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Some fixed points results on Branciari metric spaces via
implicit functions

ERDAL KARAPINAR 1,2

ABSTRACT. In this paper, we introduce the notion of α-implicit contractive mapping of integral type in the
context of Branciari metric spaces. The results of this paper, generalize and improve several results on the topic
in literature. We give an example to illustrate our results.

1. INTRODUCTION AND PRELIMINARIES

Branciari proposed a new distance function, as a generalization of the notion of metric,
by substituting the triangle inequality with the quadrilateral inequality. In what follows
that we recall the notion of a Branciari metric space.

Definition 1.1. [6] Let X be a nonempty set and let d : X × X −→ [0,∞) satisfy the
following conditions for all x, y ∈ X and all distinct u, v ∈ X each of which is different
from x and y.

(1.1)
(b1) d(x, y) = 0 if and only if x = y
(b2) d(x, y) = d(y, x)
(b3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y).

Then, the map d is called a Branciari metric (or generalized metric) and abbreviated as
”BMS” Here, the pair (X, d) is called a Branciari metric space.

Notice that, in the literature, generalized metric space represents several different no-
tions (see e.g. [3, 4, 5, 6, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 29, 32]). In this note, we
prefer to rename and use it as Branciari metric space to avoid from the confusion.

Throughout the paper, N and N0 denote the set of positive integers and the set of non-
negative integers. Analogously, let R, R+ and R+

0 represent the set of reals, positive reals
and the set of nonnegative reals, respectively.

The concepts of convergence, Cauchy sequence, completeness and continuity on a BMS
are defined below.

Definition 1.2.
(1) A sequence {xn} in a BMS (X, d) is BMS convergent to a limit x if and only if

d(xn, x)→ 0 as n→∞.
(2) A sequence {xn} in a BMS (X, d) is BMS Cauchy if and only if for every ε > 0

there exists positive integer N(ε) such that d(xn, xm) < ε for all n > m > N(ε).
(3) A BMS (X, d) is called complete if every BMS Cauchy sequence in X is BMS con-

vergent.

Received: 26.08.2014; In revised form: 20.03.2015; Accepted: 22.03.2015
2010 Mathematics Subject Classification. 46T99, 47H10, 54H25.
Key words and phrases. Generalized metric spaces, implicit function, Branciari metric spaces.

339



340 Erdal Karapınar

(4) A mapping T : (X, d) → (X, d) is continuous if for any sequence {xn} in X such
that d(xn, x)→ 0 as n→∞, we have d(Txn, Tx)→ 0 as n→∞.

For BMS, Branciari successfully defined an open ball, closed ball and hence a topology.
Despite the analogy, the topology of BMS is different than metric space. In particular,
(p1) Branciari metric is not necessarily continuous, (p2) BMS is not necessarily Haussdorf
(limit is not necessarily unique), (p3)open ball need not to open set, (p4) a convergent
sequence in BMS needs not to be Cauchy. Furthermore, the mentioned topologies are
incompatible (for more details see e.g. [32]).

Inspired from the examples in [31, 14], we state the following illustrative example.

Example 1.1. Let X = Y ∪ Z where Y = {0, 2, 3} and Z = { 1
2n+1 : n ∈ N}. Consider the

function d : X ×X → [0,∞) in the following way:

d(x, y) =

 0, if x = y,
1, if x 6= y and [{x, y} ⊂ Y or {x, y} ⊂ Z],
y, if x ∈ Y, y ∈ Z.

Notice that d(y, z) = d(z, y) = z whenever y ∈ Y and z ∈ Z. Furthermore, (X, d) is a
complete BMS. Clearly, we have (P1)-(P4). Indeed, the sequence { 1

2n+1 : n ∈ N} con-
verges to 0, 2 and 3. There is no r > 0 such that Br(0) ∩ Br(3) = ∅ and hence it is not
Hausdorff. It is clear that the ball B 2

3
( 1
5 ) = {0, 15 , 2, 3} since there is no r > 0 such that

Br(0) ⊂ B 2
3
( 1
3 ), that is, open balls may not be an open set. The function d is not continu-

ous since lim
n→∞

d(
1

2n+ 1
,

1

5
) 6= d(0,

1

5
) although lim

n→∞

1

2n+ 1
= 0.

