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Common best proximity points for proximity commuting
mapping with Geraghty’s functions

POOM KUMAM and CHIRASAK MONGKOLKEHA

ABSTRACT. In this paper, we prove new common best proximity point theorems for proximity commuting
mapping by using concept of Geraghty’s theorem in complete metric spaces. Our results improve and extend
recent result of Sadiq Basha [Basha, S. S., Common best proximity points: global minimization of multi-objective func-
tions, J. Glob Optim, 54 (2012), No. 2, 367-373] and some results in the literature.

1. INTRODUCTION

The significance of fixed point theory stems from the fact that it furnishes an unified
treatment and is a vital tool for solving equations of form Tx = x where T is a self-
mapping defined on a subset of a metric space, a normed linear space, topological vector
spaces or some suitable spaces. Some applications of fixed point theory can be found in
[5, 8, 14]. One such generalizations is due to Geraghty [7] as follows:

Theorem 1.1. ([7]) Let (X, d) be a complete metric space and f be a self mapping on X such that
for each x, y ∈ X satisfying d(fx, fy) ≤ β(d(x, y))d(x, y), where β ∈ S, that S is the families
of functions from [0,∞) into [0, 1) which satisfies the condition β(tn) → 1 ⇒ tn → 0. Then the
sequence {fn} converges to the unique fixed point of f in X .

In 1969, Fan [6] introduced the classical best approximation theorem, that is, if A is a
non-empty compact convex subset of a Hausdorff locally convex topological vector space
B and T : A → B is a continuous mapping, then there exists an element x ∈ A such
that d(x, Tx) = d(Tx,A). Afterward, several authors, including Prolla [10], Reich [11],
Sehgal and Singh [12, 13], have derived extensions of Fan’s Theorem in many directions.
Other works of of the existence of a best proximity point for contractions can be seen
in [1, 2, 9]. Recently, Sadiq Basha [4] gave common best proximity point theorems for
proximity commuting mapping of multi-objective function. The aim of this paper is to
study the common best proximity point theorem for a classes of Geraghty’s condition with
a commute proximally mapping and we also give an illustrative example for support our
main result. The result of this paper extends and generalizes the corresponding results
given by Sadiq Basha [4] and some authors in the literature.

2. PRELIMINARIES

Given nonempty subsets A and B of a metric space (X, d), we recall the following
notations and notions that will be used in what follows.
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d(A,B) := inf{d(x, y) : x ∈ A and y ∈ B}, A0 := {x ∈ A : d(x, y) = d(A,B)} for some
{y ∈ B} and B0 := {y ∈ B : d(x, y) = d(A,B)for some x ∈ A}. If A ∩ B 6= ∅, then A0

and B0 are non-empty. Further, it is interesting to notice that A0 and B0 are contained in
the boundaries of A and B respectively provided A and B are closed subsets of a normed
linear space such that d(A,B) > 0 (see [3]).

Definition 2.1. A point x ∈ A is said to be a best proximity point of the mapping S : A→ B
if it satisfies the following condition d(x, Sx) = d(A,B).

It can be observed that a best proximity reduces to a fixed point if the underlying map-
ping is a self-mapping.

Definition 2.2. Let S : A → B and T : A → B. An element x∗ ∈ A is said to be a
common best proximity point if it satisfies the following condition d(x∗, Sx∗) = d(x∗, Tx∗) =
d(A,B).

Observed that a common best proximity point is an element at which the multi-objective
functions x 7→ d(x, Sx) and x 7→ d(x, Tx) attain common global minimum, since d(x, Sx) ≥
d(A,B) and d(x, Tx) ≥ d(A,B) for all x.

Definition 2.3. [4]A mapping S : A→ B and T : A→ B is said to be a commute proximally
if they satisfy the following condition [d(u, Sx) = d(v, Tx) = d(A,B)] =⇒ Sv = Tu for all
u, v, x,∈ A.

It is easy to see that proximal commutativity of self-mappings become commutativity
of the mappings.

Definition 2.4. [4] A mapping S : A→ B and T : A→ B is said to be a swapped proximally
if they satisfy the following condition [d(y, u) = d(y, v) = d(A,B) and Su = Tv] =⇒ Sv =
Tu for all u, v,∈ A and y ∈ B.

