϕ : X −→ X is an SE-contraction if there exists S ∈ Mm(E) such that
d(ϕ(x), ϕ(y)) ≤ Sd(x, y) for all x, y ∈ X .

Theorem 6.7. Let (X,G) be a sequentially complete pseudo-gauge space and ϕ : X −→ X be an
SE-contraction. Then:

1.There exists x∗ ∈ X such that d(x∗, ϕ(x∗)) = 0.
2. If {xn : n ∈ N} and limn→∞d(xn, ϕ(xn)) = 0, then limn→∞d(xn, x

∗) = 0.
3. If d(x, y) 6= 0 provided ϕ(x) 6= ϕ(y), then Fix(ϕ) 6= ∅.
4. Assume that x = y if d(ϕ(x), ϕ(y)) = 0. Then Fix(ϕ) is a singleton set.
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Proof. Let εm be the unit matrix. Then (εm + S)−1 = εm + S + S2 + ... + Sn + ... for any
S ∈Mm(E). The proofs of the assertions 1 and 2 are similar as in the case E = R (see [20],
Theorems 6.1.1 and 6.1.2). The assertion 3 follows from the assertion 1 and Theorem 3.1.
The assertion 4 follows from the assertion 1 and Theorem 3.2. �
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[8] Cauty, R., Solution du probléme de point fixe de Schauder, Fund. Math., 170 (2001), 231–246
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E-mail address: mmchoban@gmail.com