Example 1.2. (See [32]) LetX = {(0, 0)}∪((0, 1]×[0, 1]). Define a function d : X×X → R+
0

by
d(x, x) = 0

d((0, 0), (s, 0)) = d((s, 0), (0, 0)) = s if s ∈ (0, 1],
d((s, 0), (p, q)) = d((p, q), (s, 0))) = |s− p|+ q if s, p, q ∈ (0, 1].

Then the followings hold:
(i) (X, d) is not a metric space.

(ii) (X, d) is a generalized metric space.
(iii) X does not have a topology which is compatible with d.

To remove the weakness of BMS, we need the following proposition and lemma.

Proposition 1.1. [20] In a semimetric space, the assumption (W ) is equivalent to the assertion
that limits are unique.

Proposition 1.2. [20] Suppose that {xn} is a Cauchy sequence in a BMS (X, d) with
lim
n→∞

d(xn, u) = 0, where u ∈ X . Then lim
n→∞

d(xn, z) = d(u, z) for all z ∈ X . In particu-
lar, the sequence {xn} does not converge to z if z 6= u.

Lemma 1.1. (See e.g.[13, 14]) Let (X, d) be a BMS and let {xn} be a Cauchy sequence inX such
that xm 6= xn whenever m 6= n. Then the sequence {xn} can converge to at most one point.

Let Ψ denote the set of all functions ψ : R+
0 → R+

0 satisfying:
(ψ1)ψ is nondecreasing,

(ψ2)

∞∑
n=1

ψn(t) <∞ for each t ∈ R+, where ψn is the nth iterate of ψ.
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Remark 1.1. It is easy to see that if ψ ∈ Ψ , then ψ(t) < t for any t > 0.

Now, we introduce the following implicit relation (see also e.g.[23, 24, 25, 26, 27, 33]).

Definition 1.3. Let Γ be the set of all continuous functions F (t1, ..., t4) : R4
+ → R such that

(F1) : F is nondecreasing in variable t1 and nonincreasing in variables t3 and t4,
(F2) : There exists ψ ∈ Ψ such that for all p, q ≥ 0, (a) F (p, q, q, p) ≤ 0 implies p ≤ ψ(q),
and (b) F (p, q, p, q) ≤ 0 implies p ≤ ψ(q), and (c) F (p, q, t, t) ≤ 0 implies p ≤ ψ(q) or
p ≤ ψ(t) for all t > 0.
(F3) : For all t > 0, we have 0 < F (t, t, 0, 0).

We give the following examples.

Example 1.3. F (t1, ..., t4) = t1 − at2 − bt3 − ct4, where a, b, c ≥ 0 such that a+ b+ c < 1.

Example 1.4. F (t1, ..., t4) = t1 − kmax{t2, t3, t4}, where k ∈ [0, 12 ).

Example 1.5. F (t1, ..., t4) = t1 − kmax{t2, t3+t42 }, where k ∈ [0, 1).

Example 1.6. F (t1, ..., t4) = t1 − at2 − bmax{t3, t4}, where a+ 2b < 1 and a, b ≥ 0.

The notion of α-admissible maps was introduced by Samet et al. [30], (see also [3, 1, 11,
12, 18, 15, 16, 17, 30]).

Definition 1.4. [30] For a nonempty set X , let T : X → X and α : X × X → R+
0 be

mappings. We say that the self-mapping T on X is α-admissible if for all x, y ∈ X , we
have

(1.2) α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1.

In what follows we recall the following class of functions: Φ = {ϕ : ϕ : R+
0 → R} such

that ϕ is nonnegative, Lebesgue integrable, and satisfies∫ ε

0

ϕ(t)dt > 0 for each ε > 0.(1.3)

Definition 1.5. (See [2]) We say that φ ∈ Φ is an integral sub-additive if for each a, b > 0,
we have ∫ a+b

0

φ(t) dt ≤
∫ a

0

φ(t) dt+

∫ b

0

φ(t) dt.

We denote by Φs, the class of all integral sub-additive functions φ ∈ Φ.

Example 1.7. (See [2])Let φ1(t) = 1
2 (t+ 1)−

1
2 for all t ≥ 0, φ2(t) = 2

3 (t+ 1)−
1
3 for all t ≥ 0,

and φ3(t) = e−t for all t ≥ 0. Then φi ∈ Φs, where i = 1, 2, 3.

In what follows that we introduce the concept of α-implicit contractive mapping of
integral type in the setting of BMS.