Definition 2.5. A is said to be approximatively compact with respect to B if every sequence
{xn} in A satisfies the condition that d(y, xn) → d(y,A) for some y ∈ B has a convergent
subsequence.

We observe that every set is approximatively compact with respect to itself, and that
every compact set is approximatively compact. Moreover, A0 and B0 are non-empty set if
A is compact and B is approximatively compact with respect to A.

3. MAIN RESULTS

In this section, we prove the existence of a common best proximity point for prox-
imally commuting non-self mappings by using Geraghty’s condition and we also give
some example for support our main results.

Theorem 3.2. LetA andB be non-empty closed subsets of a complete metric spaceX such thatA
is approximatively compact with respect to B, and A0 is non-empty set. Let the non-self mapping
S : A→ B, T : A→ B satisfy the following conditions:

(a) There is a function β ∈ S such that

d(Sx, Sy) ≤ β(d(Tx, Ty))d(Tx, Ty), for all x, y ∈ A;
(b) T is continuous;
(c) S and T commute proximally;
(d) S and T can be swapped proximally;
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(e) S(A0) ⊆ B0 and S(A0) ⊆ T (A0).
Then, there exists an element x ∈ A such that d(x, Tx) = d(A,B) and d(x, Sx) = d(A,B)

Moreover, if x∗ is another common best proximity point of the mappings S and T , then it is
necessary that d(x, x∗) ≤ 2d(A,B).

Proof. Let x0 a fixed element inA0. In view of the fact that S(A0) ⊆ T (A0) it is ascertained
that there exists an element x1 ∈ A0 such that Sx0 = Tx1. Again, since S(A0) ⊆ T (A0),
there exists an element x2 ∈ A0 such that Sx1 = Tx2. By similar fashion we can find xn in
A0 such that

(3.1) Sxn−1 = Txn,

for all n ∈ N. It follows that

d(Sxn, Sxn+1) ≤ β(d(Txn, Txn+1))d(Txn, Txn+1)

= β(d(Sxn−1, Sxn))d(Sxn−1, Sxn)

≤ d(Sxn−1, Sxn)

this mean that the sequence {d(Sxn, Sxn+1)} is non-increasing and converges to some
nonnegative r, that is, there exists r ≥ 0 such that limn→∞ d(Sxn, Sxn+1) = r. If r > 0,
from the fact that

(3.2)
d(Sxn, Sxn+1)

d(Sxn−1, Sxn)
≤ β(d(Sxn−1, Sxn)).

Taking n→∞, in inequality (3.2), we get limn→∞ β(d(Sxn−1, Sxn))→ 1 and since β ∈ S
implies that r = 0. Therefore

(3.3) lim
n→∞

d(Sxn−1, Sxn) = 0.

Next, we will prove that {d(Sxn, Sxn+1)} is Cauchy sequence. We distinguish two cases.
Case I Suppose there exits n ∈ N such that Sxn = Sxn+1, we get

d(Sxn+1, Sxn+2) ≤ β(d(Txn+1, Txn+2))d(Txn+1, Txn+2)

≤ β(d(Sxn, Sxn+1))d(Sxn, Sxn+1)

= 0,

which implies that Sxn+1 = Sxn+2. So, for every m > n, we conclude that Sxm = Sxn
and hence {Sxn} is a Cauchy sequence in B.
Case II The successive terms of {Sxn} are different. Suppose that {Sxn} is not a Cauchy
sequence. Then there exists ε > 0 and subsequence {Sxmk

}, {Sxnk
} of {Sxn} with nk >

mk ≥ k such that

(3.4) d(Sxmk
, Sxnk

) ≥ ε and d(Sxmk
, Sxnk−1) < ε.

By using (3.4) and triangular inequality, we get

(3.5)
ε ≤ d(Sxmk

, Sxnk
)

≤ d(Sxmk
, Sxnk−1) + d(Sxnk−1, Sxnk

)
< ε+ d(Sxnk−1, Sxnk

).