Definition 1.6. Let (X, d) be a BMS and T : X → X be a given mapping. We say that T is
a α-implicit contractive mapping of integral type if there exist three functions α : X×X →
R+

0 , φ ∈ Φs and F ∈ Γ such that

(1.4) F
(
α(x, y)

∫ d(Tx,Ty)
0

ϕ(t)dt,
∫ d(x,y)
0

ϕ(t)dt,
∫ d(x,Tx)
0

ϕ(t)dt,
∫ d(y,Ty)
0

ϕ(t)dt
)
≤ 0,

for all x, y ∈ X .

In this paper, we investigate fixed point of the α-implicit contractive mapping of inte-
gral type (see e.g. [7, 28]).
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2. FIXED POINT THEOREMS

In this section, we shall state and prove our main results.

Theorem 2.1. Let (X, d) be a complete BMS and T : X → X be an α-implicit contractive
mapping of integral type. Suppose that

(i) T is α−admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T

2x0) ≥ 1;
(iii) T is continuous.

Then there exists a u ∈ X such that Tu = u.

Proof. The assumption (ii) guarantees that there exists a point x0 ∈ X such that
α(x0, Tx0) ≥ 1 and α(x0, T

2x0) ≥ 1. By using this initial point x0 ∈ X , we set up an
iterative sequence {xn} in X in the

xn+1 = Txn = Tn+1x0 for all n ∈ N0.

Throughout the proof, we assume that consecutive terms of the sequence {xn} are distinct,
that is,

(2.5) xn 6= xn+1 for all n ∈ N0.

Notice that if xn0
= xn0+1 for some n0, then the proof is completed in this case. Indeed,

we have u = xn0 = xn0+1 = Txn0 = Tu.
Since T is α−admissible, the assumption (ii) yields that

α(x0, x1) = α(x0, Tx0) ≥ 1⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1.

Recursively, we derive that

(2.6) α(xn, xn+1) ≥ 1, for all n = 0, 1, . . . .

Due to same arguments, used above, we observe also that

α(x0, x2) = α(x0, T
2x0) ≥ 1⇒ α(Tx0, Tx2) = α(x1, x3)≥ 1.

Consequently, we have that

(2.7) α(xn, xn+2) ≥ 1, for all n = 0, 1, . . . .

We divide the rest of the proof into 4 steps.
Step 1: We shall proved that

(2.8) lim
n→∞

d(xn, xn+1) = 0.

By letting x = xn−1 and y = xn in (3.34), we get that
(2.9)
F
(
α(xn−1, xn)

∫ d(xn,xn+1)

0
ϕ(t)dt,

∫ d(xn−1,xn)

0
ϕ(t)dt,

∫ d(xn−1,xn)

0
ϕ(t)dt,

∫ d(xn,xn+1)

0
ϕ(t)dt

)
≤ 0,

Since φ ∈ Φs, the above expression yields that
(2.10)
F
( ∫ d(xn,xn+1)

0
ϕ(t)dt,

∫ d(xn−1,xn)

0
ϕ(t)dt,

∫ d(xn−1,xn)

0
ϕ(t)dt,

∫ d(xn,xn+1)

0
ϕ(t)dt

)
≤ 0.

Due to (F2), there exists ψ ∈ Ψ which implies

(2.11)
∫ d(xn,xn+1)

0
ϕ(t)dt ≤ ψ(

∫ d(xn−1,xn)

0

ϕ(t)dt) ≤ ψn(

∫ d(x0,x1)

0

ϕ(t)dt),
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for all n ∈ N. On the other hand, by recalling the property (iii) of the auxiliary function
ψ, we have

(2.12)
∫ d(xn,xn+1)

0
ϕ(t)dt <

∫ d(xn−1,xn)

0
ϕ(t)dt for all n ∈ N.

By property of ψ again in (2.11), we deduce that limn→∞
∫ d(xn,xn+1)

0
ϕ(t)dt = 0, and hence

limn→∞ d(xn, xn+1) = 0.
Step 2: We show that

(2.13) lim
n→∞

d(xn, xn+2) = 0.