Using (3.3) and (3.5), we have

(3.6) d(Sxmk
, Sxnk

)→ ε as k →∞.
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Again, by the triangular inequality, we get

(3.7) d(Sxmk
, Sxnk

) ≤ d(Sxmk
, Sxmk+1) + d(Sxmk+1, Sxnk+1) + d(Sxnk+1, Sxnk

)

and

(3.8) d(Sxmk+1, Sxnk+1) ≤ d(Sxmk+1, Sxmk
) + d(Sxmk

, Sxnk
) + d(Sxnk

, Sxnk+1).

From, (3.3), (3.6), (3.7) and (3.8), we get d(Sxmk+1, Sxnk+1)→ ε as k →∞.
In view of the fact that

d(Sxmk+1, Sxnk+1) ≤ β(d(Txmk+1, Txnk+1))d(Txmk+1, Txnk+1)
≤ β(d(Sxmk

, Sxnk
))d(Sxmk

, Sxnk
),

it follow that
d(Sxmk+1, Sxnk+1)

d(Sxmk
, Sxnk

)
≤ β(d(Sxmk

, Sxnk
)),

we get limk→∞ β(d(Sxmk
, Sxnk

))→ 1 and since β ∈ S implies that limk→∞ d(Sxmk
, Sxnk

) =
0 which is a contradiction. Then, we deduce that {Sxn} is a Cauchy sequence in B. Since
B is closed subset a complete metric space X , then there exists y ∈ B such that Sxn → y
as n → ∞. Consequently, we have that the sequence {Txn} also converges to y. From
S(A0) ⊆ B0, for each n ∈ N there exists an element un ∈ A such that

(3.9) d(Sxn, un) = d(A,B).

So, it follows from (3.1) and (3.9) that

(3.10) d(Txn, un−1) = d(Sxn−1, un−1) = d(A,B),

for all n ∈ N. By (3.9), (3.10) and the fact that the mappings S and T are commuting
proximally, we obtain Tun = Sun−1 for all n ∈ N. Moreover, we have

d(y,A) ≤ d(y, un) = d(y, Sxn) + d(A,B) ≤ d(y, Sxn) + d(y,A).

Therefore d(y, un)→ d(y,A) as n→∞. Since A is approximatively compact with respect
to B, then there exists subsequence {unk

} of sequence {un} such that converging to some
element u ∈ A. Further, since d(y, unk−1) → d(y,A) and again, A is approximatively
compact with respect to B, then there exists subsequence {unkj

−1} of sequence {unk−1}
such that converging to some element v ∈ A. Since T is continuous, consequently S is
continuous and thus Tu = lim

j→∞
Tunkj

= lim
j→∞

Sunkj
−1 = Sv, d(y, u) = lim

k→∞
d(Sxnk

, unk
) =

d(A,B) and d(y, v) = lim
j→∞

d(Txnkj
, unkj

−1) = d(A,B). Because S and T can be swapped

proximally, we get Tv = Su. Next, to prove Su = Sv, suppose the contrary, it follow that

d(Su, Sv) ≤ β(d(Tu, Tv))d(Tu, Tv) ≤ β(d(Sv, Su))d(Sv, Su) < d(Sv, Su)

which is a contradiction. Thus Su = Sv and hence Tu = Su. Since S(A0) is contained in
B0, there exists an element x in A such that d(x, Tu) = d(A,B) and d(x, Su) = d(A,B).
By the commuting proximally of S and T , we get Sx = Tx. Consequently, we have

(3.11) d(Su, Sx) ≤ β(d(Tu, Tx))d(Tu, Tx) ≤ β(d(Su, Sx))d(Su, Sx).

In inequality (3.11), if Su 6= Sx then

(3.12) 1 =
d(Su, Sx)

d(Su, Sx)
≤ β(d(Su, Sx)) < 1,

it is impossible. So, we have Su = Sx and hence Tu = Tx. It follow that
d(x, Tx) = d(x, Tu) = d(A,B) and d(x, Sx) = d(x, Su) = d(A,B).
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Therefore, x is a common best proximity point of S and T . Suppose that x∗ is another
common best proximity point of the mappings S and T , so that d(x∗, Tx∗) = d(A,B) and
d(x∗, Sx∗) = d(A,B). By the commuting proximally of S and T , we get Sx = Tx and
Sx∗ = Tx∗. Thus,

(3.13) d(Sx∗, Sx) ≤ β(d(Tx∗, Tx))d(Tx∗, Tx) ≤ β(d(Sx∗, Sx))d(Sx∗, Sx).
In inequality (3.13) , if Sx∗ 6= Sx, by similar argument of (3.12), it is impossible. Therefore,
Sx = Sx∗. Moreover, it can be concluded that

d(x, x∗) ≤ d(x, Sx) + d(Sx, Sx∗) + d(Sx∗, x∗) = 2d(A,B)

and the proof is completes. �

If take β(t) = k, where 0 ≤ k < 1 in Theorem 3.2, we obtain following corollary:

Corollary 3.1. [4] Let A and B be non-empty closed subsets of a complete metric space X such
thatA is approximatively compact with respect toB. Also, assume thatA0 andB0 are non-empty.
Let the non-self mapping S : A→ B, T : A→ B satisfy the following conditions.

(a) There is a non-negative real number α < 1 such that

d(Sx1, Sx2) ≤ kd(Tx1, Tx2) for all x1, x2 ∈ A.
(b) T is continuous.
(c) S and T commute proximally.
(d) S and T can be swapped proximally.
(e) S(A0) ⊆ B0 and S(A0) ⊆ T (A0) . Then, there exists an element x ∈ A such that

d(x, Tx) = d(A,B) and d(x, Sx) = d(A,B).

Further, if x∗ is another common best proximity point of the mappings S and T , then it is necessary
that d(x, x∗) ≤ 2d(A,B).

Now, below we give an example to illustrate Theorem 3.2.

Example 3.1. Consider the complete metric space R2 with Euclidean metric. Let A =
{(0, y) : 0 ≤ y < 4} and B = {(2, y) : 0 ≤ y < 4}. Define two mappings S : A → B,
T : A → B as follows: S((0, y)) =

(
2, ln(1 + y)

)
, T ((0, y)) =

(
2, y
)
. Then it is easy to see

that d(A,B) = 2, A0 = A , B0 = B and satisfying condition (b) and (e). First, we will
show that S and T satisfying condition (a) of Theorem 3.2 with β ∈ S defined by

β(t) =


1 ; t = 0

ln(1 + t)

t
, ; t > 0.

Let (0, y1), (0, y2) ∈ A. If y1 = y2 = 0, we are done. Assume that y1, y2 > 0, we have

d(S(0, y1), S(0, y2)) =
∣∣ ln(1 + y1)− ln(1 + y2)

∣∣
≤

∣∣ ln(1 + |y1 − y2|)∣∣
|y1 − y2|

|y1 − y2|

= β(d(T (0, y1), T (0, y2)))d(T (0, y1), T (0, y2))

Hence, S and T satisfying (a). Next, we will show that S and T commute proximally. Let
(0, u), (0, v), (0, y) ∈ A are satisfying d((0, u), S(0, y)) = d(A,B) = 2 and d((0, v), T (0, y)) =
d(A,B) = 2, it follow that u = ln(1 + y) and v = y, and hence S(0, v) = T (0, u). Finally,
we will show that S and T swapped proximally. Suppose that (0, u), (0, v), (0, y) ∈ A are
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satisfying d((0, y), (0, u)) = d((0, y), (0, v)) = d(A,B) = 2 and S(0, u) = T (0, v), then
we get u = v and v = ln(1 + u) which is implies that S(0, v) = T (0, u). Therefore, all hy-
pothesis of Theorem 3.2 are satisfied. Furthermore, (0, 0) ∈ A is a common best proximity
point of S and T , because d((0, 0), S(0, 0)) = d((0, 0), (2, 0)) = d((0, 0), T ((0, 0)) = d(A,B).

On the other hand, suppose that there exists non-negative real number k < 1 such that
for each (0, x∗) and (0, y∗) are an element inA satisfying d(S(0, x∗), S(0, y∗)) ≤ kd(T (0, x∗),
T (0, y∗)). So that

∣∣ ln(1 + x∗) − ln(1 + y∗)
∣∣ ≤ k|x∗ − y∗|. Consider y∗ = 0 and x∗ > 0, we

get 1 = lim
x∗→0+

ln(1+x∗)
x∗ ≤ k < 1 which is a contradiction. Therefore, the results of [4] can

not be applied to this example and Theorem 3.2.
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