If we take x = xn−1 and y = xn+1 in (3.34), we get that

F
(
α(xn−1, xn+1)

∫ d(xn,xn+2)

0
ϕ(t)dt,

∫ d(xn−1,xn+1)

0
ϕ(t)dt,

(2.14)
∫ d(xn−1,xn)

0
ϕ(t)dt,

∫ d(xn+1,xn+2)

0
ϕ(t)dt

)
≤ 0,

By (F1) and (2.12) we have
(2.15)
F
( ∫ d(xn,xn+2)

0
ϕ(t)dt,

∫ d(xn−1,xn+1)

0
ϕ(t)dt,

∫ d(xn−1,xn)

0
ϕ(t)dt,

∫ d(xn−1,xn)

0
ϕ(t)dt,

)
≤ 0.

Due to (F2c) the inequality (2.15) implies two cases. For the first case,
∫ d(xn,xn+2)

0
ϕ(t)dt ≤

ψ(
∫ d(xn−1,xn)

0
ϕ(t)dt, we have the desired result due to Step1. Let us examine the second

case.
(2.16)∫ d(xn,xn+2)

0

ϕ(t)dt ≤ ψ(

∫ d(xn−1,xn+1)

0

ϕ(t)dt) <

∫ d(xn−1,xn+1)

0

ϕ(t)dt for all n ∈ N.

Recursively, we observe that

(2.17)
∫ d(xn,xn+2)

0

ϕ(t)dt ≤ ψn(

∫ d(x0,x2)

0

ϕ(t)dt), for all n ∈ N.

Due to the property of ψ again, we conclude that

lim
n→∞

∫ d(xn,xn+2)

0

ϕ(t)dt = 0, and hence lim
n→∞

d(xn, xn+2) = 0.

Step 3: We shall prove that

(2.18) xn 6= xm for all n 6= m.

We argue by contradiction. Suppose that xn = xm for some m,n ∈ N with m 6= n. Since
d(xp, xp+1) > 0 for each p ∈ N, so without loss of generality, assume that m > n + 1.
Therefore, from (3.34) we obtain that

F
(
α(xm−1, xm)

∫ d(Txm−1,Txm)

0
ϕ(t)dt,

∫ d(xm−1,xm)

0
ϕ(t)dt,

(2.19)
∫ d(xm−1,Txm−1)

0
ϕ(t)dt,

∫ d(xm,Txm)

0
ϕ(t)dt

)
≤ 0 .

Regarding (F1) we get that
(2.20)
F
( ∫ d(xm,xm+1)

0
ϕ(t)dt,

∫ d(xm−1,xm)

0
ϕ(t)dt,

∫ d(xm−1,xm)

0
ϕ(t)dt,

∫ d(xm,xm+1)

0
ϕ(t)dt,

)
≤ 0.
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Owing to the property (F2a), we derive that

(2.21)

∫ d(xn,xn+1)

0
ϕ(t)dt =

∫ d(xn,Txn)

0
ϕ(t)dt =

∫ d(xm,Txm)

0
ϕ(t)dt

=
∫ d(xm,xm+1)

0
ϕ(t)dt ≤ α(xm, xm+1)

∫ d(Txm−1,Txm)

0
ϕ(t)dt

≤ ψ(
∫ d(xm−1,xm))

0
ϕ(t)dt ≤ ψm−n(

∫ d(xn,xn+1)

0
ϕ(t)dt).

Due to a property of ψ, the inequality (2.21) yields that

(2.22)
∫ d(xn,xn+1)

0

ϕ(t)dt ≤ ψm−n(

∫ d(xn,xn+1)

0

ϕ(t)dt) <

∫ d(xn,xn+1)

0

ϕ(t)dt,

which is a contradiction. Thus, we have (2.18).
Step 4: We shall prove that {xn} is a Cauchy sequence, that is

(2.23) lim
n→∞

∫ d(xn,xn+k)

0

ϕ(t)dt = 0 for all k ∈ N.

The cases k = 1 and k = 2 are proved respectively by (2.8) and (2.13). Now, take k ≥ 3
arbitrary. It is sufficient to examine two cases.
Case (I): Suppose that k = 2m + 1 where m ≥ 1 . Then, by using Step 1, Step 3 and the
quadrilateral inequality together with the fact that ϕ ∈ Φs, we find that
(2.24)∫ d(xn,xn+k)

0
ϕ(t)dt =

∫ d(xn,xn+2m+1)

0
ϕ(t)dt

≤
∫ d(xn,xn+1)+d(xn+1,xn+2)+...+d(xn+2m,xn+2m+1)

0
ϕ(t)dt

≤
∫ d(xn,xn+1)

0
ϕ(t)+

∫ d(xn+1,xn+2)

0
ϕ(t)+ . . .+

∫ d(xn+2m,xn+2m+1)

0
ϕ(t)dt

≤
n+2m∑
p=n

ψp(

∫ d(x0,x1)

0

ϕ(t)dt) ≤
+∞∑
p=n

ψp(

∫ d(x0,x1)

0

ϕ(t)dt)→ 0 as n→∞.

Case (II): Suppose that k = 2m where m ≥ 2. Again, by applying the quadrilateral
inequality and Step 1 - Step 3 combining with the fact that ϕ ∈ Φs,, we find
(2.25)∫ d(xn,xn+k)

0
ϕ(t)dt =

∫ d(xn,xn+2m)

0
ϕ(t)dt

≤
∫ d(xn,xn+2)+d(xn+2,xn+3)+...+d(xn+2m−1,xn+2m)

0
ϕ(t)dt

≤
∫ d(xn,xn+2)

0
ϕ(t)dt+

∫ d(xn+2,xn+3)

0
ϕ(t)dt+. . .+

∫ d(xn+2m−1,xn+2m)

0
ϕ(t)dt

≤
∫ d(xn,xn+2)

0
ϕ(t)dt+

n+2m−1∑
p=n+2

ψp(

∫ d(x0,x1)

0

ϕ(t)dt)

≤
∫ d(xn,xn+2)

0
ϕ(t)dt+

+∞∑
p=n

ψp(

∫ d(x0,x1)

0

ϕ(t)dt)→ 0 as n→∞.

By combining the expressions (2.24) and (2.25), we have

lim
n→∞

∫ d(xn,xn+k)

0

ϕ(t)dt = 0 for all k ≥ 3.

Hence, we have
lim
n→∞

d(xn, xn+k) = 0 for all k ≥ 3.
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We conclude that {xn} is a Cauchy sequence in (X, d). Since (X, d) is complete, there
exists u ∈ X such that

(2.26) lim
n→∞

d(xn, u) = 0.

Since T is continuous, we obtain from (2.26) that

(2.27) lim
n→∞

d(xn+1, Tu) = lim
n→∞

d(Txn, Tu) = 0,

that is, lim
n→∞

xn+1 = Tu. Taking Proposition 1.2 into account, we conclude that Tu = u,
that is u is a fixed point of T . �

Theorem 3.1 remains true if we replace the continuity hypothesis by a proper condition
on the iterative sequence as follows:

Theorem 2.2. Let (X, d) be a complete BMS and T : X → X be an α-implicit contractive
mapping of integral type. Suppose that

(i) T is α−admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T

2x0) ≥ 1;
(iii) If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as

n→∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 for all
k.

Then there exists a u ∈ X such that Tu = u.

Proof. Following the lines in the proof of Theorem 3.1, we deduce that the sequence {xn}
defined by xn+1 = Txn for all n ≥ 0 is Cauchy and converges to some u ∈ X . In view of
Proposition 1.2,

(2.28) lim
k→∞

d(xn(k)+1, Tu) = d(u, Tu).

By using the method of reductio ad absurdum, we shall show that Tu = u. Suppose, on
the contrary, that Tu 6= u, i.e, d(Tu, u) > 0. From (2.6) and condition (iii), there exists
a subsequence {xn(k)} of {xn} such that α(xn(k), u) ≥ 1 for all k. Hence, by the implicit
relation, we have

F
(
α(xn(k), u)

∫ d(Txn(k),Tu)

0
ϕ(t)dt,

∫ d(xn(k),u)

0
ϕ(t)dt,

(2.29)
∫ d(xn(k),Txn(k))

0
ϕ(t)dt,

∫ d(u,Tu)
0

ϕ(t)dt
)
≤ 0 .

Due to F1, we find that
(2.30)
F
( ∫ d(xn(k)+1,Tu)

0
ϕ(t)dt,

∫ d(xn(k),u)

0
ϕ(t)dt,

∫ d(xn(k),xn(k)+1)

0
ϕ(t)dt,

∫ d(u,Tu)
0

ϕ(t)dt,
)
≤ 0,

Since F is continuous, letting n→∞ by regarding (2.26) and (2.28)

(2.31) F
( ∫ d(u,Tu)

0
ϕ(t)dt, 0, 0,

∫ d(u,Tu)
0

ϕ(t)dt
)
≤ 0.

Due to (F2a) for q = 0, we have
∫ d(u,Tu)
0

ϕ(t)dt ≤ 0. Thus, u is a fixed point of T , that is,
Tu = u. �

For the uniqueness, an additional condition was considered.
(U): For all x, y ∈ Fix(T ), we have α(x, y) ≥ 1, where Fix(T ) denotes the set of

fixed points of T .
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Theorem 2.3. Adding condition (U) to the hypotheses of Theorem 3.1 (resp. Theorem 2.2), we
obtain that u is the unique fixed point of T .

Proof. By using the method of reductio ad absurdum, we shall show that u is the unique
fixed point of T . Let v be another fixed point of T with v 6= u. By hypothesis (U),

1 ≤ α(u, v) = α(Tu, Tv).

Now, owing to (3.34), we have

(2.32) F
(
α(u, v)

∫ d(Tu,Tv)
0

ϕ(t)dt,
∫ d(u,v)
0

ϕ(t)dt,
∫ d(u,Tu)
0

ϕ(t)dt,
∫ d(v,Tv)
0

ϕ(t)dt
)
≤ 0,

By elementary calculation and taking (F1) into account, we observe that

(2.33) F
( ∫ d(u,v)

0
ϕ(t)dt,

∫ d(u,v)
0

ϕ(t)dt, 0, 0
)
≤ 0,

which contradicts (F3). Hence u is a unique fixed point of T . �

3. CONSEQUENCES

The following is the main result of [3].

Corollary 3.1. Let (X, d) be a complete BMS and T : X → X be continuous mapping. If there
exist φ ∈ Φs and F ∈ Γ such that

(3.34) F
( ∫ d(Tx,Ty)

0
ϕ(t)dt,

∫ d(x,y)
0

ϕ(t)dt,
∫ d(x,Tx)
0

ϕ(t)dt,
∫ d(y,Ty)
0

ϕ(t)dt
)
≤ 0,

then, there exists a u ∈ X such that Tu = u.

Proof. It is sufficient to take α(x, y) = 1 for all x, y ∈ X in Theorem 2.3. �

Corollary 3.2. (See [3]) Let (X, d) be a complete BMS and T : X → X be a mapping. Suppose
that there exist two functions α : X ×X → R+

0 and ψ ∈ Ψ such that

(3.35) α(x, y)d(Tx, Ty) ≤ ψ(max{d(x, y), d(x, Tx), d(y, Ty)}), for all x, y ∈ X.

Suppose also that
(i) T is α−admissible;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T
2x0) ≥ 1;

(iii) T is continuous or
if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as
n→∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 for all
k.

Then there exists a u ∈ X such that Tu = u.

Proof. It is sufficient to take F (t1, t2, t3, t4) = t1 − ψ(max{t2, t3, t4}) with ϕ(t) = 1 in
Theorem 3.1 and Theorem 2.2. �

Remark 3.2. The above corollaries are the main results of Aydi et al. [3] and Karapınar[16]
in which several existing fixed point theorems in the context of BMS have been listed. We
underline that all consequences of [3, 16] can be added here. On the other hand, to avoid
the repetition, we do not listed here.
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Example 3.8. Let X = [0, 1] and A = {xn : n ∈ N} ⊂ (0, 1). We define the distance
function d : X ×X → R+

0 as follows:

(3.36)

 d(x, y) = 0 if x = y, d(x, y) = d(y, x) for all x, y,
d(x1, x2) = d(x3, x4) = 1

5 d(x1, x4) = d(x2, x3) = 2
5

d(x1, x3) = d(x2, x4) = 1 d(x, y) = |x− y| otherwise.

It is clear that (X, d) is a Branciari metric space. Notice also that d is not a metric since

1 = d(x1, x3) > d(x1, x2) + d(x2, x3) =
3

5
.

We define T : X → X as Tx = 1 − x: Furthermore, let ψ : R+
0 → R+

0 be defined as
ψ(t) = t

4 . Now, we define α : X ×X → [0,∞) as follows:

(3.37) α(x, y) =

 1 if x = y,
5x if x, y ∈ {x1, x2, x3, x4}with x 6= y,

0 otherwise.

Hence, all conditions of Corollary 3.2, (and hence Theorem 2.3 with ϕ(t) = 1) is satisfied
and x = 1

2 is a unique fixed point of T .
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